基于FBG传感器的碳纤维复合材料固化残余应力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先进复合材料(Advanced Composite Materials, ACMs)由于其自身优异的比强度、比模量和抗腐蚀、抗磨、抗疲劳等性能,已经成为飞机的四大结构用材料之一。但在复合材料固化成型过程中,因为增强纤维和树脂的热膨胀系数的不匹配性以及树脂聚合反应等原因,往往在复合材料中容易产生固化残余应力,而固化残余应力会明显降低复合材料的性能并增大其组装的困难,因此高效的无损检测技术监测复合材料的固化过程显得特别重要,同时内置传感器对复合材料的结构健康状态进行实时监测也是复合材料结构无损检测技术的重要发展趋势。在众多传感器中,布拉格光栅(Fiber Bragg Grating, FBG)传感器作为一种抗磁、抗电性能优越的传感器,对材料最小扰动的方式被置入到复合材料中,从而监测碳纤维预浸料的整个热压罐固化成型过程。
     本论文首先对FBG传感器的应力灵敏系数、温度灵敏系数以及在高低温度下的热稳定性等性能都做了全面细致地研究工作,结果表明,具有不同中心波长的FBG传感器的应力灵敏系数、温度灵敏系数和在高低温下的热稳定性都较相近,并与理论分析值基本一致。当将含金属套管的FBG传感器和裸栅FBG传感器同时置于环氧树脂中,从两根FBG传感器的信号图中不仅能够很容易地辨别出树脂固化反应的凝胶点和玻璃化转变温度出现的时间,还能计算出固化反应的放热量和冷却后的固化收缩量,并且还发现固化过程中的热释放过程是一个极其缓慢的过程。
     随后在单向层合板热压罐的固化工艺中,针对能够影响固化残余应力大小的第二升温时间、第二保温时间、冷却方式、固化压力和泄压温度等五个不同的固化工艺条件设计出了田口正交试验,并同时将FBG传感器埋置在预浸料的中间层以便对固化的全过程进行监测。将得到的正交试验结果经过田口软件分析,找出了固化试验中的重要因子以及它们之间的交互作用。随后设计出的重要因子间的优化试验,找到了适合本固化试验的最佳固化工艺条件和-6.49MPa最小的固化残余应力,发现不同的固化工艺条件对固化残余应力有着显著的影响,而即使埋置在同一铺层间不同方向上的两个FBG传感器也展示出了完全不同的信号变化。
     其次文中还对不同铺层顺序和不同铺层厚度的固化行为和固化残余应大小进行了研究。首先通过分析FBG传感器监测得到的正交和准各向同性铺层中的固化信号,重点研究了不同铺层在降温过程中的固化行为。其次还对对称铺层和非对称两种铺层的固化行为进行了比较,找到了对称铺层和非对称铺层在固化过程中影响FBG传感器信号的一般规律。最后通过X衍射法对FBG传感器测得的残余应力进行验证,由于X衍射法要求对试样表面进行打磨处理,这将会释放部分固化残余应力,因此X衍射法比FBG传感器测得的残余应力值小但基本趋势是一致的。
     同时还对具有不同固化残余应力值的复合材料单向层合板试样进行了层间剪切强度测试,并将测试的剪切强度数据按照一定的步骤进行了数据处理后发现:四种固化条件下的B基准剪切强度值与由FBG传感器监测得到的固化残余应力值之间具有近似曲线的关系,表明当残余应力值大于14MPa时,固化残余应力越大,对剪切强度的影响越大;当残余应力值小于8MPa时,固化残余应力越小,对剪切强度的影响也越小。
     最后,由于不锈钢模具的热容较大,在固化过程的降温阶段将会在层合板的上、下表面形成一定的温度梯度,因此本论文采用对流边界条件用ANSYS有限元软件对对称和非对称铺层的固化过程进行了数值模拟。将模拟得到的固化结果与光栅FBG传感器监测试验结果进行对比后发现,不同铺层顺序和不同铺层厚度的预浸料在固化后的变化趋势与试验结果基本一致。
Since the advanced composite materials have excellent specific strength, specific stiffness, anti-corrosion, anti-abrasion and fatigue resistance, they have taken the first place in the four structure materials of aircraft. However, the curing residual stresses, which is always, during the curing process of composite material, induced by the mismatch of thermal expansion coefficients between reinforced fiber and resin, the shrinkage in the resin polymerization reaction or other reasons, can reduce the performance of composite materials and increase their assemble difficulty. So it is very meaningful to monitor the curing process of composite materials with efficient non-destructive testing technology. To monitor the health condition of composite structure using built-in sensors method is also an important development trend of composite structure non-destructive testing technology. Among numerous sensors, the optical fiber grating (FBG) sensor, which is a superior sensor with magnetic and electrical resistance, can be embedded in the composite materials with little interference to monitor the whole autoclave curing process of prepreg.
     Firstly, the stress sensitive coefficient, the temperature sensitive coefficient and the thermal stability performances at high and low temperature of FBG sensors had been thoroughly studied in this paper. The results showed that the stress sensitive coefficient, the temperature sensitive coefficient and the thermal stability performances at high and low temperature of FBG sensors with different central wavelength were very similar, and they were all consistent with the theoretical analysis value. When the FBG sensor encapsulated by metal casing and the naked one were put into the epoxy resin, the gel point and glass transition temperature of resin curing reaction could be easily and immediately identified from two signals of FBG sensors, and the curing reaction heat with the curing shrinkage after cooling could be also calculated. Besides, it was found that the heat release of curing process was very slow.
     Secondly, in the unidirectional laminate autoclave curing process, a Taguchi orthogonal test was designed according to five different curing conditions (including the second heating time, the second holding time, the cooling mode, the curing pressure and the temperature of pressure releasing), which could affect the curing residual stresses. And the FBG sensors were embedded into the middle of prepreg in order to monitor the whole process of curing. After the results of orthogonal test were analyzed by Taguchi soft, the important factor in the curing test and interaction between them could be obtained. Subsequently, in terms of the optimal test of important factor, the optimum curing condition fitting to this test and the minimal residual stresses (-6.49MPa) had also been found. In addition, different curing conditions had great influence on curing residual stresses. Even the two FBG sensors at same layer of different direction showed different signal changes.
     Thirdly, this paper had researched on curing behavior and curing residual stresses of different ply sequences and different thickness. In the beginning, the curing behaviors of orthogonal and quasi isotropic layers at cooling stage were mainly studied by means of analyzing the curing signals which were monitored by FBG sensors. Subsequently, the paper compared the curing behaviors of symmetric and asymmetric laminate, and found out the general rule that how symmetric and asymmetric laminate affected the FBG sensors.
     Finally, X ray diffraction method was used to verify the residual stresses measured by FBG sensors. Since the surface of specimens in X ray diffraction method required to be polished, it would release part of curing residual stresses. The value measured by X ray diffraction method was less than that measured by FBG sensors, but the general trend was still the same.
     Meanwhile, interlaminar shear strength of the unidirectional composite laminate specimens with different curing residual stress had been tested, and the test data was processed according by certain steps subsequently. The results revealed that the relationship between B benchmark shear strength value under four curing conditions and curing residual stresses monitored by FBG sensors was an approximate curve. That was a great impact on the shear strength when the curing residual stress monitored by FBG sensors was more than14MPa. However, when the curing residual stresses monitored by FBG sensors were less than8MPa, the impact was very little.
     Finally, the heat capacity of stainless steel mold was relatively large, which led to a certain temperature gradient between the upper and lower surface of the laminate during the cooling stage of curing process. The curing process of symmetric and asymmetric layers were simulated with the convection boundary condition by ANSYS finite element software. The simulation results obtained were compared with the test results monitored by FBG sensors, which showed that changing trend of cured prepreg with different stacking sequence and different layer thickness was consistent with test results.
引文
[1]陈绍杰.大型飞机与复合材料[J].航空制造技术,2008,(15):32-37.
    [2]张佐光,李敏,陈绍杰.飞机结构用先进复合材料的应用与发展[J].第十四届全国复合材料学术会议论文集,2006.
    [3]范金娟,程小全,陶春虎.聚合物基复合材料构件失效分析基础[M].北京:国防工业出版社,2011.
    [4]黄领才,刘秀芝.现代大飞机复合材料应用与制造技术浅析[J].航空制造技术,2008,(10):46-48.
    [5]Callister WD. Materials science and engineering—an introduction[M]. New York:John Wiley & Sons, Inc,1994.
    [6]White S.R. and Hahn H.T. Process modeling of composite materials:residual stress development during cure. Part I. Model formulation[J]. Journal of composite materials, 1992,26(16):2402-2422.
    [7]V. Antonucci, A. Cusano, M. Giordano, J.Nasser and L. Nicolais. Cure-induced residual strain build-up in a thermoset resin[J]. Composites Part A:Applied Science and Manufacturing, 2006,37(4):592-601.
    [8]Osswald TA and G. Menges. Materials science of polymers for engineers[M]. Cincinnati: Hanser Gardner Publications, Inc,2003.
    [9]Li W, Lee J. Shrinkage control of low-profile polyester resin cured at low temperature[J]. Polymer,1998,39(23):5677-5687.
    [10]温磊.复合材料层压板残余应力的研究[D].北京航空材料研究院,2000.
    [11]赵渠森等.复合材料匕机构件制造技术[M].国防工业出版社,1989.
    [12]C. Li, K. Potter, Wisnom MR and G. Stringer. In-situ measurement of chemical shrinkage of MY750 epoxy resin by a novel gravimetric method[J]. Composites Science and Technology, 2004,64:55-64.
    [13]Olivier P. A note upon the development of residual curing strains in carbon/epoxy laminates. Study by thermomechanical analysis[J]. Composites Part A,2006,37:602-616.
    [14]Kim YK, White SR. Stress relaxation during cure of 3501-6 exposy resin[J]. Proceedings of the ASME materials division,1995,69(1):43-56.
    [15]Patricia P. Parlevliet, Harald E. N. Bersee, Adriaan Beukers. Residual stresses in thermoplastic composites—A study of the literature—Part Ⅰ:Formation of residual stresses[J]. Composites Part A,2006,37:1847-1857.
    [16]Zhang Boming, Yang Zhong, Sun Xinyang. Measurement and analysis of residual stresses in single fiber composite[J]. Materials and design,2010,31:1237-1241.
    [17]Nairn JA, Zoller P. Matrix solidification and the resulting residual thermal-stresses in composites [J]. Journal of Composite Materials,1985,20(1):355-367.
    [18]Chapman TJ, Gillespie JW, Pipes RB, Manson JAE, Seferis JC. Prediction of process-induced residual-stresses in thermoplastic composites[J]. Journal of Composite Materials,1990,24(6):616-643.
    [19]杨博,薛忠民,阿茹娜,张佐光.聚合物基复合材料残余应力的研究进展[J].玻璃钢/复合材料,2004,2:49-52.
    [20]Barnes JA, Byerly GE. The formation of residual-stresses in laminated thermoplastic composites [J]. Composite Science and Technology,1994,51(4):479-494.
    [21]Manson JAE, Seferis JC. Process simulated simulated laminate (Psl) -a methodology to internal-stress characterization in advanced composite-materials[J]. Journal of Composite Materials,1992,26(3):405-431.
    [22]Hahn HT. Residual stresses in polymer matrix composites[J]. Journal of Composite Materials, 1976,12:266-278.
    [23]Wisnom MR, Gigliotti M, Ersoy N, Campbell M and Potter KD. Mechanisms generating residual stresses and distorting during manufacture of polymer-matrix composite structures[J]. Composites Part A,2006,37:522-529.
    [24]Twigg G, Poursartip A and Fernlund G. An experimental method for quantifying tool-part shear interaction during composites processing[J]. Composites science and technology,2003, 63:1985-2002.
    [25]Cho M, Kim MH, Chois HS, Chung CH, Ank K-J and Eom YS. A study on the room-temperature curvature shapes of unsymmetric laminates including slippage effects [J]. Journal of composite materials,1998,32(5):460-482.
    [26]Potter KD, Campbell M, Langer C and Wisnom MR. The generation of geometrical deformations due to tool/part interaction in the manufacture of composite components [J]. Composites Part A,2005,36(2):301-308.
    [27]R. de Oliveira, S. Lavanchy, R. Chatton, D. Costantini, V. Michaud, R. Salathe and J. A. E. Manson. Experimental investigation of the effect of the mould thermal expansion on the development of internal stresses during carbon fibre composite processing[J]. Composites Part A:Applied Science and Manufacturing,2008,39(7):1083-1090.
    [28]田中启介(日),刘明成(泽),周起玉(校).残余应力的最新测定方法及其应用[J].国外金属加工,1994,(4):60-64.
    [29]陈会丽,钟毅,王华昆,张家涛,起华荣.残余应力测试方法的研究进展[J].云南冶金,2005,34(3):52-54.
    [30]J. Mathar, Determination of initial stress by measuring the deformations around drilled holes[J]. Transaction of ASME,1934,56:249-254.
    [31]Measurement of residual stresses by the hole-drilling strain-gage method[J]. Tech Note TN-503, Measurement Group,1998:1-15.
    [32]N.K. Naik and R.D. Sahani. Measurement of residual stresses in composites by hole drilling method[J]. Proceeding of the V international conference on experimental mechanics, SEM, 1984:159-163.
    [33]J.S. Sirks and Y. Lo. Simultaneous measurement of two strain components using 3x3 and 2x2 couple-based passive demodulation of optical fiber sensors[J]. Journal of lightwave technology,1994,12(12):2153-2161.
    [34]ASTM标准:E837-81,用钻孔应变测量决定残余应力的标准方法.顾唯明译[J].机械强度,1986,8(1):40-43.
    [35]D. Joh, K.Y. Byun and J. Ha. Thermal residual stresses in thick graphite/epoxy composite laminates-uniaxial approach[J], Experimental mechanics,1993,33:70-76.
    [36]T.J. Chapman, J.W. Gillespie, R.B. Pipes, J.E. Manson. Prediction of process-induced residual stresses in thermoplastic composites[J]. Journal composite materials,1990,24: 616-643.
    [37]J.E. Manson, and J.C. Seferis. Process simulated laminate (PSL) A methodology to internal stress characterization in advanced composite materials[J]. Journal composite materials, 1992,26(3):405-431.
    [38]C. Aleong and M. Munro. Evaluation of the radial-cut method for determining residual strains in fiber composite rings[J]. Experimental techniques,1991,15(1):55-58.
    [39]M.G. Abdallah. Residual stresses in thick-walled composite rings[J]. Proceedings of the Ⅶ international congress on experimental mechanics, SEM,1992,2:1063-1070.
    [40]孟宪陆,陈怀宁,林泉洪等.压痕应变法中压痕周围的应力应变分布规律[J].焊接学报,2008,29(3):109-112.
    [41]侯鑫茜.纤维增强复合材料残余应力测试技术研究[D].太原科技大学.2010.
    [42]S.D. Tsai, D. Mahulikar, H.L. Marcus, I.C. Noyan and J.B. Cohen. Residual stress measurements on Al-Graphite composites using X-ray diffraction [J]. Materials science and engineering,1981,47:145-149.
    [43]P. Predicki and C.S. Barrett. Stress measurement in Graphite/Epoxy composites by X-ray diffraction from Fillers [J]. Journal of composite materials,1979,13:61-71.
    [44]R.H. Fenn, A.M. Jones and G.M. Wells. X-ray diffraction investigation of triaxial residual stresses in composite materials[J]. Journal of composite materials,1993,27(4):1338-1354.
    [45]D.S. Kupperman, S. Majumdar and J.P. Singh. Neutron diffraction NDE for advanced composites[J]. Journal of engineering materials and technology,1990,112:198-201.
    [46]I.M. Daniel and T. Liber. Effect of laminate construction on residual stresses in Graphite/Polyimide composites[J]. Experimental mechanics,1977,1:21-25.
    [47]I.M. Daniel and T. Liber. Lamination residual stresses in fiber composites[C]. IITRI report D6O73-Ⅰ, for NASA-Lewis research center, NASA CR-13482,1975.
    [48]I.M. Daniel, T. Liber and C.C. Chamis. Measurement of residual strains in Boron/Epoxy and Glass/Epoxy laminates[S]. Composite reliability, ASTM STP 580, American society for testing and materials,1975:340-351.
    [49]G.P. Carman and G.P. Sendechyj. Review of the mechanics of embedded optical sensors[J]. Journal composites technology & research,1995,17(3):183-193.
    [50]W.W. Morey, C.W. Maier and W.H. Glenn. Fiber optic Bragg grating sensors[J]. Proceeding SPIE, Fiber optics and laser sensors VII,1989,1169:10-11.
    [51]A.D. Kersey, M.A. Davis, H.J. Patrick, M. LeBlanc, K.P. Koo, C.G. Askins, M.A. Putnam and E.J. Friebele. Fiber grating sensors[J]. Journal of lightwave technology,1997,15: 1442-1463.
    [52]K.O. Hill and G. Meltz. Fiber Bragg grating technology fundamentals and overview[J]. Journal of lightwave technology,1997,15:1263-1276.
    [53]R. Gafsi and M.A. El-Sherif. Analysis of induced-birefringence effects on fiber Bragg gratings[J]. Optical Fiber Technology,2000,6:299-323.
    [54]H.K. Kang, D.H. Kang, H.J. Bang, C.S. Hong and C.G. Kim. Cure monitoring of composite laminates using fiber optic sensors[J]. Smart Materials & Structures,2002,11:279-287.
    [55]T.H.T. Chan, L. Yu, H.Y. Tam, Y.Q. Ni, W.H. Chung and L.K. Cheng. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge:Background and experimental observation [J]. Engineering Structures,2006,28:648-659.
    [56]A. Kenel, P. Nellen, A. Frank and P. Marti. Reinforcing steel strains measured by Bragg grating sensors[J]. Journal of materials in civil engineering,2005,17:423-431.
    [57]J.M. Lopez-Higuera. Handbook of optical fibre sensing technology[M]. England:John Wiley & Sons Ltd,2002.
    [58]Q.Z. Sun, D.M. Liu, L. Xia, J. Wang, H.R. Liu and P. Shum. Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating [J]. Ieee Photonics Technology Letters,2008,20:933-935.
    [59]M.G. Xu, J.L. Archambault, L. Reekie and J.P. Dakin. Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors[J]. Electronics Letters,1994, 30:1085-1087.
    [60]H.J. Patrick, G.M. Williams, A. D. Kersey, J.R. Pedrazzani and A.M. Vengsarkar. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination[J]. Ieee Photonics Technology Letters,1996,8:1223-1225.
    [61]N. Tanaka, Y. Okabe and N. Takeda. Temperature-compensated strain measurement using fiber Bragg grating sensors embedded in composite laminates[J]. Smart materials & structures,2003,12:940-946.
    [62]万里冰,武湛君,张博明,王殿富.光纤布拉格光栅监测复合材料固化[J].复合材料学报,2004,21(3):1-5.
    [63]胡照会,王荣国,赫晓东,赵海涛.带有铝板复合材料层合板固化过程中残余应力演化[J].材料工程,2007,增刊1:221-224.
    [64]贾子光,任亮,李宏男,任明法,黄其忠.应用光纤光栅传感器监测复合材料同化过程[J].中国激光,2010,37(5):1298-1303.
    [65]常新龙,何相勇,周家丹,等.FBG传感器在复合材料固化监测中的应用[J].传感技术学报,2010,23(5):748-752.
    [66]常新龙,何相勇,周家单,等.基于FBG传感器的复合材料固化监测[J].宇航材料工艺,2010,4:80-83.
    [67]Zhan-Sheng Guo, Junqian Zhang, Xingming Guo, Hongjiu Hu. Theoretical and experimental characteristics on residual stresses of advanced polymer composite[J]. Process of SPIE,2008, 6934(693409):1-8.
    [68]C.M. Lawrence, D.V. Nelson, J.R. Springarn, T.E. Bennett. Measurement of process-induced strains in composite materials using embedded fiber optic sensors[J]. Proceeding SPIE,1996, 2718:60-67.
    [69]M.J. O'Dwyer, G.M. Maistros, S.W. James, R.P. Tatam, I. K.Partridge. Relating the state of cure to the real-time internal strain development in a curing composite using in-fibre Bragg gratings and dielectric sensors[J]. Measurement science & technology,1998,9:1153-1158.
    [70]V.M. Murukeshan, P.Y. Chan, L.S. Ong, L.K. Seah. Curing monitoring of smart composites using Fiber Bragg Grating based embedded sensors[J]. Sensors and actuators,2000,79: 153-161.
    [71]Y.B. Lin, K.C. Chang, J.C. Chern, L.A. Wang. The health monitoring of a prestressed concrete beam by using fiber Bragg grating sensors[J]. Smart materials & structures,2004, 13:712-718.
    [72]福田武人,白云英,史志龙.光纤传感器在监测RTM固化过程及复合材料健康状况中的应用[J].复合材料学报,2002,(3):56-61.
    [73]Hyun-Kyu Kang, Dong-Hoon Kang, Hyung-Joon Bang, Chang-Sun Hong and Chun-Gon Kim. Curing monitoring of composite laminates using fiber optic sensors [J]. Smart material and structures,2002,11:279-287.
    [74]Larissa Sorensen, Thomas Gmur, John Botsis. Residual strain development in an AS4/PPS thermoplastic composite measured using fiber Bragg grating sensors[J]. Composites:Part A, 2006,37:270-281.
    [75]Margit Harsh, Jozsef Karger-Kocsis, Florian Herzog. Influence of cure regime on the strain development in an epoxy resin as monitored by Fiber Bragg Grating sensor[J]. Macromolecular materials and engineering,2007,292:474-483.
    [76]Patricia P. Parlevliet, Harald E.N. Bersee, Adriaan Beukers. Measurement of (post-)curing strain development with fibre Bragg grations[J]. Polymer testing,2010,29:291-301.
    [77]C.D. Butter, G.B. Hocker. Fiber optics strain gauge[J]. Applied optics,1978,17(18): 2867-2869.
    [78]A.D. Kersey, A. Dandridge. Application of firber-optic sensors[J]. IEEE transactions on components, hybrids, and manufacturing technology,1990,13(1):137-143.
    [79]G.P. Carman, G.P. Sendeckyj. Review of the mechanics of embedded optical sensors[J]. Journal of composites technology and research,1995,17(3):183-193.
    [80]卢少微.智能CFRP加固钢筋混凝土梁安全测评及模糊随机可靠度研究[D].哈尔滨工业大学,2006.
    [81]卢少微,谢怀勤,陈平.埋入光纤布拉格光栅传感器的智能碳纤维复合塑料[J].吉林大学学报,2008,38(6):1300-1304.
    [82]万里冰,武湛君,张博明.光纤布拉格光栅监测复合材料固化[J].复合材料学报,2004,3(12):1-5.
    [83]毕卫红,李卫,傅广为.分布式光纤光栅实现应变和温度的同时测量.光电子·激光,2003,14(8):827-834.
    [84]郭凤珍,于长泰.光纤传感技术与应用[M].杭州:浙江大学出版社,1992.
    [85]卢吉云.光纤光栅在智能结构动态监测中的应用研究[D].南京航空航天大学,2009.
    [86]Cure-induced residual strain build-up in a thermoset resin[J]. Composites:Part A,2006,23: 592-601.
    [87]M. Gigliotti, M.R. Wisnom, K.D. Potter. Development of curvature during the cure of AS4/8552 [0/90] unsymmetric composite plates[J]. Composite science and technology,2003, 63:187-197.
    [88]孙九霄.基于布拉格光栅传感的复合材料固化及冲击损伤监测研究[D].武汉理工大学,2011.
    [89]Murukeshan V M, Chan P Y. Cure monitoring of smart composites using Fiber Bragg Grating based embedded sensors[J]. Sensors and Actuators A:Physical,2000,79(2): 153-161.
    [90]P.A. Crossby, G.R. Powell, G.F. Fernado, D.N. Waters, C.M. France, R.C. Spooncer. A comparative study of optical fiber cure monitoring methods[J]. SPIE 3042,1997:141-153.
    [91]Craig M. Lawrence. Embedded fiber optic strain sensors for process monitoring of composites[D]. Stanford university,1997.
    [92]赵书婧.复合材料热压罐固化变形及压实过程分析[D].哈尔滨工业大学,2011.
    [93]庞杰.复合材料结构同化变形分析及其控制[D].南京航空航天大学,2010.
    [94]张铖.大型复合材料结构热压罐工艺温度场权衡设计[D].哈尔滨工业大学,2009.
    [95]马军.热压罐法FRP构件实用制造技术研究[D].南昌大学,2007.
    [96]中华人民共和国建材行业标准.JC/T 780-2004预浸料树脂含量试验方法[S].中华人民国家发展和改革委员会,2004-11-01.
    [97]陈洪江,吴敏,虞鑫海等.新型环氧树脂胶粘剂的固化动力学研究[J].粘接,2009,8:43-45.
    [98]孙超明,陈淳,李文峰,刘锦霞.酚醛氰酸酯树脂的固化动力学研究[J].功能材料,2009,38:4129-4131.
    [99]文放怀.田口方法[M].广东:广东经济出版社有限公司,2006.
    [100]阜元.田口方法简介[J].质量与可靠性,1991,4:41-41.
    [101]Xiaokai Niu. Process induced residual stresses and dimensional distortions in advanced laminated composites [D]. University of Florida,1999.
    [102]李桂东.复合材料构件热压罐成型工装设计关键技术研究[D].南京航空航天大学,2010.
    [103]郭兆璞,陈浩然,杨正林.复合材料层合板在加工固化后期降温速率对残余热应力的影响[J].计算结构力学及其应用,1995,12(4):387-393.
    [104]Philippe A., Olivier. A note upon the development of residual curing strains in carbon/epoxy laminates. Study by thermomechanical analysis[J]. Composites Part A: Applied Science and Manufacturing,2006,37(4):602-616.
    [15]P.A.Crossby, G.R.Powell, G.F.Fernado, D.N.Waters, C.M.France, R.C.Spooncer. A comparative study of optical fiber cure monitoring methods[J]. SPIE 3042,1997:141-153.
    [106]Murukeshan V M, Chan P Y. Cure monitoring of smart composites using Fiber Bragg Grating based embedded sensors[J]. Sensors and Actuators A:Physical,2000,79(2): 153-161.
    [107]Rong-mei Liu, Da-kai Liang. Experimental study of carbon fiber reinforced plastic with embedded optical fibers[J]. Materials and Design,2010,31:994-998.
    [108]R. Hadizc, S. John. Structural integrity analysis of embedded optical fibres in composite structures[J]. Composite Structures,1997:759-765.
    [109]KSC Kuang, WJ Cantwell. Use of conventional optical fibers and fiber Bragg gratings for damage detection in advanced composite structures:A review[J]. Appl Mech Rev,2003,56: 493-513.
    [110]S.R. White. Cure cycle optimization for the reduction of processing-induced residual stresses in composite materials[J]. Journal of composite materials,1993,27:1352-1378.
    [111]岳广全,张博明,戴福红,杜善义.固化工艺规范对复合材料固化残余应力影响的实验研究[J].玻璃钢/复合材料,2010,2:52-55.
    [112]邓冬梅.复合材料铺层排样技术研究与开发[D].南京航空航天大学,2007.
    [113]M.W. Hyer. Calculation of room-temperature shapes of unsymmertrical laminates[J]. Journal composite materials,1981,15:296-310.
    [114]S. Pagliuso. Warpage, a nightmare for composite parts producers[J]. Proceedings of the fourth international conference on composite materials,1982,2:1617-1623.
    [115]N. Zahlan, J.M. Neill. Design and fabrication of composite components; the spring-forward phenomenon[J]. Composite,1989,20(1):77-81.
    [116]S.W. Tsai, H.T. Hahn. Introduction to composite materials[M]. Britain:Technomic publishing company,1980.
    [117]Y. Weitsman. Residual thermal stresses due to cool-down of epoxy-resin composites [J]. Journal of applied mechanics,1979,46:563-567.
    [118]Y.K. Kim, S.R. White. Stress relaxation during cure of 3501-6 epoxy resin[J], Proceedings of the ASME materials division,1995,69-1:43-56.
    [119]F. Farahi, D. Webb, J.D.C. Jones, D.A. Jackson. Simultaneous measurement of temperature and strain:cross-sensitivity considerations[J]. Journal of lightwave technology,1990,8(2): 138-142.
    [120]滕敏,马李,赵先锐.复合材料结构的固化监测研究[J].台州学院学报,2011,33(6):26-31.
    [121]沈蓉影.碳纤维复合材料导热系数研究[J].材料工程,1993,3:4-5.
    [122]J.S. Sirkis, D.D. Brennan, M.A. Putman, T.A. Berkoff, A.D. Kersey, E.J. Friebele. In-line fiber etalon for strain measurement[J]. Optics letters,1993,18(22):1973-1975.
    [123]矫桂琼,贾普荣.复合材料力学[M].陕西:西北工业大学出版社,2008.
    [124]C.C. Chamis. Lamination residual stresses in cross-plied fiber composites[J]. Proceedings of the 26th annual technical conference of SPI reinforced plastics/composites division,1971: 17-17.
    [125]T.A. Bogetti, J.W. Gillespie. Process-induced stress and deformation in thick- section thermoset composite laminates[J]. Journal of composite materials,1992,26(5):626-660.
    [126]S.P. Timoshenko, S. Woinowsky-krieger. Theory of plates and shells[M]. New York: McGraw-Hill,1959.
    [127]J.M. Whitney. Structural analysis of laminated anisotropic plates[M]. Lancaster:Technomic, 1987.
    [128]M. Cho, M.H. Chung, K.J. Ahn, Y.S. Eom. A study on the room-temperature curvature shapes of unsymmetrical laminates including slippage effects[J]. Journal of composite materials,1988,32(5):460-483.
    [129]孙银洁,胡胜泊,李秀涛.M40J和T300碳纤维的微结构[J].宇航材料工艺,2010,(2):98-101.
    [130]周上祺.X射线衍射技术基础、方法、应用[M].重庆:重庆大学出版社,1991.
    [131]黄玉东,刘玉文,费维栋,要智勇,张志谦.碳纤维复合材料界面残余应力的X射线衍射分析[J].高技术通讯,2000,2:72-74.
    [132]刘金艳.X射线残余应力的测量技术与应用研究[D].北京:北京工业大学,2009.
    [133]孙坚石,叶强.复合材料力学性能数据B基准值计算程序[J].航空制造技术,2009:19-24.
    [134]王翔,陈新文,王海鹏,邓立伟.基于统计的复合材料B基准值计算方法研究[J].失效分析与预防,2010,5(4):210-215.
    [135]中国航空研究院.复合材料结构设计手册[M].北京:航空工业出版社,2001.
    [136]马鑫,关志东,薛斌,刘露.复合材料B基准值计算程序[J].制造业自动化,2011,33(10):83-92.
    [137]王亮,王海鹏,吴安民.复合材料破坏数据B基准值计算的程序设计[J].理化检验-物理分层,2010,46(7):443-464.
    [138]中华人民共和国国家标准.JB 3357-82预浸料树脂含量试验方法[S].中华人民国家发展和改革委员会,1982-12-25.
    [139]K.S. Kim, H.T. Hahn. Residual stress development during process of graphite/epoxy composites[J]. Composites science and technology,1989,36(2):121-132.
    [140]周光泉,刘孝敏.粘弹性理论[M].合肥:中国科技大学出版社.1996.
    [141]P. Prasatya, G.B. Mckenna, S.L. Simon. A viscoelastic model for predicting isotropic residual stresses in thermosetting materials:Effects of processing parameters [J]. Journal of composite materials,2001,35(10):826-848.
    [142]T.C. Chiu, J.L. Kung, Y.S. Lai. Characterization of cure-dependent viscoelastic behavior for molding compound and application to package warpage simulation [J]. Proceedings of the ASME 2009 interPACK conference,2009,35(6):522-542.
    [143]S. White, Y.K. Kim. Cure-dependent viscoelastic residual stress analysis of filament-wound composite cylinders[J]. Mechanics of composite materials and structure,1998,5(4): 327-354.
    [144]浦广益,宋广雷.材料力学实验教学与有限元方法的有机结合[J].人力资源管理:学术版,2010,(1):111-113.
    [145]赵锐.三维编织碳纤维/环氧树脂基复合材料的湿热残余应力研究[D].天津大学,2010.
    [146]严祖文.基于ANSYS二次开发的桩十相互作用的三维非线性有限元分析[D].天津大学,2006.
    [147]李刚CFL/EP复合材料湿热残余应力的有限元计算及Raman光谱表征[D].天津大学,2007.
    [148]马志军.钛基复合材料热残余应力的数值模拟[D].西北工业大学,2002.
    [149]田宇SiCp/AlSi3复合材料热残余应力有限元分析[D].吉林大学,2009.
    [150]余伟炜,高炳军ANSYS在机械化工设备中的应用(第二版)[M].北京:中国水利水电出版社,2007.
    [151]邓凡平ANSYS有限元分析自学手册[M].北京:人民邮电出版社,2007.
    [152]J.L. Oakeshott and A.J. Fletcher. Thermal residual microstress generation during the processing of unidirectional carbon fibre/epoxy resin composites-regular fibre arrars[J]. Proceedings of the 4th annual international conference on residual stress, SEM,1994: 569-578.
    [153]Qi Zhu, Philippe H. Geubelle. Dimensional accuracy of thermoset composites:Simulation of process-induced residual stresses[J]. Journal of composite materials,2001,35(24): 2170-2205.
    [154]M. Mulle, R. Zitoune, F. Commobet, P. Olivier, Y.H. Grunevald. Thermal expansion of carbon-epoxy laminates measured with embedded FBGS-comparison with other experimental techniques and numerical simulation[J]. Composites:Part A,2007,38: 1414.1424.
    [155]L.G. Zhao, N.A. Warrior, A.C. Long. A thermo-viscoelastic analysis of process-induced residual stress in fibre-reinforced polymer-matrix composites [J]. Materials science and engineering A,2007,453-453:483-498.
    [156]杨正林,陈浩然.层合板在固化全过程中瞬态温度场及固化度的有限元分析[J].玻璃钢/复合材料,1997,(3):3-7.
    [157]胡照会,王荣国,赫晓东,杜善义.复合材料层板固化全过程残余应变/应力的数值模拟[J].航空材料学报,2008,28(2):56-59.
    [158]赵燕茹,雷振坤,邢永明,郎风超.单纤维树脂基复合材料界面热残余应力研究[J].工程力学,2009,26(5):251-256.
    [159]董文俊,孙秦.不对称铺层复合材料层合板的双稳态机理分析[J].机械科学与技术,2012,31(3):461-469.