2,4,5-三硝基咪唑铵盐的合成工艺及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以咪唑为原料,经两次硝化、重排、硝化、中和成盐5步反应得到目标产物2,4,5-三硝基咪唑铵盐,总收率为57.7%,纯度大于96%。研究了混酸硝化、醋酐硝化和重排反应的反应机理,讨论了影响各步反应的主要因素,并对各因素进行了优化,确定最佳工艺条件。
     实验表明:合成4-硝基咪唑的较优条件为:反应温度为125℃,反应时间为12 h,n(咪唑):n(68%硝酸):n(98%硫酸)=1:3:4,4-硝基咪唑的产率可达80.3%;合成1,4-二硝基咪唑的较优条件为:反应温度为25℃,反应时间为10 h,n(4-硝基咪唑):n(醋酸):n(醋酐):n(硝酸)=1:3.5:2:2,产物收率最高可达94.1%;合成2,4-二硝基咪唑的较优条件为:1,4-二硝基咪唑3 g,氯苯30 mL,反应温度为125℃,反应时间为10 h,2,4-二硝基咪唑的收率最高可达93.3%;2,4,5-三硝基咪唑铵盐的较优合成工艺为:n(2,4-二硝基咪唑):n(发烟硝酸):n(20%发烟硫酸)=1:12:13.7,反应温度为95℃,反应时间为15 min,后处理反应液pH为0.5,采用乙醚作萃取剂,产物收率为81.7%。
     采用红外光谱、核磁共振氢谱和质谱等对目标产物进行了结构表征;对目标产物进行差示扫描量热法DSC(分解温度为308℃)测试,结果表明目标产物具有良好的热稳定性;通过理论计算得到爆速、爆压、爆热、爆温、爆容等爆炸性能参数,分别为8782 m·s-1、34.6 GPa、1203.94 kJ·mol-1、4395.88 K、814.55 L·kg-1,爆炸性能接近RDX;机械感度测试结果表明目标化合物具有较低的撞击感度和摩擦感度,安全性能显著优于RDX,与TNT相当;综合考虑,2,4,5-三硝基咪唑铵盐可作为一种高能钝感炸药。
Ammonium 2,4,5-trinitroimidazole was prepared via five steps:twice nitration, rearrangement, nitration and neutralization, using imidazole as a starting material. The total yield is 57.7% in a purity of 96%. The reaction mechanisms of mixed acid nitration, acetic nitration and rearrangement were studied. Major factors which influenced on reaction were investigated and the optimal technological conditions of unit reaction were optimized.
     The optimum synthesis conditions of 4-nitroimidazole were obtained as follows:the molar radio of imidazole to nitric acid (68%) to sulfuric acid(98%) was 1:3:4, react 12 h under 125℃, the yield of 4-nitroimidazole was 80.3%. The optimum synthesis conditions of 1,4-dinitroimidazole were obtained as follows:the molar radio of 4-nitroimidazole to acetic acid to acetic anhydride to nitric acid was 1:3.5:2:2, react 10h under 25℃, the yield of 1,4-dinitroimidazole was 94.1%. The optimum synthesis conditions of 2,4-dinitroimidazole were obtained as follows:the reaction solution contain 1 g 1,4-dinitroimidazole per 1 mL chlorobenzene, react 10 h under 25℃, the yield of 2,4-dinitroimidazole was 93.3%. The optimum synthesis conditions of ammonium 2,4,5-trinitroimidazole were obtained as follows:the molar radio of 2,4-dinitroimidazole to fuming nitric acid to fuming sulfuric acid was 1:12:13.7, react 15 min under 95℃, the pH of reaction solution after treatment was 0.5, using aether as the extracting agent, the yield of ammonium 2,4,5-trinitroimidazole was 81.7%.
     The products were characterized by MS, IR,1H NMR, and the properties of ammonium 2,4,5-trinitroimidazole were studied. The thermal stability was tested by differential scanning calorimetry(DSC), the decomposition temperature was 308℃; the explosive performances including explosion velocity, detonation pressure, heat of explosion, explosion temperature and specific volume were obtained by theoretical calculation, the values are 8782 m·s-1,34.6 GPa,1203.94 kJ·mol-1,4395.88 K,814.55 L·kg-1, respectively, and were found to be comparable to those of RDX. The results of mechanical sensitivity tests showed that the safety performances of the product were close to TNT, better than RDX. To conclude, ammonium 2,4,5-trinitroimidazole could be used in the field of insensitive high energy materials.
引文
[1]董海山.高能量密度材料的发展及对策[J].含能材料,2004(增刊):1-11.
    [2]Talawar M B, Sivabalan R. Emerging trends in advanced high energy materials[J]. Combustion, Explosion, and Shock Waves,2007,43(1):62-72.
    [3]阳世清,岳守体.国外四嗪四唑类高氮含能材料研究进展[J].含能材料,2003,11(4):231-235.
    [4]阳世清,徐松林,雷永鹏.氮杂环含能化合物的研究进展[J].含能材料,2006,14(6):475-484.
    [5]Thottempudi V, Kim T K, Chung K H, et al. Synthesis and Characterization of Some Polynnitro Imidazoles[J]. Bulletin of the Korean Chemical Society,2009,30(9): 2152-2154.
    [6]杨利,高福磊,凡庆涛等,咪唑类含能化合物的研究进展[J].含能材料,2009,17(3):374-379.
    [7]Wetzler M, Dockner T. Manufacture of 4-nitroimidazoles[P]. US:4145553,1979.
    [8]Beaman A G, Tautz W, Gabriel T, et al. The synthesis of azomycin[J]. Journal of the American Chemical Society,1965,87(2):389-390.
    [9]徐兆瑜.医药中间体中的一些重要杂环化合物[J].精细化工原料及中间体,2006,2:27-33.
    [10]Gao H X, Ye C F, Gupta O D, et al.2,4,5-Trinitroimidazole-Based Energetic Salts[J]. Chemistry-a European Journal,2007,13:3853-3860.
    [11]Cho S G, Park B S, Cho J R. Theoretical Studies on the Structure of 1,2,4, 5-Tetranitroimidazole[J]. Propellants, Explosives, Pyrotechnics,1999,24:343-348.
    [12]Cho S G, Park B S. Ab initio and Density functional Studies on Bonding Nature of the N-N Bonds in 1,2,5-trinitroimidazole and 1,2,4,5-tetranitroimidazole[J]. International Journal of Quantum Chemistry,1999,72:145-154.
    [13]Duddu R, Paritosh R D, Damavarapu R, et al. Nucleophilic Substitution Reactions of 1-Methyl-2,4,5-trinitroimidazole (MTNI)[J]. Synthetic Communications,2009,39(23): 4282-4288.
    [14]王宏社,杜志明.富氮化合物的研究进展[J].含能材料,2005,13(3):197-202.
    [15]刑J其毅,裴伟伟,徐瑞秋等.基础有机化学(第三版)下册[M].北京:高等教育出版社,2005,899-904.
    [16]子羊.硝基咪唑类化合物概述[J].医药化工,2005,6:20-23.
    [17]吴美香.高效液相色谱法同时检测4种硝基咪唑类药物的研究[J].国际医药卫生导报,2009,17(15):66-69.
    [18]王小军,曹端林,李永祥.不敏感炸药1-甲基-2,4,5-三硝基咪唑的研究进展[J].2009,3:10-14.
    [19]Cho J R, Kim K J, Cho S G, et al. Synthesis and Characterization of 1-Methyl-2,4, 5-trinitroimidazole (MTNI)[J]. Journal of Heterocyclic Chemistry,2001,38:141-147.
    [20]Damavarapu R, Surapaneni C R, Gelber N, et al. Melt-cast explosive material[P]. US: 7304164B1,2007.
    [21]Coburn M D, Mex LAN. Ammonium 2,4,5-trinitroimidazole[P]. US:4028154,1977.
    [22]扬威,姬月萍.多硝基咪唑及其衍生物的研究进展[J].火炸药学报,2008,31(5):46-50.
    [23]汪伟,杨威,姬月萍等.1-甲基-2,4,5-三硝基咪唑的合成及表征[J].火炸药学报,2008,31(6):32-35.
    [24]刘慧君,杨林,曹端林.4-硝基咪唑的合成工艺及其热安定性[J].中北大学学报(自然科学版),2006,27(4):331-334.
    [25]Frank R G F, Pyman L. Nitro, arylazo, and aminoglyalines[J]. Journal of the Chemical Society,1919,115:217-260.
    [26]Lancini G C, Maggi N, Sensi P. Synthesis of some derivatives of 2-nitroimidazole with potential anti-trichornonas activity[J]. Ed Sci,1963,18(3):390-396.
    [27]Grigoreva V N, Fassakhov R K H, Gafarow A N, et al. Method of Producing 1, 4-dinitroimidazoles[P]. USSR:1416488,1988.
    [28]Suwinski J, Salwinska E. Nitroimidazoles, part IX some reactions of 1,4-DNI[J]. Polish Journal of Chemistry,1987,61(7-12):613-920.
    [29]Grimmett M R, Hua S T, Chang K C, et al.1,4-dinitroimidazole and derivatives. Structure and thermal rearrangement[J]. Australian Journal of Chemistry,1989,42(8): 1281-1289.
    [30]Damavarapu R, Jayasuria K, Vladimiroff T, et al.2,4-Dinitroimidazolc:a less sensitive explosive and propellant made by thermal rearrangement of molten 1, 4-dinitroimidazole[P]. US:5387297,1995.
    [31]曹端林,刘慧君,李永祥等.1,4-二硝基咪唑合成及其热分解[J].火炸药学报,2005,28(3):60-62.
    [32]Ravi P, Gore G M, Tewari S P. A DTF study of aminonitroimidazoles[J]. Journal of Molecular Modeling, DOI:10.1007/s00894-011-1099-z.
    [33]Sharni G P, Fassakhov R K, Orlov P P.2,4(5)-Dinitroimidazole[P]. USSR:458553, 1975.
    [34]Urtiew P A, Tarver C M, Simpson R L. Shock initiation of 2,4-dinitroimidazole[R]. 95017876,1995.
    [35]Bracuti A J. Molecular structure of a new potential propellant oxidize 4, 5-dinitroimidazole[J]. Journal of Chemical Crystallography,1996,28(5):367-371.
    [36]Minier L, Behrens R F, Bulu S. Solid-phase thermal decomposition of 2, 4-dinitroimidazole[R].96003235,1996.
    [37]刘慧君,杨林,曹端林.由1,4-DNI热重排制备2,4-DNI的研究[J].含能材料,2005,13(3):141-143.
    [38]Bhaumik K, Akamanch K G.2,4-dinitroimidazole:Mierowave assisted synthesis and use in synthesis of 2,3-dihydro-6-nitroimidazo[2, 1-b]oxazole analogues with antimycobacterial activity[J]. Journal of Heterocyclic Chemistry,2004,1:51-55.
    [39]刘慧君,樊月琴,冯峰等.微波辅助合成2,4-二硝基咪唑[J].含能材料,2010,18(1):1-3.
    [40]Novikov S S, Khmel'nitskii L I, Novikova T S. Dinitroimidazole and derivatives [J]. Chemistry Heterocyclic Compound(Engl Transl),1979,6:614.
    [41]Jadhav H S, Talawar M B, Sivabalan R, et al. Synthesis, characterization and thermolysis studies on new derivatives of 2,4,5-trinitroimidazoles:Potential insensitive high energy matirals[J]. Journal of Hazardous Materials,2007,143:192-197.
    [42]Stineeipher M M, Coburn M D. Ammonium nitrate explosive systems[P]. US:4300962, 1981.
    [43]Cho J R, Cho S G, Kim K J, et al. A candidate of new insensitive high explosive; MTNI[C]. Insensitive Munition and Engergetic Materials Technology Symposium, Enschede:Is. n.2000:393-400.
    [44]吕春绪.硝酰阳离子理论[M].北京:兵器工业出版社,2006,16-32.
    [45]郑晓东,崔荣,李洪丽等.2,4-DNI铅盐的合成及性能[J].火炸药学报,2006,29(6):23-26.
    [46]刘慧君,曹端林,李永祥等,2,4-DNI的研究进展[J].含能材料,2005,13(4):269-271.
    [47]Bulusu S, Damavarapu R, Autera J R. Thermal Rearragement of 1,4-dinitroimidazole to 2,4-dinitroimidazole:characterizationa and investigation of the mechanism by mass spectrometry and isotope labeling[J]. The Journal of Chemical Physics,1995,99: 5009-5015.
    [48]王泽山,欧育湘,任务正[M].火炸药科学技术,北京:北京理工大学出版社,2002.
    [49]徐晓娟.有机笼状高能密度材料(HEDM)的分子设计和配方设计初探[D].南京:南京理工大学,2006.
    [50]宋婧 李春迎 杨建明等四氢双环戊二烯硝基衍生物的热力学性质与爆轰性能的理论研究[J].含能材料2008,16(4):368-375.
    [51]金韶华,松全才.炸药理论[M].西安:西北工业大学出版社,2010.
    [52]蔡正千.热分析[M].北京:高等教育出版社,1993.
    [53]王振宇.国外今年研制的新型不敏感单质炸药[J].含能材料,2003,11(4):227-230.