大功率半导体激光器光束特性及其在泵浦固体激光器中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年,大功率半导体激光器(Laser Diode)及其一维阵列(bar)和二维阵列(stack)作为泵浦源在工业、军事等领域中得到越来越广泛的应用。但是半导体激光器由于波导结构的特点,其光场分布复杂。
     在激光二极管泵浦固体激光器(diode pumped solid state laser, DPL)中的应用是半导体激光器最主要的应用。由于DPL的泵浦光在激光介质中的分布起伏很大,对振荡光的影响必然比灯泵时大的多,研究泵浦光对振荡光的影响是必要的。随着DPL的微型化发展,研究高光束质量的微型DPL具有重要的意义。
     论文针对大功率半导体激光器的光场特性及其在DPL应用方面的问题,提出合理的模型描述大功率半导体激光器的远场特性,给出较准确的远场光强分布表达式;研究了大功率半导体激光器阵列远场光分布;分析了泵浦光对DPL振荡光场的影响;讨论了高光束质量的紧耦合泵浦结构。主要内容如下:
     1.为精确了解半导体激光器大角度光波的传播特性,对于以TM模工作的大功率半导体激光器,利用两种方法:远场近似的非傍轴矢量瑞利——索末菲衍射积分公式和光场矢量的简单几何关系,推导了描述其光波传播特性的非傍轴矢量场模型。结论表明,在傍轴区域标量表达式不会引起太大的误差;而在非傍轴区域,大功率半导体激光器的矢量光场和标量光场的光强分布有明显差异。这一结论对于高精度准直、反源计算等领域的研究具有重要作用。
     2.基于大功率半导体激光器的双峰远场模型,对bar和stack两种类型的激光器进行仿真;定量描述了均匀区域以及出现双峰的位置,并利用数值拟合的方法拟合了计算bar和stack光强分布均匀区域和出现类似于单发光源的双峰分布位置的经验公式。利用这些公式只需根据器件手册给出的参数,可求出任意给定参数的bar和stack光强分布均匀的区域和出现类似于单发光源的双峰分布的位置。该结果可为bar和stack型激光器在实际光学系统中的应用以及光束质量评价中提供理论依据。
     3.利用有泵浦增益时的谐振腔衍射积分方程,研究了二极管泵浦固体激光器中泵浦光对振荡光场的影响,具体分析了泵浦光分布和泵浦光半径对振荡光场的影响。结果表明泵浦光对谐振腔的滤波效果有很明显的“调制”作用,在实际的DPL设计中需要根据对振荡光的要求进行泵浦光的优化设计。
     4.利用解析法分析了侧面紧耦合泵浦固体激光器中泵浦光强分布特点,通过对泵浦结构的仔细设计,给出了激光晶体中实现中心强边缘弱的泵浦方案;通过侧面泵浦Nd:YAG激光器的仿真计算,分析了侧面泵浦时泵浦参数对光束质量的影响;采用LD紧贴于Nd:YAG的紧耦合双侧面对称泵浦技术,实验上实现了DPL的微型化。
In recent years high-power laser diode and bar and stack lasers have been usedwidely in the industrial、military fields as pumping source of solid-state lasers. Beacuseof the waveguide properties of their active areas, the beam quality of a high-power laserdiode is poor.
     The high-power laser diode is mainly used in diode pumped solid statelaser(DPL)as pumping source. For the reason of big change in laser medium, theinfluence to the oscillating laser is much more than to the lamp pumped solid state laser,the study on the question about how the pumping light affect the performance of adiode pumped solid state laser is necessary, and with the development of miniature DPL,and how to improve the quality is also discussed.
     The propagation of a high-power laser diode and its’ application in DPL areanalyzed in this dissertation. A model to describe the vector far-field propagation of ahigh-power laser diode is given; the discussion of the field about the bar and stack,andhow the pumping light affect the diode pumped solid state laser are discussed; Finally,we analysised the directly coupled pumping technique.
     1. For the high-power laser diode, which works in the TM-mode state, the vectornonparaxial theory and a simple mathematical expression to describe the propagation ofa high-power laser diode are proposed. The analysis of the relative error yielded by thescalar approximation of the laser diode beams is presented. The results indicate that wemust consider the vector properties of the far-field distribution, when we need toaccurately describe the far-field propagation of a TM-mode high-power laser diode,especially in the nonparaxial region.
     2. The bi-peak model is applied to describe the field distribution for both bar andstack lasers, and the far-field intensity of each emitter are superposed non-coherently,then the far-field intensity model of the bar and stack lasers are obtained. According tothis model, the far-field intensity distribution of the real bar and stack is simulated. Forbar and stack, quantitative descriptions of both homogeneously-distributed regions andthe position where the distribution is similar with bi-peak distribution emitted by asingle emitter are given. The corresponding experienced formulas are also presented. Bythese formulas and the parameters given in the datasheet, the homogeneously-distributed regions and the position can be easily found. The results of this paper can beuseful for the design of optical systems and the evaluation of the laser beam’s quality in the practical application.
     3. The diffraction theory of resonators with the pumping gain is discussed in thepresent work; the results show that the pumping light can strongly affect the oscillatinglaser even in plane-plane cavity. In specifically, how the distribution of pumping lightand the size of pumping light, and the power of pumping light affect the oscillating laserhas been analysed. In practice, to design better DPL we should optimize the pumpinglight based on the need of the oscillating laser.
     4. Direct pumping technique of micro-modularization DPL is studied. The pumpdistribution of laser diode in gain medium is obtained and analyzed. The optimalpumping distribution in the gain medium is discussed. Bsed on the rate equation of fourlevel systems, the simulation of side pumped Nd: YAG laser is established. Computedresults indicate that the position of the pumping LD can influence the beam quality M2.An experimental equipment of laser diode symmetrically side-pumped Nd: YAG laser isdesigned.
引文
[1]江剑平编著.半导体激光器[M].北京:电子工业出版社,2000,52-98.
    [2]黄德修,刘雪峰编著.半导体激光器及其应用[M].北京:国防工业出版社,1999,67-90.
    [3]J.G.Endriz, M.Vakili, G.S.Browder.et al. high power diode array[J] IEEE. J.Quantum. Electron.1992,28(4):952一965.
    [4]M. B. Panish. Molecular beam epitaxy[J].Science,1980,208(4446):916-922.
    [5] C.S.Hong, D.Kasemset, M.E.Kim.et al. GaAlAs buried-heterostructure lasers grownby a two-step MOCVD process[J]. Electronics Letters,1983,19(19):759-760.
    [6]H.X.Li, I. Chyr, X.Jin,et al.>700W continuous-wave output power from singlelaser diode bar[J]. Electronics.Letters,2007,43(1):27-28.
    [7]M.Kanskar,T. Earles, T.J. Goodnough, et al.73%CW power conversion efficiencyat50W from970nm diode laser bars [J]. Electronics Letters,2005,41(5):226-227.
    [8]A.Knigge, G. Erbert, J. J nsson, et al. Passively cooled940nm laser bars with73%wall-plug efficiency at70W and25℃[J]. Electronics Letters,2005,41(5):246-247.
    [9]P.Crump, M.Grimshaw, J.Wang.85%Power conversion efficiency975nm broadarea diode lasers at-50℃,76%at10℃. CLEO,2006, JWB24.
    [10]P.Crump, J.Wang, S. Patterson, et al.400W peak CW power perbar from1cmGaAs bars for emission wavelengths from800nm to980nm,90W at660nm[A].Solid State and Diode Laser T echnology Review[C].2006, DIODE1-5.
    [11]D.Garbuzov, M.Dubinskii. InP-based long wavelength sources for solid state laserspumping[C]. Solid State and Diode Laser Technology Review,2004,PosterPresentations.
    [12]P.Crump, J.Wang, S.Patterson, et al. Diode laser efficiency increases enable>400W peak power from1cm bars and show clear path to peak powers in excess of1kW[J]. Proc. SPIE,2006,6104:77-86.
    [13]马骁宇,王俊,刘素平.国内大功率半导体激光器研究及应用现状[J].红外与激光工程,2008,37(2):189-193.
    [14]Brian J, Comaskey, L. Shterengas, et al. High average power diode pumped slablaser[J]. IEEE Joural of Quantum Electronics,1992,28(4):992-976.
    [15]赵远,蔡喜平,刘剑波等.二极管泵浦固体激光雷达技术及其应用[J].红外与激光工程,2001,30(1):47-50.
    [16]刘颂豪,廖常俊,李春吉,等.发光二极管(LED)半导体激光器(LD)的应用前景展望[J].华南师范大学学报,1996,5(1):3-11.
    [17]宋晓舒.高功率二极管激光器的技术现状、工业应用及未来展望[J].光机电信息,2003,8:29-41.
    [18] D. C.Brown. High power laser diode arrays[J]. IEEE JQE.1992,28(4):952-964.
    [19]郑权,赵岭,钱龙生.大功率二极管泵浦固体激光器的应用和发展[J].光学精密工程,2001,9(1):6-9.
    [20]王立斌.各种激光器在生物医学领域的应用[J].光机电信息,2002,12:8-10.
    [21]余辉,谭胜.高能激光武器的发展和应用前景[J].红外与激光工程,2002,31(3):267-271.
    [22]王戎瑞.美国机载激光武器发展现状[J].激光与红外,1999,29(4):195-198.
    [23]王德,李学千.半导体激光器的最新进展及其应用现状[J].光学精密工程,2001,6(9):279-283.
    [24]王乐.激光在现代军事中的应用[J].光机电信息,2002,6:23~24。
    [25]F.G. Bachmann. Chances and limitations of high power diode lasers[J]. Proc. SPIE,2004,5336:95-106.
    [26]H.C.Casey, M.B.Panish, J.L.Merz. Beam divergence of the emission fromdouble-heterostructure injection lasers[J]. J.Appl.Phys.1973.44(12):5470一5475.
    [27]J.K.Butler and J.Zoroofchi. Radiation fields of GaAs-(AlGa)As injection lasers[J].IEEE. J.Quantum Electron.1974,10(10):809-815.
    [28]W.B.Joyce, B.C.Deloaeh. Alignlment of Gaussian Beams. Applied Optics.1984(23):4187-4196.
    [29] K.Kawano,O.Mitomi, M.Saruvvatari. Combination lens method for coupling alaser diode to a single-mode fiber. Applied Optics.1985(24)984一989.
    [30] D.D.Cook, F.R.Nash. Gain-induced guiding and astiglnatic output beam of GaAslasers. J.Appl.phys.1975(46):1660-1672.
    [31]W.P.Dumke. The Angular Beam Divergence in Double-Hterojunction Lasers withVery Thin Active Regions. IEEE. J.Quantum Electron.1975,11:400-402.
    [32]X.Zeng, A.Naqwi. Far-field distribution of double-heterostructure diode laserbeams[J]. Appl. Opt.,1993,32(24):4491-4494.
    [33]X.Zeng, Z.J.Feng, Y.Y.An. Far-field expression of a high power laser diode[J].Appl.Opt.,2004,43(27):5168-5172.
    [34]R. N.Hall, G. E.Fenner, J. D. Kingsley et al. Coherent Light Emission From GaAsJunctions [J]. Phys. Rev. Lett.1962,9(9):366-368.
    [35]R. Newman et al. Excitation of the Nd3+Fluorescence in CaWO4by RecombinationRadiation in GaAs[J]. Journal of Applied Physics,1963,34(2):437-438.
    [36]R. J.Keyes, T. M.Quist Injection luminescent pumping of CaF2:U3+with GaAsdiode lasers [J]. Appl. Phys. Lett.,1964,4(3):50-52.
    [37] Monte Ross et al. YAG Laser Operation by Semiconductor Laser Pumping[J].Proceedings of the IEEE,1968,56(2):196-197.
    [38]F.W.Ostermayer, R. B., Allen.,E. G.Dierschke. Room-temperature CW operationof a GaAs1-xPx Diode-pumped YAG:Nd laser [J]. Appl. Phys. Lett.,1971,19:289-295.
    [39]R. B. Allen, S. J.Scalise. Continuous operation of a YAG:Nd laser by injectionluminescent pumping [J]. Appl. Phys. Lett.,1969,14:188-190.
    [40]S. C. Tidwell, J. F. Seamans, M. S. Bowers. High efficiency60-W TEM00cwdiode-end-pumped Nd:YAG laser[J]. Optics Letters,1993,18(2):116-118.
    [41]Susumu Konno, Shuichi Fujikawa, Koji Yasui.80W cw TEM001064nm beamgeneration by use of a laser-diode-side-pumped Nd:YAG rod laser[J]. Appl. Phys.Lett.1997,70(20):2650-2651.
    [42]Eric C. Honea, Raaymond J. Beach, Scott C. Mitchell et al. High-power dual-rodYb:YAG laser[J]. Optics Letters,2000,25(11):805-807.
    [43]Randall J. St. Pierre, David W. Mordaunt, Hagop Injeyan et al. Diode ArrayPumped Kilowatt Laser[J]. IEEE Journal of Selected Topics in Quantum Electronics,1997,3(1):53-58.
    [44]Project yields a pair of3.3-kW solid-state lasers[J]. Laser Focus World,1999,35(7):38-40.
    [45]叶震寰,楼祺洪.高功率平板波导激光器进展[J].激光与光电子学进展,2004,41(1):37-40.
    [46]陈云生.输出功率11.3kW的全固体激光装置[J].激光与光电子学进展,2002,39(5):61-64.
    [47]陈日升,席学武.输出功率大于100W的脉冲绿光激光振荡器[J].激光与光电子学进展,2002,39(5)45-48.
    [48]许祖彦.光电子晶体与全固态激光器及其应用—光电子技术发展的一个重大方向[J].中国工程科学,第一卷第2期。
    [49]T.Y.Fan, R.L.Byer. Diode Laser-Pumped Solid-State Lasers[J]. IEEE. J.QuantumElectron.198824(6):895-912.
    [50]P.Laporta, M.Brussard. Design criteria for mode size optimization in diode-pumpedsolid-state lasers[J]. IEEE J.Quantum Electron.1991,27(10):2319-2326.
    [51]沈小华,周复正,林尊琪等.半导体激光纵向泵浦的光学耦合系统设计[J].光学学报,1995,15(6):797-802.
    [52]何慧娟,廖严,陈冰瑶.高转换效率二极管激光器泵浦固体激光器[J].中国激光,1997,24(10):886-890.
    [53]王石语,薛海中,唐映德,等.泵浦光空间分布对DPL性能的影响[J].西安电子科技大学学报,2003,30(1):75-80.
    [54]A.Ciattoni, B.Crosignani, P. Di Porto.Vectorial analytical description ofpropagation of a highly nonparaxial beam [J].Opt.Commun.2002,202(1-3):17-20.
    [55]P.C.Chaumet. Fully vectorial highly nonparaxial beam close to the waist[J].J.Opt.Soc.Am.A,200623(12):3197-3202.
    [56]Z.Ulanowski,I.K.Ludlow. Scalar field of nonparaxial Gaussian beams[J].OpticsLetters,2000,25(24):1792-1794.
    [57]Q.Luo,C.T.Law. Propagation of nonparaxial beams with a modified ArnoldiMethod[J].Optics Letters,2001,26(21):1708-1710.
    [58] Riccardo Borghi and Massimo Santarsiero, Summing Lax series for nonparaxialbeam propagation[J]. Optics Letters,2003,28(10):774-776.
    [59] Colin J. R. Sheppard and Kieran G. Larkin, Wigner function for nonparaxial wavefields[J] J. Opt. Soc. Am. A.2001,18(10),2486-2490.
    [60]王仕璠,朱自强.现代光学原理[M].成都:电子科技大学出版社,1998,86-94.
    [61]曾小东.远轴光传播理论新进展及其应用[D].博士论文.1997,7-10.
    [62]K.L.Duan, B.D.Lü, Vectorial nonparaxial propagation equation of ellipticalGaussian beams in the presence of a rectangular aperture[J]. J. Opt. Soc. Am. A2004,21(9),1613-1620.
    [63]高曾辉,吕百达.矢量非傍轴离轴高斯光束的传输[J].物理学报.2005,54(11):5144-5148.
    [64]曾小东,梁昌洪,安毓英.远轴高斯波[J].物理学报,1997,46(10):1932-1938.
    [65]B.D.Lü, K.L.Duan, Nonparaxial propagation of vectorial Gaussian beams diffractedat a circular aperture[J]. Optics Letters,2003,28(24):2440-2442.
    [66]高曾辉,非傍轴光束传输特性、相干和非相干合成研究[D].成都:四川大学,2007.10-40.
    [67]康小平,吕百达.非傍轴矢量高斯光束的光强表示[J].强激光与粒子束,2006,18(7):1057-1060.
    [68]K.L.Duan, B.D.Lü. Polarization properties of vectorial nonparaxial Gaussian beamsin the far field[J]. Opt. Lett.2005,30(3):308-310.
    [69]杜国同.半导体激光器件物理[M].长春:吉林大学出版社,2002,234-235.
    [70]商继敏,曾晓东.大功率半导体激光器的远场分布特性[J].西安电子科技大学学报[J].2010,12(26):5408-5414.
    [71]H. Z.Dong, S.X. Shi, S.M.Chen, Analysis of error yielded by scalar approximationto the properties of laser diode beams[J], Applied Optics,2006,45:5160–5163.
    [72]X.Zeng, C.H.Liang, Y.Y.An. Far-field propagation of an off-axis Gaussian wave [J].Appl.Opt.,1999,38(30):6253-6256.
    [73]J.M. Shang, X.D. Zeng. Vector far-field propagation of a high-power laser diode[J].Optics.2011,122(14):1272-1274.
    [74]S. Nemoto.Experimental evaluation of a new expression for the far field of a diodelaser beam[J].Appl.Opt.1994,33(27):6387–6392.
    [75]曾小东,梁昌洪,安毓英.小尺寸平面源的误差分析[J].物理学报,1997,46(9):1665-1669.
    [76]D.Botez. Design consideration and analytical approximations for hith continuous-wave power, broad-waveguide diode lasers[J]. Appl.Phys.Letts.1999,74,1302-1304.
    [77] M.Onomura, S.Saito, K.Sasanuma, G.Hatakoshi et al. Analysis of transversemodes of nitride-based laser diodes[J]. IEEE J. Selected Topics in QuantumElectron.1999,5,765-770.
    [78]L.J.Mawst, A.Bhattacharya, J.Lopez, D.Botez et al.8W continuous wave front-facetpower from broad-waveguide Al-free980nm diode lasers[J]. Appl. Phys. Lett.1996,69,1532-1534.
    [79] W.T.Tsang, R.A.Logan. GaAs-AlxGa1-xAs strip buried heterostructure lasers[J].IEEE J. Quantum Electron.1979,QE-15,451-469.
    [80]Naqwi, F.Durst. Focusing of diode laser beams: a simple mathematical model[J].Appl. Opt.1990,29,1780-1785.
    [81]Y.Li, J.Katz. Nonparaxial analysis of the far-field radiation patterns of double-heterostructure lasers[J]. Appl.Opt.1996,35,1442-1451.
    [82]王强,曾晓东,安毓英.大功率激光二极管双峰结构远场分布模型[J].光学学报,2005,25(5):619-623
    [83]董丽丽.大功率半导体激光器阵列光束特性及其测试技术研究[D].哈尔滨:哈尔滨工业大学,2008.16-24.
    [84]牛岗,樊重维,王家赞等.大功率半导体激光光纤耦合技术进展[J],激光与光电子学进展,2004,41(3):34-38.
    [85]R.Reach, J.Davin, S.Mitchell,et al. Passively Q-switched transverse-diode-pumpedNd:YLF laser oscillator[J].Optics Letters,1992,17(2):124-126.
    [86]郜洪云,傅汝廉,秦华.LDA端泵浦固体激光器的新型耦合系统-圆锥形导管.[J].光电子·激光,2006,17(4):419-423
    [87]X. Zeng, Ch. Cao, Y. An. Asymmetrical prism for beam shaping of laser diodestacks[J]. Applied Optics,2005,44(26):5408-5414.
    [88]Raymond J. Beach. Theory and optimization of lens ducts[J].Applied Optics,1995,35(12):2005-2015.
    [89]G.Feugnet, C.Bussac, C.Larat, et al. High-efficiency TEM00Nd:YVO4laserlongitudinally pumped by a high-power array[J].Optics Letters,1995,20(2):157-159.
    [90]A.G.Fox, T.Li. Resonant modes in maser interferometer[J].Bell System TechnicalJournal,1961,40:453-488.
    [91]G.D.Boyd. Confocal multimode resonator for millimeter through opticalwavelength masers[J]. Bell Syst. Tech. J.,1961,40:489-497.
    [92]M. Born and E. Wolf. Principles of Optics[M]. Pergamon. Oxford.1986.70-90.
    [93]E.Wolf and G. S. Agarwal. Coherence theory of laser resonator modes[J], J. Opt.Soc. Am. A1984,1:541-546.
    [94]B.David, Rensch, N.C.Arthur. Iterative Diffraction Calculations Of TransverseMode Distributions In Confocal Unstable Laser Resonators[J]. Appl. Opt.1973,12:997-1010.
    [95]N.C.Arthur. Three-Dimensional Diffraction Calculations of Laser ResonatorModes[J]. Appl. Opt.1973,12:2353-2366.
    [96]M.Vittorio, C.Giulio, D.S.Sandro. Closed form gaussian beam analysis ofresonators containing a Kerr medium for femtosecond lasers[J]. Optics.Communications.1993,101(5-6):365-370.
    [97]STUART A. COLLINS, J.R. Lens System Diffraction Integral Written in Terms ofMatrix Optics[J].J. Opt. Soc. Am.1970,60:1168-1177.
    [98]G.S.Zhou, W.C.Lee. Modes of a laser resonator with a retroreflecting roofmirror[J].Appl. Opt.1981,20:3542-3546.
    [99]D.X.Dong, J.C.Li, J.R.Chen. Analysis of eigenfields in the axicon-basedBessel-Gauss resonator by the transfer-matrix method[J]. J. Opt. Soc. Am. A2006,23:912-918.
    [100] J.A.Cochran, Bell,Syst.Tech.J.,44(1965),77.
    [101] H.Hochstadt,SLAM Rev.,8(1996),62.
    [102] A.G. Fox, T. Li. Modes in a maser interferometer with curved and tilted mirrors[J].Proc. IEEE,1963,51(1):80-89.
    [103] A.G. Fox, T. Li. Equivalence of different integral equations for the Fabry-Perotinterferometer used as a laser resonator[J]. Physics Letters,1965,14(3):187-188.
    [104]T.Li, H.ZUCKER. Modes of a Fabry-Perot Laser Resonator with Output-Coupling Apertures[J].J. Opt. Soc. Am.1967,57:984-984.
    [105]T.Li, S. D. Sims. A Calorimeter for Energy Measurements of Optical Masers[J].Appl. Opt.1962,1:325-328.
    [106]王石语.二极管泵浦固体激光器的若干问题研究博士学位论文西安交通大学[D].2003,70-80.
    [107]王石语,过振,傅君眉,等.抽运光分布对二极管抽运激光器振荡光光束质量的影响[J].物理学报,2004,53(9):2999-3000.
    [108]王石语,过振,傅君眉等.激光二极管抽运固体激光器场分布的热不稳定性研究[J].物理学报,2003,52(2):355-361.
    [109]刘磊,张大勇,赵鸿,等. LD紧耦合泵浦被动调Q微型激光器实验研究[J].激光与红外,2010,40(6):609-612..
    [110]D.Kim. Diode-laser-array-pumped Nd:YAG thin slab laser[J]. SPIE1998,3491:1151-1154.
    [111]王志敏.新一代大功率固体板条激光器的技术进展[J].激光与光电子学进展,2007,44(2):18-24.
    [112]陈日升,席学武.输出功率大于100W的脉冲绿光激光振荡器[J].激光与光电子学进展,2002,39(5):45-48.
    [113]温娇娟.固体板条激光器的半导体激光抽运结构[J].激光与光电子学进展,2007,44(4):44-49.
    [114] Chen Y. F., Liao T. S., Kao C. F. et al.. Optimization of fiber-coupled laser-diodeend-pumped lasers: influence of pump-beam quality [J]. IEEE J. QuantumElectron.,1996,32(11):2010-2016.
    [115]Tidwell S. C., Seamans J. F., Bowers M. S. Highly efficient60W TEM00cwdiode-end-pumped Nd:YAG laser [J]. Opt. Lett.,1993,18(2):116-118.
    [116]李晋闽.高平均功率全固态激光器发展现状、趋势及应用[J].激光与光电子学进展,2008,45(7):16-29.
    [117]Akiyama Y., Takada A., Takase T. et al.. Efficient2-kW diode-pumped cwNd:YAG single rod laser [C]. OSA/ASSL2000, MA7
    [118] Akiyama Y., Takada H., Sasaki M. Efficient10kW diode-pumped Nd:YAG rodlaser [J]. Proc. SPIE,2003,4831:96-100.
    [119]张彪,高玮,杨照金等. LD阵列侧面泵浦棒状激光介质内的光场研究[J].应用光学,2009,30(2):338-343.
    [120]庞恺,韩军婷,李强等.二极管侧面泵浦薄片激光器泵浦均匀性分析[J].强激光与粒子束,2008,20(8):1243-1248.
    [121]宁继平,汤声书,熊英等.激光二极管面阵列泵浦固体激光器的理论分析[J].光学学报,1999,19(9):1183-1188.
    [122]杨爱粉,卜英华,陈德东,等.线阵激光二极管侧面抽运Nd:YAG激光器特性研究[J].光学学报,2004,24(5):633-640.
    [123]Sutton S B, Albrecht G F. Simple analytical method to calculate the radial energydeposition profile in an isotropic diode-pumped solid-state laser rod.Appl.Opt.1996,35(30):5937-5947.
    [124]Wenjie Xie,Sui-chung Tam,Yee-loy lam,et a1.Influence of the thermal effecton the TEM00mode output power of a laser-diode side pumped solid-state laser[J].Appl.Opt.2000,39(30):5482-5487.
    [125]王春雨,朱小磊,陆雨田.LD侧面泵浦固体激光器泵浦光分布模拟[J].光子学报,2007,36(6):961-965.
    [126]宁继平,蔡志强,陈志强等. LD侧面抽运的Nd:YAG激光器抽运均匀性研究[J].中国激光,2004,31(4):390-394.
    [127]蔡志强,姚建铨,温午麒等. LD侧泵激光器抽运光和温度分布数值研究[J].光电子.激光,2004,15(11):1305-1310.
    [128]赵鸿,姜东升,王建军等.二极管侧面抽运条件下工作物质增益分布特性研[J].光学学报,2003,23(1):57-62.
    [129]W J Xie et al. Thermal and optical properties of diode side-pumped solid statelaser rods[J], Optics and Laser Technology,2000,32:193-198.
    [130]秦华,傅汝廉,郜洪云等.四能级固体增益介质中长脉冲抽运光的吸收[J].光电子.激光,2005,16(3):298-301.
    [131] Koechner W.. Solid-State Laser Engineering [M]. Berlin: Springer,2005:46-50.
    [132] W.克希耐尔著.固体激光工程[M].孙文,江泽文,程国祥,译.北京:科学出版社,2002:185.-192.
    [133]戴特力.半导体激光二极管泵浦全固态激光器[M].成都:四川大学出版社,1993:83-96.
    [134]刘玮.泵浦光空间强度分布对激光腔内横模分布的影响[D].西安电子科技大学,2010:15-30.
    [135]杨永明,文建国,王石语等. LD端面泵浦Nd:YAG激光器中的热透镜焦距[J].光子学报,2005,34(12):1769-1772.
    [136]郑加安,赵圣之,王青圃.稳腔固体激光器运转时热透镜焦距的测量[J].中国激光,2001,28(8):717-720.
    [137]吕百达.M2因子概念和激光光束质量控制[J].激光技术,1992,16(5):278-282.
    [138]王云萍.高能激光光束质量的评价方法[J].光电子·激光,2001,12(10):1029-1032.
    [139]吴晗平.激光光束质量的评价与应用分析[J].光学精密工程,2000,8(2):128-133.
    [140]吕百达.激光光学[M].北京:高等教育出版社,2003,80.