头孢匹罗和头孢匹罗类似物及其中间体的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
头孢菌素C的3位取代基的改造可以显著影响头孢菌素类抗生素的抗菌活性及药物代谢动力学,因此,C-3位改造一直是头孢菌素类药物研究和开发的重点和热点。头孢匹罗正是C-3位改造的成功范例,它以其优良的性能成为第四代头孢菌素类抗生素的代表。第四代头孢菌素的3’位均与含氮芳香化合物、N-取代哌啶或吡咯烷衍生物的氮原子相连接而成季铵结构,这种结构特点使第四代头孢菌素对细胞膜的穿透能力增强,从而使其具有了优异的抗菌性能。所以,用含氮芳香化合物和N-取代哌啶或吡咯烷衍生物对头孢匹罗的3’位进行修饰,将会成为寻找新的头孢菌素的一个重要研究方向。
    本文首先合成了头孢匹罗的重要中间体2,3-环戊烯并吡啶,然后合成了头孢匹罗类似物,并对其以GCLE为原料的合成路线进行了深入研究,建立了以GCLE为原料合成头孢匹罗及其类似物的合成路线,进而合成了头孢匹罗。另外,还以3-氯甲基吡啶盐酸盐和仲胺化合物为原料,经N-烷基化反应,合成了一系列吡啶衍生物; 以胺类化合物和丙烯酸甲酯为原料,经Michael加成、Dieckmann环合、酸性条件下脱羧,建立了合成N-取代-4-哌啶酮的合成路线。为对头孢匹罗的3’位进行修饰做了一些准备工作。
    以环戊酮为原料,经缩合、醚化得到O-烯丙基环戊酮肟,再经热重排反应合成了2,3-环戊烯并吡啶,总收率为21.1%。以邻苯二甲酸酐为原料,经置换、醚化、肼解等得到O-烯丙基环戊酮肟,再经热重排反应合成了2,3-环戊烯并吡啶,总收率23.1%。以苯为溶剂,在氧气环境中对O-烯丙基环戊酮肟进行热重排反应,可以提高其收率。
    以GCLE为原料,经碘置换、吡啶取代,再经“一锅法”脱酯基保护、酶催化水解和酰化反应,合成了头孢匹罗类似物3-[(1-吡啶鎓)-甲基]-7-[2-顺式甲氧亚胺基-2-(2-氨基噻唑基-4)-乙酰胺基]-头孢-3-烯-4-羧酸硫酸盐,总收率为65.2%。
    以GCLE为原料合成头孢匹罗类似物的最佳反应条件为:GCLE在避光低温(-5~0℃)条件下经置换反应制得GILE,产物不经分离直接与吡啶进行反应,
Because the antibacterial activity and pharmacokinetics of cephalosporin antibiotics are changed greatly with the changes of 3 substituents of cephalosporin C, C-3 modification has been intensively studied in the research and development of cephalosporin antibiotics. A good example of C-3 modification is cefpirome, a representative example of the fourth-generation cephalosporins. Because the highlight antibacterial activity of the fourth-generation cephalosprins benefits from combining a C-3’-quaternary ammonium substituent of nitrogen containing aromatic compounds or nitrogen substituted piperidine or pyrrolidine derivatives, modification 3’ substituent of cefpirome using these compounds and then proceeding to find new cephalosporins will be an important research direction.
    2,3-Cyclopentenopyridine, an important intermediate of cefpirom, was synthesized in this paper firstly. Then an analogue of cefpirome was synthesized. After the route employing GCLE as starting material was emphatically examined, a synthetic route of cefpirome and its analogue employing GCLE as starting material was established. According to the route, cefpirome was synthesized. In addition, a series of pyridine derivatives were synthesized by N-substitution of 3-chloromethylpyridine hydrochloride with secondary amines as well as a synthetic route of N-substituted 4-piperidones through Michael addition between amines and methyl acrylate, Dieckmann cyclocondensation and decarboxylation were established. These are preparatory work for modification 3’ substituent of cefpirome.
    Condensation and dehydrobromination of cyclopentanone gave cyclopentanone oxime O-allyl ether, and then proceeding thermal rearrangement gave 2,3-cyclopentenopyridine in 21.1% yield. And it was also obtained in the yield of 23.1% through replacement, dehydrobromination, hydrazinolysis and thermal rearrangement starting from phthalic anhydride. The yield of thermal rearrangement
    of cyclopentone oxime O-allyl ether could be improved in oxygen environment when benzene was employed as solvent. After replacement of C-Cl of GCLE with iodide, followed by substitution with pyridine, one-pot procedure including deprotection of carboxyl group, hydrolysis of 7-phenylacetamido and reaction with MAEM, the target molecular 7-[2-(2-aminothiazol-4-yl)-2-(Z)-oxyiminoacetamido]-3-(1-pyridiniomethyl)-ceph-3-em-4-carboxylate was obtained in 65.2% yield. The optimum reaction conditions of synthesis of cefpirome analogue are as follows: GILE is obtained from GCLE at low temperature (-5°C to 0°C) and avoiding of light and can react with pyridine directly without separation. The molar ratio of GCLE, NaI and pyridine is 1 ∶2 ∶4. Using one-pot approach, cefpirome analogue is obtained through deprotection of carboxyl group, hydrolysis of 7-phenylacetamido of compound 3.2, and reaction with MAEM. The molar ratio of compound 3.2 and MAEM is 1∶1.04~1.14. According to the above reaction conditions, cefpirome was synthesized in 37.7% yield from GCLE. The temperature of Michael additions between amines and methyl acrylate should be below 80°C; During Dieckmann cyclocondensation, the molar ratio of sodium methoxide and N,N-di-propionic acid dimethyl ester tertiary amine should over 1.1; Decarboxylation process should be performed in acidic environment The structure of the key intermediates and the target compounds obtained in this paper were determined by nuclear magnetic resonance spectra, mass spectroscopy, etc.
引文
[1] Fleming A. On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B influenzae. Br J Exp Pathol, 1929, 10(3): 226.
    [2] 顾觉奋. 抗生素的合理应用. 上海:上海科学技术出版社,2004,50-60.
    [3] Foye W O, Lemke T L, Williams D A. Principles of medicinal chemistry (4th ed). Baltimore: Williams & Wilkins, 1995, 777.
    [4] 仉文升,李安良. 药物化学,北京:高等教育出版社,2001,587-592.
    [5] Verghese A. The use of oral antibiotics in daily clinical practice. Drugs, 1991, 42(Suppl 4): 1-5.
    [6] 王华. 新头孢菌素头孢匹罗. 国外医药:抗生素分册,1996,17(2):105-106.
    [7] 方向群,刘又宁. 第四代头孢菌素及其临床应用前景. 中华结核核呼吸杂志,1998,21(5):263-264.
    [8] Seibert G, Klesel N, Limbert M, et al. HR810, A new parenteral cephalosporin with a broad antibacterial spectrum, Arzneim-Forsch Drug Res, 1983, 33(2): 1084-1086.
    [9] 陈晖. 头孢匹罗的抗菌作用与临床疗效. 国外医药:抗生素分册,1995,16(1):37-41.
    [10] 郑莉. 第四代头孢菌素-头孢匹罗. 华西医学,1999,14(4):504-507.
    [11] 任志远. 头孢匹罗的体外抗菌活性. 国外医药:抗生素分册,1998,19(5):347-349,368.
    [12] 王华. 新头孢菌素头孢匹罗. 国外医药:抗生素分册,1996,17(2):105-106.
    [13] Wang Y, Dong X, Larock R C. Synthesis of naturally occurring pyridine alkaloids via palladium-catalyzed coupling/migration chemistry. J Org Chem, 2003, 68(8): 3090-3098.
    [14] Moody C J, Hughes R A, Thompson S P, et al. Biosynthesis inspired Diels–Alder route to pyridines: synthesis of the 2,3-dithiazolylpyridine core of the thiopeptide antibiotics. Chem Commun, 2002, (12): 1760-1761.
    [15] Bach T, Heuser S. Total synthesis of the naturally occurring endothelin converting enzyme (ECE) inhibitor WS 75624 A. Synlett, 2002, (12): 2089-2091.
    [16] Puglisi A, Benaglia M, Roncan G. Palladium-catalyzed synthesis of nonsymmetrically functionalized bipyridines, poly(bipyridines) and terpyridines. Eur J Org Chem, 2003, (8): 1552-1558.
    [17] Heller M, Schuber U S. Syntheses of functionalized 2,2’: 6’, 2’’-terpyridines. Eur J Org Chem, 2003, (6): 947-961.
    [18] Skaff H, Emrick T. The use of 4-substituted pyridines to afford amphiphilic, pegylated cadmium selenide nanoparticles. Chem Commun, 2003, (1): 52-53.
    [19] Tanaka R, Yano T, Nishioka T, et al. Thia-calix[n]pyridines, synthesis and coordination to Cu(I,II) ions with both N and S donor atoms. Chem Commun, 2002, (16): 1686-1687.
    [20] Kelly T R, Lebedev R. Synthesis of some unsymmetrical bridged terpyridines. J Org Chem, 2002, 67(7): 2197-2205.
    [21] Vedernikov A N, Huffmann J C, Caulton K G. [n.1.1]-(2,6)-Pyridinophanes: a new ligand type imposing unusual metal coordination geometries. Inorg Chem, 2002, 41(25): 6867-6874.
    [22] Malkov A V, Bella M, Stará G I, et al. Modular pyridine-type P,N-ligands derived from monoterpenes: application in asymmetric Heck addition. Tetrahedron Lett, 2001, 42(16): 3045-3048.
    [23] Sutherland A, Gallagher T, Sharples C G V, et al. Synthesis of two fluoro analogues of the nicotinic acetylcholine receptor agonist UB-165. J Org Chem, 2003, 68(6): 2475-2478.
    [24] Cosford N D P, Tehrani L, Roppe J, et al. 3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]-pyridine: a potent and highly selective metabotropic glutamate subtype 5 receptor antagonist with anxiolytic activity. J Med Chem, 2003, 46(2): 204-206.
    [25] Enyedy I J, Sakamuri S, Zaman W A, et al. Pharmacophore-based discovery of substituted pyridines as novel dopamine transporter inhibitors. Bioorg Med Chem Lett, 2003, 13(3): 513-517.
    [26] Burgey C S, Robinson K A, Lyle T A, et al. Metabolism-directed optimization of 3-aminopyrazinone acetamide thrombin inhibitors. Development of an orally bioavailable series containing P1 and P3 pyridines. J Med Chem, 2003, 46(4): 461-473.
    [27] Narendar P, Parthiban J, Anbalagan N, et al. Pharmacological evaluation of some new 2-substituted pyridine derivatives. Biol Pharm Bull, 2003, 26(2): 182-187.
    [28] Ravlee I, Sivakumar R, Muruganantham N, et al. Pharmacological evaluation of some new 6-amino/methyl pyridine derivatives. Chem Pharm Bull, 2003, 51(2): 162-170.
    [29] Faul M M, Ratz A M, Sullivan K A, et al. Synthesis of novel retinoid X receptor-selective retinoids. J Org Chem, 2001, 66(17): 5772-5782.
    [30] Bouras A, Boggetto N, Benatalah Z, et al. Design, synthesis, and evaluation of conformationally constrained tongs, new inhibitors of HIV-1 protease dimerization. J Med Chem, 1999, 42(6): 957-962.
    [31] Phillips G, Davey D D, Eagen K A, et al. Design, synthesis, and activity of 2,6-diphenoxypyridine-derived factor Xa inhibitors. J Med Chem, 1999, 42(10): 1749-1756.
    [32] Plunkett A O. Pyrrole, pyrrolidine, pyridine, piperidine, and azepine alkaloids. Nat Prod Rep, 1994, 11(6): 581-590.
    [33] Pinder A R. Azetidine, pyrrole, pyrrolidine, piperidine, and pyridine alkaloids. Nat Prod Rep, 1992, 9(5): 491-504.
    [34] Spande T F, Brossi A. In the alkaloids. New York: Academic Press, 1987, Vol 31, 1-22.
    [35] Ciufolini M A, Pearson W H. In advances in heterocyclic natural product synthesis. London: JAI Press Inc. 1996, Vol 3, 1-55.
    [36] Sutherland A, Gallagher T. Versatile synthesis of 3,5-disubstituted 2-fluoropyridines and 2-pyridones. J Org Chem, 2003, 68(8): 3352-3355.
    [37] Bashford K E, Burton M B, Cameron S, et al. The Bohlmann–Rahtz route to functionalised pyridine scaffolds and their use in library synthesis. Tetrahedron Lett, 2003, 44(8): 1627-1629.
    [38] Temple C, Rener J G A, Waud W R, et al. Antimitotic agents: structure-activity studies with some pyridine derivatives. J Med Chem, 1992, 35(20): 3686-3690.
    [39] 赵云. 吡啶碱类化合物的应用与技术进展. 河南化工,1998,(2):13-15.
    [40] 尚尔才,刘长令,杜英娟. 吡啶类农药的研究进展. 化工进展,1996,(5):ll-14; (6):24-26.
    [41] Soeda Y, Yamamoto I. Studies on nicotinoids as an insecticide. Part VI. Relation of structure to toxicity of pyridylalkylamines. Agr Biol Chem, 1968, 32(6): 747-752.
    [42] Cheng Y X, Dukat M, Dowd M, et al. Synthesis and binding of 6,7,8,9-tetrahydro-5H-pyrido[3,4-d]azepine and related ring-opened analogs at central nicotinic receptors. Eur J Med Chem, 1999, 34(2): 177-190.
    [43] Nara S, Tanaka R, Eishima J, et al. Discovery and structure-activity relationships of novel piperidine inhibitors of farnesyltransferase. J Med Chem, 2003, 46(12): 2467-2473.
    [44] Kim D K, Lee J Y, Kim J S, et al. Synthesis and biological evaluation of 3-(4-substituted-phenyl)-N-hydroxy-2-propenamides, a new class of histone deacetylase inhibitors. J Med Chem, 2003, 46(26): 5745-5751.
    [45] Chemische Fabrik Promonta G m b H. Carbazole derivatives and process for the production thereof. GB822592, 1959-10-28.
    [46] 段学民,韩娟,陈立功,等. N-(9-吡啶基甲基)氮杂环化合物的合成. 精细化工,2005,22(1):39-40,52.
    [47] 陈修,陈维洲,曾贵云. 心血管药理学(第二版). 北京:人民卫生出版社,1998,214.
    [48] 白树华,陈玉彬. 二氢吡啶类钙拮抗剂研究的新进展. 药学进展,1999,23(1):13-19.
    [49] Rao A V R, Kulkarni S J, Rao R R, et al. Synthesis of 2-picoline from acetone over modified ZSM-5 catalysts. Appl Catal A. 1994, 111(2): L101-L108.
    [50] Kulkarni S J, Rao R R, Subrahrnanyam M, et al. Synthesis of pyridine and picolines from ethanol over modified ZSM-5 catalysts. Appl Catal A. 1994, 113(1): 1-7.
    [51] Van der Gaag F J, Louter F, Oudejans J C, et al. Reaction of ethanol and ammonia to pyridines over zeolite ZSM-5. Appl Catal. 1986, 26: 191-201.
    [52] Rao R R, Srinivas N, Kulkarni S J, et al. A new route for the synthesis of 3,5-lutidine over modified ZSM-5 catalysts. Appl Catal A. 1997, 161(1-2): L37-L42.
    [53] 梁诚. 哌啶及其衍生物开发与应用. 化工文摘,2004,3:30-31.
    [54] 陆文超,李瑛琦,郭春,等. 3,4-二氢-1-(4-哌啶基)-2(1H)-喹啉酮的合成. 合成化学,2004,12(4):397-398,404.
    [55] 王多禄,张泽朋,陈立功,等. 哌啶酮催化氢化制备哌啶醇催化剂的研究. 化学学报,1999,57(2):176-182.
    [56] 马久河. 受阻胺类光稳定剂的发展. 河南化工,2002,(4):9-10.
    [57] 林兆安. 受阻胺光稳定剂的进展. 精细石油化工,1991,(2):7-12.
    [58] Beattie D E, Crossley R, Curran A C, et al. 5,6,7,8-Tetrahydroquinolines. 4. Antiulcer and antisecretory activity of 5,6,7,8-tetrahydroquinolinenitriles and thioamides. J Med Chem, 1977, 20(5): 714-718.
    [59] Lemke T L, Shak T W, Cates L A, et al. Synthesis of 5,6-dihydro-8(7H)-quinolinone thiosemicarbazones as potential antitumor agents. J Med Chem, 1977, 20(10): 1351-1354.
    [60] Hancock R E, Bellido F. Factors involved in the enhanced efficacy against gram-negative bacteria of fourth generation cephalosporins. J Antimicrob Chemother, 1992, 29(Suppl A): 1-6.
    [61] Beschke H, Friedrich H, Offermanns H. Process for the production of 2,3-cycloalkenopyridines. US 4332940, 1982-01-01.
    [62] Takayuki S, Nobuo G, Toru N. Preparation of cycloalkeno(b)pyridine derivative. JP2045470, 1990-02-15.
    [63] 蒋瑛,孟宪春. 第四代头孢菌素-头孢匹罗. 天津药学,2000,12(1):12-13.
    [64] 段学民,韩娟,陈立功. 6,7-二氢-5H-环戊烷并[b]吡啶的合成进展. 精细化工中间体,2004,34(4):8-11.
    [65] Kusumi T, Yoneda K, Kakisawa H. A convenient synthesis of 5,6,7,8-tetrahydroquinoline. Synthesis, 1979, (3): 221-223.
    [66] Ranganathan S, Ranganathan D, Sidue R S, et al. [2,3] vs [3,3]: the novel [2,3] sigmatropic rearrangement of oxime-o-allyl ethers. Tetrahedron Lett, 1973, 14(37): 3577-3578.
    [67] Eckersley A, Rogers N A J. Thermolysis of oxime O-allyl ethers. Tetrahedron Lett, 1974, 15(18): 1661-1664.
    [68] Irie H, Katayama I, Mizuno Y, et al. Thermolysis of oxime O-allyl ethers: a new method for synthesis of pyridine derivatives. Heterocycles, 1979, 12(6): 771-773.
    [69] Koyama J, Sugita T, Suzuta Y, et al. Thermolysis of oxime O-allyl ethers: a new method for pyridines synthesis. Chem Pharm Bull, 1983, 31(8): 2601-2606.
    [70] 宫平,赵燕芳,余德胜. 6,7-二氢-5H-环戊烯并[b]吡啶的合成. 沈阳药科大学学报,2001,18(2):102-103.
    [71] Lochte H L, Pittman A G. The nitrogen compounds of petroleum distillates. XXXVIII. Isolation of 2-methyl-6,7-dihydro-1,5-pyrindine. Preparation of some methyl-dihydro-pyrindines. J Am Chem Soc, 1960, 82(2): 469-472.
    [72] Beschke H, Schaefer H, Schreyer G, et al. Catalyst for the production of pyridine and 3-methylpyridine. US3960766, 1976-06-01.
    [73] Thummel R P, Kohli D K. Preparation and properties of annelated pyridines. J Org Chem, 1977, 42(16): 2742-2747.
    [74] Breitmaier E, Gassenmann S, Bayer E. Tetrahedron, 1970, 26(24): 5907-5912.
    [75] Breitmaier E, Bayer E. Single-step synthesis of pyridines from 3-aminoacrolein and carbonyl compounds. Angew Chem Int Ed Engl, 1969, 8(10): 765-765.
    [76] Breitmaier E, Bayer E. Eine bequeme synthese von 2,3-cycloalkenopyridinen. Tetrahedron Lett, 1970, 11(38): 3291-3294.
    [77] Eisch J J, Russo D A. Cyclization reactions of γ-(3-and 4-pyridyl)propyl grignard reagents. J Organometal Chem, 1968, 14(1): 13-16.
    [78] Frissen A E, Marcelis A T M. Geurtsen G, et al, Intramolecular diels-alder reactions of 2-(alkynyl)pyrimidines and 2-(alkynyl)pyridines. Tetrahedron, 1989, 45(16): 5151-5162.
    [79] Okatani T, Koyama J, Tagahara K. Modified synthesis of monocyclic 1,2,3-triazine and cycloaddition reaction with enamine: the application to the synthesis of alkaloids, tortuosamine, N-formyltortuosamine and N-acethyltuosamine. Heterocycles, 1989, 29(9): 1809-1814.
    [80] Epsztajn J, Bieniek A, Brzezinski J Z. Cycloparaffins fused with heterocyclic rings. Part XXXII. A convenient synthesis of 2-or 3-alkyl, 2,3-dialkylpyridines and cycloalkeno[b]pyridines. Pol J Chem, 1980, 54(2): 341-347.
    [81] Sanders E B, Secor H V, Seeman J I. Use of a-cyano amines for the regiospecific synthesis of multisubstituted pyridines. Preparation of nicotine analogues. J Org Chem, 1978, 43(2): 324-330.
    [82] Howton D R. 1,3-Dimethylpiperidone. J Org Chem, 1945, 10(4): 277-282.
    [83] Fuson R C, Parham W E, Reed L J. The synthesis of 7-chloro-4-(1-ethyl-4-piperidylamino)-quinoline (SN-13425). J Am Chem Soc, 1946, 68(7): 1239-1240.
    [84] Elpern B, Wetterau W, Carabateas P, et al. Strong analgesics. The preparation of some 4-acyloxy-1-aralkyl-4phenylpiperidines. J Am Chem Soc, 1958, 80(18): 4916-4918.
    [85] Kuttab S, Kalgutkar A, Castagnoli N, et al. Mechanistic studies on the monoamine oxidase B catalyzed oxidation of 1,4-disubstituted tetrahydropyridines. Chem Res Toxicol, 1994, 7(6): 740-744.
    [86] Anderson J E, Ijeh A I, Storch C. Eclipsed conformation of the exocyclic N-CH2 bond in N-neopentylpiperidines and the stereodynamic consequences as studied by dynamic NMR spectroscopy and molecular mechanics calculations. J Org Chem, 1998, 63(10): 3310-3317.
    [87] Dutta A K, Coffey L L, Reith M E A. Potent and selective ligands for the dopamine transporter (DAT): structure-activity relationship studies of novel 4-[2-(diphenylmethoxy)ethyl]-1-(3-phenylpropyl)piperidine analogues. J Med Chem, 1998, 41(5): 699-750.
    [88] Donaldson R E, Saddler J C, Byrn S, et al. Syntheses via vinyl sulfones. 11. A triply convergent total synthesis of L-(-)-prostaglandin E2. J Org Chem, 1983, 48(13): 2167-2188.
    [89] Curran D P, Brill J F, Rakiewicz D M. A mild reductive conversion of oximes to ketones. J Org Chem, 1984, 49(9): 1654-1656.
    [90] Drabowicz J. Rapid Deoximation with pyridinium chlorochromate/hydrogen peroxide system. Synthesis, 1980, (2): 125-127.
    [91] Corey E J, Hopkins P B, Kim S, et al. Total synthesis of erythromycins. 5. Total synthesis of erythronolide A. J Am Chem Soc, 1979, 101(23): 7131-7134.
    [92] Maloney J R, Lyle R E, Scavendra J E, et al. Oxidative deoximation with pyridinium chlorochromate. Synthesis, 1978, (3): 212-213.
    [93] Rao C G, Radhakrishna A H, Singh B B, et al. Oxidative Cleavage of Oximes with Triethylammonium Chlorochromate. Synthesis, 1983, (10): 808-808.
    [94] Aizpurua J M, Juaristi M, Lecea B, et al. Reagents and synthetic methods-40 Halosilanes/chromium trioxide as efficient oxidizing reagents. Tetrahedron, 1985, 41(41): 2903-2911.
    [95] Lazle P, Polla E. Carbonyl regeneration from semicarbazones, tosylhydrazones, phenylhydrazones, and 2,4-dinitrophenylhydrazones by clay-supported ferric nitrate. Synthesis, 1985, (4): 439-440.
    [96] Verma R S, Meshram H M. Solid State Deoximation with Ammonium Persulfate-Silica gel: Regeneration of Carbonyl Compounds Using Microwaves. Tetrahedron Lett, 1997, 38(31): 5427-5428.
    [97] Araújo H C, Ferreira G A L, Mahajan J R. Oxidative deoximation. J Chem Soc Perkin Trans I, 1974, 2257-2259.
    [98] Shim S B, Kim K, Kim Y H. Direct conversion of oximes and hydrazones into their ketones with dinitrogen tetroxide. Tetrahedron Lett, 1987, 28(6): 645-648.
    [99] Olah G A, Liao Q, Lee C S, et al. Efficient and mild oxidation of ketoximes to their parent ketones with dimethyldioxirane. Synlett, 1993, (6): 427-428.
    [100] Ayhan H D, Tanyeli E A. Manganese triacetate mediated regeneration of carbonyl compounds from oximes. Tetrahedron Lett, 1997, 38(41): 7267-7270.
    [101] Chaudhari S S, Akamanchi K G. Deoximation using Dess-Martin periodinane: regeneration of ketones from ketoximes. Tetrahedron Lett, 1998, 39(20): 3209-3212.
    [102] Morin R B, et al. Chemistry of cephalosporin antibiotics. III. Chemical correlation of penicillin and cephalosporin antibiotics. J Am Chem Soc, 1963, 85(12): 1896-1896.
    [103] 王文梅. 头孢菌素中间体 GCLE 的合成及应用. 精细与专用化学品,2003,11(10):19-20.
    [104] 段长强,王兰芬. 药物生产工艺及中间体手册(第一版). 北京:化学工业出版社,2002.
    [105] Lattrell R, Blumbach J, Duerckheimer W, et al. Synthesis and structure-activity relationships in the cefpirome series. J Antibiotics, 1988, 41(10): 1374-1394.
    [106] Mitsukude K. Analogues of cefpirome with different 7-heteroarylacetamido and 3’-ammonium substituents, Jap. J Antibiotics, 1991, 44(2): 160-169
    [107] Lattrell R, Wieduwilt M, Duerckheimer W, et al. Cephalosporin derivatives. EP64740, 1991-12-10.
    [108] Naito K, Ishibashi Y. Method for production of cephalosporin compounds. US4980464, 1990-12-25.
    [109] Schwab W, Duerckheimer W, Kirrstetter R, et al. Process for the preparation of cephem compounds. US4667028, 1987-05-19.
    [110] Gerd A. Process for producing cephalosporin antibiotics, and novel intermediates for use in such process and their production. EP37380, 1991-03-26.
    [111] Angerbauer R, Kinast G. Preparation of cephalosporins. DE3419015, 1988-04-07.
    [112] Kim D H, Lee C H, Kim K S. 1-Methanesulfonyloxy-6-trifluoromethyl-1H-benzotriazole and its use in preparing cephalosporin derivatives. GB2193213, 1988-08-07.
    [113] Kim W J, Lee C H, Kim K S. 6-Trifluoromethyl-1H-benzotriazol-1-yl diphenylphosphate and its use in preparing cephalosporin derivatives. GB2193213, 1988-02-03.
    [114] 胡应喜,刘霞,刘文涛,等. 头孢匹罗的合成工艺. 石油化工高等学校学报,2003,16(3):29-33.
    [115] Rodriguez J C, Hernandez R, Gonzalez M, et al. Il Farmaco, 2000, 55: 393-396.
    [116] 方时亮,丁自更. 头孢噻肟钠的合成方法. CN1394863,2003-02-05.
    [117] 吴育飞,朱智甲. 头孢噻肟酸的高效液相色谱法. 光谱实验室,2003,20(2):278-280.
    [118] Yamazaki A, Shibanuma T, Koda A, et al. Cephalosporin compounds and their production and medicaments containing them. EP160546, 1985-04-26.
    [119] 宫平,赵燕芳,冯润良,等. 中国药物化学杂志,2002,12(6):350-351,362.
    [120] Naito T, Aburaki S, Kamaki H, et al. Synthesis and structure-activity relationships of a new series of cephalosporins, BMY-28142 and related compounds. J Antibiotics, 1986, 39(8): 1092-1107.
    [121] Sugiyama I, Komatsu Y, Yamauchi H. Synthesis and structure-activity relationships of a new series of cephalosporins, E1040 and related compounds. J Antibiotics, 1991, 45(1): 103-112.
    [122] Tagawa H, Ehata T, Koda H. Preparation of pyridiniomethylcephem derivatives as antibiotic intermediates. JP6344582, 1988-02-25.
    [123] Farina V. Synthesis of 3-iodomethyl cephems by phase-transfer catalyst. Synth Commun, 1986, 16(9): 1029-1035.
    [124] 苏为科,何潮洪. 医药中间体制备方法(第一册)抗菌药中间体. 北京:化学工工业出版社,2000,691-694.
    [125] 白国义,陈立功,李阳,等. 1,3-偶极环加成反应在他唑巴坦合成中的应用.天津大学学报:自然科学与工程技术版,2002,35(3):332-335.
    [126] 苏为科,何潮洪. 医药中间体制备方法(第一册)抗菌药中间体. 北京:化学工工业出版社,2000,683-685.
    [127] 王普,陈希杨,应国清,等. 反胶束体系中青霉素酰化酶活性及稳定性研究.高校化学工程学报,2002,16(4):426-429.
    [128] 缪月英,刘玉国,贺燕. 环戊胺的合成. 黑龙江医药科学,2000, 23(1): 43-43.
    [129] Gross H, Keitel I. Zur Darstellung von N-Hydroxyphthalimid und N-Hydroxysuccinimid. J für praktische Chemie, 1969, 311(4): 692-693.
    [130] Nefkens G G L, Tesser G I. A novel activated ester in peptide syntheses. J Am Chem Soc, 1961, 83(5): 1263-1263.
    [131] Rondahl L. Synthetic analogues of nicotine. IX. Synthesis and biological testing of some piperazine derivatives in regard of nicotine-like activity and anthelmintic effects. Acta Pharm Suec, 1980, 17(5): 292-294.
    [132] Sugioka T, Asano T, Chikaraishi Y, et al. Stability and degradation pattern of cefpirome (HR 810) in aqueous solution. Chem Pharm Bull, 1990, 38(7): 1998-2002.
    [133] 李笃信,孟志霞,焦晨旭,等. 3,6-双(二甲苯基)-9-乙基咔唑的合成. 精细化工,2001,18(5):271-273.
    [134] 王斌,谢守和,叶大铿,等. N-3-炔丁烯基咔唑的合成及热聚合. 有机化学,2003,23(7):650-653.
    [135] 李珊,王宏青. 微波诱导催化合成 N-乙基咔唑. 化学试剂,2000,22(4):240,246.