镓、铟硫属化合物溶剂热合成及配位修饰
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于独特新颖的结构特点及性质,镓、铟硫属化合物及其衍生物作为一类新型的多功能材料,一直为科学家们所重视,并在许多领域已经取得了较好的成果。目前该类化合物被应用于催化剂、薄膜太阳能电池、光电导体、非线性光学器件、吸附及离子交换等方面。因此,制备该类化合物的晶体材料成为研究热点之一,其中利用高温固相法、中温熔融盐法、电化学方法及低温水热和溶剂热反应方法已成为人们研究这类化合物结构和性能关系的重要途径。1989年,Bedard R. L等人以季胺盐R4N+(R = Me, Et, Pr, ect)为模板剂,第一次用水热法合成了锗和锡硫属化合物以来,水热和溶剂热成为合成硫属化合物行之有效的方法。这种低温溶剂热(或水热)合成法促使镓、铟硫属体系迅速的发展,这些化合物通常以MQ4(M = In, Ga)四面体为基本结构单元,通过硫属原子共边或共角相连,形成多种多样的阴离子骨架结构,平衡阳离子主要是季胺盐、质子化的有机胺、金属配阳离子。虽然已有许多相关的报道,但是对于硫属化合物的结构类型还不是很丰富,研究工作还有待于进一步深入、系统化。因此,为了开拓这一领域的发展空间,本课题基于镓、铟硫属化合物体系,研究了低温溶剂热条件下合成新型硫属化合物的方法,对其合成条件、晶体结构、热稳定性及光学性质进行相关的讨论。论文的主要工作包括以下几个方面:
     一、在In/Q (Q=Te, Se)溶剂热反应体系中,通过改变有机胺种类和反应温度,简便地得到了五个具有铟硫属阳离子结构的化合物[{In(dien)}2(InTe4)]·Cl(1),[{In(dien)}2(InTe4)]·Br(2), [InTe(en)2]2·2I(3),[In(en)2Se]2·2I(4)和[In(teta)Se]2·2I(5)。在化合物1中,阳离子[{In(dien)}2(InTe4)]+沿着c轴,通过融合的In4Te4八元环,呈现一维链结构,Cl-离子作为平衡离子通过氢键作用把化合物1连成二维层状结构。化合物2的结构和化合物1的相似。化合物3~5中,由于引入I-离子,阳离子的结构呈现具有In2Te2核的二聚体,显示了与化合物1和2不同的构型,说明不同的卤素离子对化合物结构的影响。在这类化合物的结构中铟离子同时与螯合胺及硫属阴离子配位,使硫属主族元素结构进入阳离子中,这种阳离子骨架在硫属化合物体系中还是首先发现。这不仅为新型有机杂化的金属硫属化合物合成和研究提供了基础,也丰富了金属硫属化合物结晶化学的内容。
     二、通过稀土配阳离子的结构导向作用,在en体系中制得了两个稀土配阳离子硫属化合物[Dy2(en)6(μ2-OH)2]Ga4S8(6)和{[SmCl(en)4][In2Te4]}n(7)。在类似体系中受反应温度的影响,同时获得了两个二元铟碲化合物[In(en)3][In5Te9·2en](8)和[InTe2]2·enH2(9)。结构测定表明,配合物6含有OH-离子桥连的双核[Dy2(en)6(μ2-OH)2]4+配阳离子,受其影响[GaS2]-负离子呈现为一维正弦链。配阳离子对阴离子结构的影响可以从化合物7中的[Sm(en)4Cl]2+配阳离子与1D{[InTe2]-}n弯曲阴离子链间的N-H···Cl氢键看出。化合物8中,主族金属In配阳离子引入了该体系,显示非常少见的T1和T2簇相连的配位修饰的2D层状结构,而化合物9以简单的1D直线链状延伸。
     三、以有机胺为结构导向剂,得到三个二元铟硒硫属化合物[(1, 2-dapH2)4][In10Se19] (10), [EOAH]7[In11Se20](11) and (AEAEH2)3.5[In17Se29](12)。化合物10为T3簇结构,又通过顶端Se原子二齿桥连形成一个3D敞开框架结构,其中孔洞体积在晶胞中占8144.6 ?3,空隙率为55.5%。化合物11和12为更为复杂的三维孔道结构,在晶胞中孔洞体积分别占7355.9 ?3和4878.7 ?3,空隙率相近,分别为48.9%和48.8%。三个化合物合成体系中,无机酸H3BO3和HI被用来调节体系pH值,虽然没有进入到化合物中,但作用不可忽略。
     四、利用DMF体系,合成了三个化合物[Ni(phen)3]4[In10S19](13)、Mn(bpy)[S2CN(CH3)2]2(14)和Mn(phen)[S2CN(CH3)2]2(15)。化合物14和15的结构类似,金属锰离子与1, 10-菲咯啉或2, 2-联吡啶以及[S2CN(CH3)2]-离子(由DMF与CS2原位反应得到)配位,形成六配位单核结构;在此基础上,得到一个以Ni(phen)32+为配阳离子的一维T3簇铟硫化合物13,首次把1,10-菲咯啉金属配阳离子引入进镓、铟硫属化合物中,能够赋予这类化合物好的光电性质,拓宽了有机配体在结构、性能方面的作用。
     综上所述,本论文课题主要以镓、铟硫属化合物为研究对象,合成了15个新型镓、铟硫属化合物,了解其结构特点和反应规律,并探索了相关的光谱和热稳定等性质。本论文的研究对于硫属化合物的进一步探索具有一定的意义。
Gallium and indium chalcogenides and their derivatives as a new type of multifunctional materials have been applied in many fields, because of their unique structures and properties. Flux technique at intermediate or higher temperatures, cathodic dissolution and hydroythermal or solvothermal reactions are most important routes to obtain this kind compounds, which have been used as catalyzers, film cells of solar energy, photoelectronic conductors, nonlinear optical materials, adsorption, ion exchange and so on. In 1989, Bedard et al firstly used hydrothermal method to obtain germanium and stannum chalcogenides using tetra-alkylammonium R4N+(R = Me, Et, Pr, ect) as structure-directing agents or templates. Since their discovery, Hydro- or solvothermal synthesis of chalcogenides has become accordingly a very effective method for gallium and indium chalcogenides. These compounds usually are based on MQ4 (M = In, Ga; Q = S, Se, Te) tetrahedral primary building units. These tetrahedra exhibit a characteristic tendency of corner- or edge- sharing and a variety of structures of the chalcogenidometalate are formed, whose counterions are usually the protonated organic amines, tetra-alkylammonium and metal complexes. Although the work of many chalcogenidometalates has been reported, this field need be further studied to make them deep, systemic and flourishing. Therefore the work of this thesis focuses on the synthesis of novel gallium and indium chalcogenides under solvothermal condition. Their reaction conditions, thermal stabilities and optic properties are discussed. The major contents are as follows:
     1.In In/Q(Te, Se) solvothermal reaction systems, five indium chalcogenides [{In(dien)}2(InTe4)]·Cl(1),[{In(dien)}2(InTe4)]·Br(2), [InTe(en)2]2·2I(3),[In(en)2Se] 2·2I(4) and [In(teta)Se]2·2I(5) were obtained. In compound 1,the cationic chain structure can be viewed as a string of fused eight-membered In4Te4 rings, in which the cation [{In(dien)}2(InTe4)]+ propagates along the crystallographic c axis. The chains are assembled to a 2-D extended layer structure via hydrogen-bond interactions with Cl- anions. The structure of compound 2 is similar to compound 1. Because of I- ions introduced, compounds 3~5 have a dimeric cation with a similar In2Te2 rhomboidal core, which are different from compounds 1 and 2. The results indicated a halogen-ion-effect for the structure of In?Q(Te, Se)?amine compounds. The cationic chalcogenide structures are first discovered based on our knowledge. The indium(III) ion is coordinated by chelating amine and chalcogenidometalate moiety and then forms a structures with positive charge. This work not only obtains new organic hybrid chalcogenidometalates, but also widens the study on the field.
     2.Two chalcogenides with lanthanide metal complexes [Dy2(en)6(μ2-OH)2]Ga4S8(6) and {[SmCl(en)4][In2Te4]}n(7) were obtained. At the similar reaction conditions except the temperature two binary telluridoindate [In(en)3][In5Te9·2en] (8) [InTe2]2·enH2(9) were obtained. In compound 6, dimeric metal complex [Dy2(en)6(μ2-OH)2]4+ is composed of OH- ions bridging and [GaS2]- anion are affected presenting a sinusoidal 1-D structure. Metal complex cation template effects been shown in compound 7 with N-H···Cl hydrogen bonding. Compound 8 has a rare 2D layer structure composed of T1 and T2 cluster and compound 9 is a simple straight chain.
     3.Using organic amines as structure-direct agent, three binary indium selenides [(1, 2-dapH2)4][In10Se19](10), [EOAH]7[In11Se20](11) and (AEAEH2)3.5[In17Se29](12) were obtained. Compound 10 shows a three-dimensional open framework built of T3 supertetrahedral clusters. The pore volume occupies 8144.6 ?3 in a unit cell and the percentage is 55.5%. Compound 11 and 12 are more complicated three-dimensional open framework structures, in which the pore volumes of a unit cell occupy 7355.9 ?3 (48.9%) and 4878.7 ?3 (48.8%), respectively. Inorganic acids H3BO3 and HI are used to adjust pH values of the reaction systems.
     4. In N,N-Dimethylformamide (DMF) system, three compounds [Ni(phen)3]4[In10S19] (15),Mn(bpy)[S2CN(CH3)2]2 (14) and Mn(phen)[S2CN(CH3)2]2 (15) were obtained. Compound 14 and 15 are similar and their ligand [S2CN(CH3)2]- was generated in-situ reaction synthesis (DMF-CS2). Compound 13 is a one-dimensional T3 cluster chain with Ni(phen)32+ complex cations. The M(phen)32+ cations were firstly introduced to gallium and indium chalcogenides, and will afford in excellent photoelectronoc property and extend the uses of organic composition .
     This work focuses on the syntheses and research of gallium and indium chalcogenides. Fifteen new compounds were synthesized and their structures, electronic spectra and stability were characterized. It is important for the further exploring of gallium and indium chalcogenides.
引文
[1] (a) Guisnet, M., Gilson, J.-P., Zeolites for Cleaner Technologies, Vol. 3, Imperial College Press, New York, 2002; (b) Krishna, R., Smit, B., Calero, S., Chem, Soc. Rev. 2002, 31, 185; (c) Corma, A., Garcia, H., Chem, Commun., 2004, 1443.
    [2] Barrer, R. M., J. Chem. Soc., 1948, 54, 324.[5] (a) Rincón, C., Wasim, S. M., Marin, G., Huntzinger, J. R., Galibert, J., Zwick, A., Mater. Lett., 1999, 38, 305; (b) Rincón, C., Hernandez, E., Wasim, S. M., Molina, I. J., Phys. Chem. Solids., 1998, 56, 1015; (c) Marin, G., Rincón, C., Wasim, S. M., Power, C., Peréz, G. S., J. Appl. Phys., 1997, 81, 7580; (d) Soliman, H. S., J. Phys. D: Appl. Phys., 1998, 31, 1516; (e) Bottomley, D. J., Mito, A., Niki, S., Yamada, A., J. Appl. Phys., 1997, 82, 817; (f) Bottomley, D. J., Mito, A., Fons, P. J., Niki, S., Yamada, A., IEEE J. Quantum Electron., 1997, 33, 1294; (g) Jackson, A. G., Ohmer, M. C., LeClair, S. R., Infrared. Phys. Technol., 1997, 38, 233; (h) Meng, Q. B., Xiao, C. Y., Wu, Z. J., Feng, K. A., Lin, Z. D., Zhang, S. Y., Solid. State. Commun., 1998, 107, 369; (j) Brandit, G., R?uber, A., Schneider, J., Solid. State. Commun., 1973, 12, 481; (k) Robbins, M., Lambrecht, V. G., Jr. Mater. Res. Bull., 1973, 8, 703; (l) Lambrecht, V. G., Jr. Mater. Res. Bull., 1973, 8, 1383; (m) Robbins, M., Phillips, J. C., Lambrecht, V. G., Jr. J. Phys. Chem. Solids., 1973, 34, 1205; (n) Robbins, M., Lambrecht, V. G., Jr. J. Solid State. Chem., 1975, 15, 167; (o) Boyd, G. D., Kasper, H. M., Mcfee, J. H., J. Appl. Phys., 1973, 44, 2809; (p) Negran, T. J., Kasper, H. M., Glass, A. M., Mater. Res. Bull., 1973, 8, 743.
    [6] (a) Soloviev, V. N., Eichhofer, A., Fenske, D., Banin, U., J. Am. Chem. Soc., 2001, 123, 2354; (b) Dance, I., Fisher, K., Metal Chalcogenide Cluster Chemistry. In Progress in Inorganic Chemistry, Karlin, K. D., Ed., John Wiley &Sons: New York, 1994, 41, 637.
    [7] (a) Li, H., Eddaoudi, M., Laine, A., O’Keeffe, M., Yaghi, O. M., J. Am. Chem. Soc., 1999, 121, 6096; (b) Hüsing, N., Angew. Chem. Int. Ed., 2008, 47, 2; (c) Feng, M. L., Kong, D. N., Xie, Z. L., Huang, X. Y., Angew. Chem. Int. Ed., 2008, 47, 8623.
    [8] Feng, P. Y., Bu, X. H., Zheng, N. F., Acc. Chem. Res., 2005, 38, 293.
    [9] (a) Hwang, S. J., Lyer, R. G., Trikalitis, P. N., Ogden, A. G., Kanatzidis, M. G., Inorg. Chem., 2004, 43, 2237; (b) Mrotzek, A., Chung, D. Y., Ghelani, N., Hogan, T.,Kanatzidis, M. G., Chem. Eur. J., 2001, 7, 1915; (c) Ding, N., Kanatzidis, M. G., Angew. Chem. Int. Ed., 2006, 45, 1397.
    [10] (a) Burns, R. C., Corbett, J. D., Inorg. Chem., 1985, 24, 1489; (b) Haushalter, R. C., Angew. Chem., Int. Ed. Engl., 1985, 24, 432; (c) Haushalter, R. C., Angew. Chem., Int. Ed. Engl., 1985, 24, 433.
    [11] (a) Sunshine, S. A., Kang, D., Ibers, J. A., J. Am. Chem. Soc., 1987, 109, 6202; (b) Kanatzidis, M. G., Chem. Mater., 1990, 2, 353.
    [12] Warren, C. J., Haushalter, R. C., Bocarsly, A. B., J. Alloys Comp. 1995, 229, 175.
    [13] (a) Haushalter, R. C., Chem. Commun., 1987, 3, 196; (b) Park, C. W., Salm, R. J., Ibers, J. A., Angew. Chem. Int. Ed. Engl., 1995, 34, 1879.
    [14] (a) Sheldrick, W. S., Kaub, J. Z., Anorg. Allg. Chem., 1986, 535, 179; (b) Sheldrick, W. S., Z. Naturfirsch., 1988, 43B, 249; (c) Liao, J. H., Kanatzidis, M. G., J. Am. Chem. Soc., 1990, 112, 7400; (d) Chou, J. H., Kanatzidis, M. G., Inorg. Chem., 1994, 33, 1001; (e) Wood, P. T., Pennington, W. T., Kolis, J. W., J. Am. Chem. Soc., 1992, 114, 9233; (f) Dhingra, S. S., Haushalter, R. C., Chem. Mater., 1994, 6. 2376.
    [15] Bedard, R. L., Wilson, S. T., Vail, L. D., Bennett, J. M., Flanigen, E. M., in: P. A. Jacobs, R. A. van Santen(Eds.), Zeolites: Facts, Figures, Future, Proceedings of the 18th International Zeolite Conference, Elsevier, Amsterdam, 1989, 375.
    [16] (a) Fehlker, A.; Blachnik, R. Z. Anorg. Allg. Chem., 2001, 627, 411; (b) Spetzler, V.; N?ther, C.; Bensch, W. Inorg. Chem. 2005, 44, 5805; (c) Powell, A.V.; Boissière, S. Chem. Mater. 2000, 12, 182;(d) Cahill, C. L.; Gugliotta, B.; Parise, J. B. Chem. Commun. 1998, 1715.
    [17] Su, Z., Li, X. L., Lan, Y., Wen, J. T., Jin, G. M., Xie, J. L., Chong, Z., Jin, J., Li, S. J., Mater. Lett., 2008, 62, 2802.
    [18] (a) Nagesha, D. K., Liang, X. R., Mamedov, A. A., Gainer, G., Eastman, M. A., Giersig, M., Song, J. J., Ni, T., Kotov, N. A., J. Phys. Chem., B., 2001, 105, 7490; (b) Choi, S. H., Kim, E. G., Hyeon, T., J. Am. Chem., Soc., 2006, 128, 2520; (c) Lu, Q. Y., Hu, J. Q., Tang, K. B., Qian, Y. T., Zhou, G.E., Liu, X. M, Inorg. Chem., 2000, 39, 1606; (d) Grisaru, H., Palchik, O., Gedanken, A., Inorg. Chem., 2003, 42, 7148; (e) Suh, S., Hoffman, D. M., Chem. Mater., 2000, 12, 2794; (f) Morales, J., Tirado, J. L.,Moubtassim, M. L. E., Fourcade, J. O., Jumas, J. C., J. Alloys Compd., 1995, 217, 176; (g) Liu, Y., Xu, H. Y., Qian, Y. T., Crystal Growth & design., 2006, 6, 1304; (h) Cahill, C. L., Gugliotta, B., Parise, J. B., Chem. Commun., 1998, 1715; (i) Cahill, C., Parise, J. B., J. Am. Soc., Dalton Trans., 2000, 1475; (j) Peng, H., Meister, S., Chan, C. K., Zhang, X. F., Cui, Y., Nano. Lett., 2007, 7, 199;(k) Mao, S., Tao, H. Z., Zhao, X. J., Dong, G. P., J. Non-Cryst. Solids., 2008, 354, 1298.
    [19] (a) Li, H. L., Kim, J., Groy, T. L., O’Keeffe, M. Yaghi, O. M., J. Am. Chem. Soc., 2001, 123, 4867; (b) Zheng, N. F., Bu, X. H., Vu, H., Feng, P. Y., Angew. Chem. Int. Ed., 2005, 44, 5299.
    [20] (a) Li, H. L., Laine, A., O’Keefe, M., Yaghi, O. M., Science, 1999, 283, 1145; (b) Malliakas, C. D., Kanatzidis, M. G., Chem. Eur. J., 2007, 13, 51; (c) Wang, C., Li, Y. Q., Bu, X. H., Zheng, N. F., Zivkovic, O., Yang, C. S., Feng, P. Y., J. Am. Chem. Soc., 2001, 123, 11506.
    [21] (a) Rangan, K. K., Trikalitis, P. N., Kanatzidis, M. G., J. Am. Chem. Soc., 2000, 122, 10230; (b) Zheng, N. F., Bu, X. H., Wang, B., Feng, P. Y., Science, 2002, 298, 2366; (c) Zheng, N. F., Bu, X. H., Feng, P. Y., Nature, 2003, 426, 428; (d) Ding, N., Takabayashi, Y., Solari, P. L., Prassides, K., Pcionek, R. J., Kanatzidis, M. G., Chem. Mater., 2006, 18, 4690.
    [22] Stephan, H., Kanatzidis, M. G., J. Am. Chem. Soc., 1996, 118, 12226.
    [23] (a) Sheldrick, W. S., Wachhold, M., Coord. Chem. Rev., 1998, 176, 211; (b) Smith, D. M., Ibers, J. A., Coord. Chem. Rev., 2000, 200-202, 187; (c) Dehnen, S., Melullis, M., Coord. Chem. Rev., 2007, 251, 1259; (d) Mrotzek, A., Kanatzidis, M. G., Acc. Chem. Rev., 2003, 36, 111; (e) Chen, Z., Li, J., Proserpio, D. M., Huang, Z. X., Acta. Chimica. Sinica.(化学学报) 2000, 58, 835; (f)陈震,陈日耀,郑曦,兰瑞芳,林智虹,黄子祥,吴锵金,高等学校化学学报., 2001, 22, 1785; (g) Cahill, C. L., Parise, J. B., J. Am. Soc., Dalton, Trans., 2000, 1475; (h) Pitzschke, D., N?ther, C., Bensch, W., Solid. State Sciences., 2002, 4, 1167; (i) Bu, X. H., Zheng, N. F., Wang, X. Q., Wang, B., Feng, P. Y., Angew. Chem., 2004, 116, 1528.
    [24] Li, J., Chen, Z., Wang, R. J., Proserpio, D. M., Coord. Chem. Rev., 1999, 190-192, 707.
    [25] Pitzschke, D.; N?ther, C.; Bensch, W. Solid State Sciences., 2002, 4, 1167.
    [26] Zhou, J., Zhang, Y., Bian, G. Q., Zhu, Q. Y., Li, C. Y., Dai, J., Crystal Growth & design., 2007, 7, 1889.
    [27] (a) Li, J., Chen, Z., Emge, T. J., Yuen, T., Proserpio, D. M., Inorg. Chim. Acta., 1998, 273, 310; (b) Behrens, M., Scherb, S., N?ther, C., Bensch, W., Z. Anorg. All. Chem., 2003, 629, 1367; (c) St?hler, R., N?ther, C., Bensch, W., J. Solid. State. Chem., 2003, 174, 264; (d) St?hler, R., Bensch, W., J. Chem. Soc., Dalton. Trans., 2001, 2518., (e) Jia, D. X., Zhao, Q. X., Zhang, Y., Dai, J., Zuo, J. L., Inorg. Chem., 2005, 44, 8861; (f) Jia, D. X., Zhao, Q. X., Zhang, Y., Dai, J., Zhou, J., Eur. J. Inorg. Chem., 2006, 2760; (g) Zhou, J., Bian, G. Q., Dai, J., Zhang, Y., Tang, A. B., Zhu, Q. Y., Inorg. Chem., 2007, 46, 1541.
    [28] (a) Zheng, N. F., Bu, X. H., Feng, P. Y., J. Am. Chem. Soc., 2003, 125, 1138; (b) Wang, C., Bu, X. H., Zheng, N. F., Feng, P. Y., Chem. Commun., 2002, 1344.
    [29] (a) Sheldrick, W. S., Braunbeck, H. G., Z. Anorg. Allg. Chem., 1993, 619, 1300; (b) Zhou, J., Zhang, Y., Bian, G. Q., Jia, D. X., Dai. J., Inorg. Chem. Commun., 2007, 10, 348; (c) Ruzin, E., Zimmermann, C., Hillebrecht, P., Dehnen, S., Z. Anorg. Allg. Chem., 2007, 633, 820; (d) Almsick, T. V., Sheldrick, W. S., Z. Anorg. Allg. Chem., 2006, 632, 1413; (e) Schur, M., Nather, C., Bensch, W., Z. Naturforsch., Teil B., 2001, 56, 79; (f) Schur, M., Bensch, W., Z. Naturforsch., Teil B., 2002, 57, 1; (g) Schaefer, M., Engelke, L., Bensch, W., Z. Anorg. Allg. Chem., 2003, 629, 1912; (j) Spetzler, V., Rijnberk, H., Nather, C., Bensch, W., Z. Anorg. Allg. Chem., 2004, 630, 142; (h) Jia, D. X., Zhang, Y., Dai, J., Zhu, Q. Y., Gu, X. M., J. Solid. State. Chem., 2004, 177, 2477.
    [30] Vaqueiro, P., Inorg. Chem., 2006, 45, 4150.
    [31] Zhang, Q. C., Bu, X. H., Lin, Z. E., Biasini, M., Beyermann, W. P., Feng, P. Y., Inorg. Chem., 2007, 46, 7262.
    [32] Zhou, J., Dai, J., Bian, G. Q., Li, C. Y., Coord. Chem. Rev., 2009, 253, 1221.
    [33]董言治.安永林.辛剑,功能材料与器件学报, 2001, 7, 211.
    [34] (a) Coste, S., Kopnin, E., Evain, M., Jobic, S., Brec, R., Chondroudis, K., Kanatzidis, M. G., Solid. State. Science., 2002, 4, 709; (b) Chondroudis, K., Kanatzidis,M. G., J. Solid. State. Chem., 1998, 136, 79; (c) Hwang, S. J., Iyer, R. G., Trikalitis, P. N., Ogden, A. G., Kanatzidis, M. G., Inorg. Chem., 2004, 43, 2237.
    [35] (a) Manos, M. J., Iyer, R. G., Quarez, E., Liao, J. H., Kanatzidis, M. G., Angew. Chem. Int. Ed., 2005, 44, 3552; (b) Chondroudis, K., Kanatzidis, M. G., J. Solid. State. Chem., 1998, 136, 328.
    [36] Zheng, N. F., Bu, X. H., Feng, P. Y., J. Am. Chem. Soc., 2005, 127, 5286.
    [37] Zheng, N. F., Bu, X. H., Feng, P. Y., Angew. Chem. Int. Ed., 2004, 43, 4753.
    [38] Wang, C., Bu, X. H., Zheng, N. F., Feng, P. Y., J. Am. Chem. Soc., 2002, 124, 10268.
    [39] Zhang, Q. C., Bu, X. H., Han, L., Feng, P. Y., Inorg. Chem., 2006, 45, 6684.
    [40] Zheng, N. F., Bu, X. H., Feng, P. Y., J. Am. Chem. Soc., 2003, 125, 1138.
    [41] Li, H. L., Kim, J., O’Keeffe, M., Yaghi, O. M., Angew. Chem. Int. Ed., 2003, 42, 1819.
    [42] Bu, X. H., Zheng, N. F., Li, Y. Q., Feng, P. Y., J. Am. Chem. Soc., 2003, 125, 6024.
    [43] Bu, X. H., Zheng, N. F., Li, Y. Q., Feng, P. Y., J. Am. Chem. Soc., 2002, 124, 12646.
    [44] (a)白音孟和,刘新,纪敏,贾翠英,安永林,王德和,高等学校化学学报2004, 25, 7; (b) Park, C. W., Pell, M. A., Ibers, J. A., Inorg. Chem., 1996, 35, 4555; (c) Almsick, T., Loose, A. Sheldrick, W. S., Z. Anorg. Allg. Chem. 2005, 631, 21; (d) Jiang, T., Lough, A., Ozin, G. A., Adv. Mater. 1998, 10, 42; (e) Dehnen, S., Zimmermann, C., Z. Anorg. Allg. Chem. 2002, 628, 2463; (f) Shreeve-Keyer, J. L., Warren, C. J., Dhingra, S. S., Haushalter, R. C., Polyhedron 1997, 16,1193; (j) Wang, C.-C., Haushalter, R. C., Inorg. Chem.1999, 38, 595.
    [45] (a) Ahari, H., Garcia, A., Kirkby, S. J., Ozin, G. A., Young, D., Lough, A. J., J. Chem. Soc., Dalton Trans. 1998, 2023; (b) Bonhomme, C., Kanatzidis, M. G., Chem. Mater. 1998, 10,1153;(c) Wachhold, M., Kanatzidis, M G., Chem. Mater., 2000, 12, 2914.
    [46] Pitzschke, D., Bensch, W., Z. Anorg. Allg. Chem., 2003, 629, 2206.
    [47] (a) R. St?hler, B.?D. Mosel, H. Eckert, W. Bensch, Angew. Chem. Int. Ed.2002, 41, 4487; (b) R. St?hler, C. N?ther, W. Bensch, Eur. J. Inorg. Chem. 2001, 1835; (c) M. Schaefer, R. St?hler, W.-R. Kiebach, C. N?ther, W. Bensch, Z. Anorg. Allg. Chem. 2004, 630, 1816.
    [48] Ding, N., Kanatzidis, M. G., Chem. Mater., 2007, 19, 3867.
    [49] Vaqueiro, P., Romero, M. L., J. Am. Chem. Soc., 2008, 130, 9630.
    [50] Vaqueiro, P., Romero, M. L., Chem. Commun., 2007, 3282.
    [51] Vaqueiro, P., Romero, M. L., Inorg. Chem., 2009, 48, 810.
    [52] Dong, Y. J., Peng, Q., Wang, R. J., Li, Y. D., Inorg. Chem., 2003, 42, 1794.
    [53] Fehlker, A., Blachnik, R., Reuter, H., Z. Anorg. Allg. Chem., 1999, 625, 1225.
    [54] Li, J., Chen, Z., Emge, T. J., Proserpio, D. M., Inorg. Chem., 1997, 36, 1437.
    [55] (a) Zhao, Q. X., Jia, D. X., Zhang, Y., Song, L. F., Dai, J., Inorg. Chim, Acta., 2007, 360, 1895; (b) Jia, D. X., Zhu, A, M., Deng, J., Zhang, Y., Z. Anorg. Allg. Chem., 2007, 633, 1246.
    [56] Zhu, A. M., Jin, Q. Y., Jia, D. X., Gu, J. S., Zhang, Y., Eur. J. Inorg. Chem., 2008, 4756.
    [57] Almsick, T. V., Loose, A., Sheldrick, W. S., Z. Anorg. Allg. Chem., 2005, 631, 21.
    [58] Zhou, J., Bian, G. Q., Zhang, Y., Zhu, Q. Y., Li, C. Y., Dai, J., Inorg. Chem., 2007, 46, 6347.
    [59] Jia, D. X., Zhu, Q. Y., Dai, J., Lu, W., Guo, W. J., Inorg. Chem., 2005, 44, 819.
    [60] Zhou, J., Zhang, Y., Bian, G. Q., Li, C. Y., Chen, X. X., Dai, J., Crystal Growth & Design., 2008, 8, 2235.
    [61] (a)刘兴芝,司伟,丁超,广东有色金属学报,2004,14,118; (b)王树楷,中国工程科学,2008,10,85.
    [62] (a) Correspondence, Appl. Surf. Sci., 2008, 254, 5291; (b) Dutta, D. P., Sharma, G., Tyagi, A. K., Kulshreshtha, S. K., Mater. Sci. Eng. B., 2007, 138, 60.
    [63]庄大明,张弓,真空,2004,41,1.
    [1] a) Zheng, N. F., Bu, X. H., Vu, H., Feng, P. Y., Angew. Chem.Int. Ed., 2005, 44, 5299; b) Li, H., Eddaoudi, M., Laine, A., O’Keeffe, M., Yaghi, O. M., J. Am. Chem. Soc., 1999, 121, 6096; c) Manos, M. J., Malliakas, C. D., Kanatzidis, M. G., Chem. Eur. J., 2007, 13, 51; d) Ding, N., Takabayashi, Y., Solari, P. L., Prassides, K., Pcionek, R. J., Kanatzidis, M. G., Chem. Mater., 2006, 18, 4690; e) Rangan, K. K., Trikalitis, P. N., Kanatzidis, M. G., J. Am. Chem. Soc., 2000, 122, 10230.
    [2] Krebs, B., Voelker, D., Stiller, K., Inorg. Chim. Acta., 1982, 65, L101.
    [3] a) Chen, Z., Li, J., Chen, F., Proserpio, D. M., Inorg. Chim. Acta., 1998, 273, 255; b) Vaqueiro, P., J. Solid State Chem., 2006, 179, 302.
    [4] a) Li, J., Chen, Z., Emge, T. J., Proserpio, D. M., Inorg. Chem., 1997, 36, 1437; b) Wang, C., Haushalter, R. C., Inorg. Chem., 1997, 36, 3806.
    [5] a) Pitzschke, D., N?ther, C., Bensch, W., Solid State Sci., 2002, 4, 1167; b) Chen, X. A., Huang, X. Y., Li, J., Inorg. Chem., 2001, 40, 1341; c) Cahill, C. L., Parise, J. B., J. Chem. Soc., Dalton Trans., 2000, 1475; d) Zhang, Q. C., Bu, X. H., Han, L., Feng, P. Y., Inorg. Chem., 2006, 45, 6684; e) Bu, X. H., Zheng, N. F., Li, Y. Q., Feng, P. Y., J. Am. Chem. Soc., 2002, 124, 12646.
    [6] a) Wang, C., Bu, X. H., Zheng, N. F., Feng, P. Y., Chem. Commun., 2002, 1344; b) Cahill, C. L., Ko, Y., Parise, J. B., Chem. Mater., 1998, 10, 19; c) Wang, C., Bu, X. H., Zheng, Na. F., Feng, P. Y., J. Am. Chem., Soc. 2002, 124, 10268; d) Wang, C., Li, Y.Q., Bu, X. H., Zheng, N. F., Zivkovic, O., Yang, C. S., Feng, P. Y., J. Am. Chem. Soc., 2001, 123, 11506; e) Bu, X. H., Zheng, N. F., Li, Y. Q., Feng, P. Y., J. Am. Chem. Soc., 2003, 125, 6024.
    [7] Wang, C., Bu, X. H., Zheng, N. F., Feng, P. Y., Angew. Chem. Int. Ed., 2002, 41, 1959.
    [8] Zhou, J., Bian, G. Q., Zhang, Y., Zhu, Q. Y., Li, C. Y., Dai, J., Inorg. Chem., 2007, 46, 6347.
    [9] Zhou, J., Zhang, Y., Bian, G. Q., Zhu, Q. Y., Li, C. Y., Dai, J., Cryst. Growth Des., 2007, 7, 1889.
    [10] Gu, X. M., Dai, J., Jia, D., Zhang, Y., Zhu, Q. Y., Cryst. Growth Des., 2005, 5, 1845.
    [11] Zhou, J., Bian, G. Q., Dai, J.; Zhang, Y., Tang, A. B., Zhu, Q. Y., Inorg. Chem., 2007, 46, 1541.
    [12] a) Jia, D. X., Zhu, Q. Y., Dai, J., Lu, W., Guo, W. J., Inorg. Chem., 2005, 44, 819; (b) Jia, D. X., Zhao, Q. X., Zhang, Y., Dai, J., Zuo, J. L., Inorg. Chem., 2005, 44, 8861. (13) Zhou, J., Zhang, Y., Bian, G. Q, Li, C. Y., Chen, X. X., Dai, J., Cryst. Growth & Des., 2008, 8, .2235. (14) Zhang, Q., Bu, X., Lin, Z., Biasini, M., Beyermann, W. P., Feng, P., Inorg. Chem., 2007, 46, 7262. (15) a) Zheng, Y. Y., Saluja, S., Yap, G. P. A., Blumenstein, M., Rheingold, A. L., Francesconi, L. C., Inorg. Chem., 1996, 35, 6656; b) David, J. R., Yuan, D. C., Qin, C., Peter, B. K., Jon, Z., Inorg. Chem., 1995, 34, 3973; c) Mctekaitis, R. J., Martell, A. E., Koch, S. A., Hwang, J. W., Quarless, D. A., Welch, M. J., Inorg. Chem., 1998, 37, 5902. (16) a) Aullón, G., Bellamy, D., Brammer, L., Bruton, E. A., Orpen, A. G., Chem. Commun., 1998, 653; b) Brammer, L., Bruton, E. A., Sherwood, P., New J. Chem., 1999, 23, 965; c) Brammer, L., Bruton, E. A., Sherwood, P., Cryst. Growth Des., 2001, 1, 277. (17) a) Vaqueiro, P., Inorg. Chem., 2006, 45, 4150; b) Dong, Y. J., Peng, Q., Wang, R. J., Li, Y. D., Inorg. Chem., 2003, 42, 1794. (18) a) Sheldrick, W. S., Braunbeck, H. G., Z. Anorg. Allg. Chem., 1993, 619, 1300; b) Behrens, M., N?ther, C., Bensch, W., Z. Anorg. Allg. Chem., 2002, 628, 2160.
    (19) Wang, C., Haushalter, R. C., Chem. Commun., 1997, 1719.
    (20) Smith, D. M., Pell, M. A., Ibers, J. A., Inorg. Chem., 1998, 37, 2340.
    (21) a) Qasrawi, A. F., Opt. Mater., 2007, 29, 1751; b) Chang, K. J., Lahn, S. M., Xie, Z. J., Chang, J. Y., Uen, W. Y., Lu, T. U., Lin, J. H., Lin, T. Y., J. Cryst. Growth., 2007, 306, 283; c) Bindu, K., Kartha, C. S., Vijayakumar, K. P., Abe, T., Kashiuaba, Y., Appl. Surf. Sci., 2002, 191, 138; d) Asabe, M. R., Chate, P. A., Delekar, S. D., Garadkar, K. M., Mulla, I. S., Hankare, P. P., J. Phys. Chem. Solid., 2008, 69, 249; e) Pathan, H. M., Kulkarni, S. S., Mane, R. S., Lokhande, Mater. Chem. Phys., 2005, 93, 16.
    (1) a) Zheng, N., Bu, X., Wang, B., Feng, P., Science, 2002, 298, 2366; b)Bu, X., Zheng, N., Wang, X., Wang, B., Feng, P., Angew. Chem., Int. Ed., 2004, 43, 1502; c) Feng, P., Bu, X., Zheng, N., Acc. Chem. Chem. Res., 2005, 38, 293.
    (2) Vaqueiro, P., J. Solid. State. Chem., 2006, 179, 302.
    (3) Vaqueiro, P., Inorg. Chem., 2006, 45, 4150.
    (4) Dong, Y., Peng, Q., Wang, R., Li, Y., Inorg. Chem., 2003, 42, 1794.
    (5) Vaqueiro, P., Romero, M. L., J. Phys. Chem. Solids., 2007, 68, 1239.
    (6) Zheng, N., Bu, X., Feng, P., J. Am. Chem. Soc., 2003, 125, 1138.
    (7) a) Choudhury, A., Dorhout, P. K., Inorg. Chem., 2008, 47, 3603; b) Donahue, P. C., Hanlon, J. E., J. Electrochem. Soc., 1974, 121, 887; c) Guseinov, G. G., Mamedov, F.K., Amiraslanov, I. R., Mamedov. K. S., Kristallografiya., 1983, 28, 866.
    (8) Zhao, Q., Jia, D., Zhang, Y., Song, L., Dai, J., Inorg. Chim. Acta., 2007, 360, 1895.
    (9) a) Jia, D., Zhao, Q., Zhang, Y., Dai, J., Zuo, J., Inorg. Chem., 2005, 8861; b) Jia, D., Zhu, Q., Dai, J., Lu, W., Guo, W., Inorg. Chem., 2005, 44, 819.
    (10) a) Rouxel, J., Acc. Chem. Res., 1992, 25, 328; b) Li, J., Yolanda, L. Y., Macadams, L. A., Chem. Mater., 1996, 8, 598; c) Bensch, W., N?ther, C., Dürichen, P., Angew. Chem., Int. Ed., 1998, 37, 133; d) Fu, M., Guo, G., Cai, L., Zhang, Z., Huang, J., Inorg. Chem., 2005, 44, 184.
    (11) a) Franke, E. R., Sch?fer, H., Z. Naturforsch. B., 1972, 37, 1308; b) Hung, Y. C., Hwu, S. J., Acta Crystallogr., 1993, C49, 1588; c) Dhingra, S. S., Warren, C. J., Haushalter, R. C., Bocarsly, A. B., Chem. Mater., 1994, 6, 2376; d) Miller, D., Eulenberger, G., Hahn, H. Z., Anorg. Allg. Chem., 1973, 398, 207; e) Klee, W., Sch?fer, H. Z., Anorg. Allg. Chem., 1981, 479, 125.
    (12) a) Wang, C., Bu, X., Zheng, N., Feng, P., Angew. Chem. Int. Ed., 2002, 41, 1959; b) Manos, M. J., Malliakas, C. D., Kanatzidis, M. G., Chem. Eur. J., 2007, 13, 51; c) Vaqueiro, P., Inorg. Chem., 2008, 47, 20; d) Zheng, N., Bu, X., Feng, P., Nature, 2003, 426, 428; e) Li, H., Laine, A., O’Keeffe, M., Yahgi, O. M., Science, 1999, 283, 1145; f) Chen, Z., Li, J., Acta Chim. Sin., 2000, 58, 835; g) Feng, P. Y., Bu, X. H., Zheng, N. F., Acc. Chem. Res., 2005, 38, 293; h) Warren, C. J., Dhingra, S. S., Haushalter, R. C., Bocarsly, A. B., J. Solid. State. Chem., 1994, 112, 340; i) Li, J., Chen, Z., Emge, T. J., Proserpio, D. M., Inorg. Chem., 1997, 36, 1437; j) Zhou, J., Bian, G., Zhang, Y., Zhu, Q., Li, C., Dai, J., Inorg. Chem., 2007, 46, 6347; k) Zhou, J., Zhang, Y., Bian, G., Zhu, Q., Li, C., Dai, J., Cryst. Growth Des., 2007, 7, 1889.
    (13) Chen, Z., Li, J., Chen, F., Proserpio, D. M., Inorg. Chem. Acta., 1998, 273, 255.
    (14) Brechin, E. K., Harris, S. G., Parsons, S., Winpenny, R. E. P, Dalton Trans., 1997, 1665.
    (15) Ma, B. Q., Zhang, D. S., Gao, S., Jin, T. Z., Yan, S. H., Xu, G. X., Angew. Chem., Int. Ed., 2000, 39, 3644.
    (16) Valencia, L., Martinez, J., Macías, A., Bastida, R., Carvalho, R. A., Geraldes, C. F. G. C., Inorg. Chem., 2002, 41, 5300.
    (17) Ueda, K., Takafuji, K., Hiramatsu, H., Ohta, H., Kamiya, T., Hirano, M., Hosono, H., Chem. Mater., 2003, 15, 3692.
    (18) Springford, M., Proc. Phys. Soc., London, 1963, 82, 1020.
    (19) Suganuma, H., Hori, M., J. Radioanal. Nucl. Chem., 1999, 240, 841.
    (20) Lien, C. Y., Kao, H. C. I., Ling, D. C., Lu, H. H., Chen, J. M., Lee, J. M., Chin. J. Phys., 2005, 43, 629.
    (21) Chen, X., Huang, X. Y., Li, J., Inorg. Chem. 2001, 40, 1341.
    (22) Peranantham, P., Jeyachandran, Y. L., Viswanathan, C., Praveena, N. N., Chitra, P. C., Mangalaraj, D., Narayandass, Sa. K., Mater. Charact., 2007, 58, 756.
    [1]徐如人,庞文琴等编,《分子筛与多孔材料化学》,2004。
    [2] a) Bedard, R. L., Wilson, S. T., Vail, L. D., Bennett, J. M., Flanigen, E. M., in Zeolites: Facts, Figures, Future. Proceedings of the 8th International Zeolite Conference, eds. P. A. Jacobs and R. A. van Santen, Elsevier, Amsterdam, 1989, 375; b) Bedard, R. L., Vail, L. D., Wilson, S. T., Flanigen, E. M., US Pat. 4880761, 1989.
    [3] Chung, D., Hogan, T., Brazis, P., Lane, M. R., Kannewurf, C., Bastea, M., Uher, C., Kanatzidis, M. G., Science, 2000, 287, 1024.
    [5] a) Cheetham, A. K., Ferey, G., Loiseau, T., Angew. Chem., Int. Ed., 1999, 38, 3268; b) Scott, R. W. J., MacLachlan, M. J., Ozin, G. A., Curr. Opin. Solid State Mater. Sci., 1999, 4, 113.
    [6] a) Parise, J. B., Science, 1991, 251, 293; b) Cahill, C. L., Ko,Y., Parise, . B., Chem. Mater., 1998, 10, 19. c) Cahill, C. L., Parise, J. B., J. Chem. Soc., Dalton Trans., 2000, 1475; d) Li, H., Kim, J., Groy, T. L., O’Keeffe, M., Yaghi, O. M., J. Am. Chem.Soc., 2001, 123, 4867; e) Wang, C., Li, Y., Bu, X., Zheng, N., Zivkovic, O., Yang, C., Feng, P., J. Am. Chem. Soc., 2001, 123, 11506; f) Vaqueiro, P., Inorg. Chem., 2006, 45, 4150; g) Dong, Y., Peng, Q., Wang, R.., Li, Y., Inorg. Chem., 2003, 42, 1794.
    [7] Férey, G., Angew.Chem., Int.Ed., 2003, 42, 2576.
    [8] a) Li, H. Eddaouli, M., Laine, A. O’Keeffe, M., Yaghi, O. M., J. Am. Chem. Soc., 1999, 121, 6096; b) Li, H. Laine, A., O’Keeffe, M., Yaghi, O. M., Science, 1999, 283, 1145.
    [9] Krebs, B., Voelker, D.,Stiller, K. O., Inorg Chim. Acta., 1982, 65, L101.
    [10] Bu, X. H., Zheng, N. F., Wang, X. Q., Wang, B., Feng, P. Y., Angew. Chem. Int. Ed., 2004, 43, 1502.
    [11] Pitzschke, D., N?ther, C., Bensch, W., Solid. State. Science., 2002, 4, 1167.
    [12] Cahill, C. L., Gugliotta, B., Parise, J. B., Chem. Commun., 1998, 1715.
    [13] Bu, X. H., Zheng, N. F., Li, Y. Q., Feng, P. Y., J. Am. Chem. Soc., 2002, 124, 12646.
    [14] Wang, C., Bu, X. H., Zheng, N. F., Feng, P. Y., Angew. Chem. Int. Ed., 2002, 41, 1959.
    [15] Bu, X. H., Zheng, N. F., Li, Y. Q., Feng, P. Y., J. Am. Chem. Soc., 2003, 125, 6024.
    [16] Vaqueiro, P., Inorg. Chem., 2008, 47, 20
    [17] Zheng, N. F., Bu, X. H., Feng, P. Y., J. Am. Chem. Soc., 2003, 125, 1138.
    [18] Wang, C., Li, Y. Q., Bu, X. H., Zheng, N. F., Zivkovic, O., Yang, C. S., Feng, P. Y., J. Am. Chem. Soc., 2001, 123, 11506.
    [19] Dong, Y. J., Peng, Q., Wang, R. J., Li, Y. D., Inorg. Chem., 2003, 42, 1794.
    [20] Fehlker, A., Blachnik, R., Reuter, H., Z. Anorg. Allg. Chem., 1999, 625, 1225.
    [21] Zhou, J., Zhang, Y., Bian, G. Q., Zhu, Q. Y., Li, C. Y., Dai, J., Crystal Growth & design., 2007, 7, 1889.
    [22] Zhou, J., Bian, G. Q., Zhang, Y., Zhu, Q. Y., Li, C. Y., Dai, J., Inorg. Chem., 2007, 46, 6347.
    [23] Feng, P. Y., Bu, X. H., Zheng, N. F., Acc. Chem. Res., 2005, 38, 293.
    [24] Weszka, J., Daniel, P., Burian, A., Burian, A. M., Nguyen, A. T., J. Non-Cryst. Solids., 2000, 265, 98.
    [25] a) Kambas, K., Julien, C., Likforman, A., Guittard, M., Phys. Stat. Sol., 1984, b124, K105; b) Emery, J. Y., Julien, C., Jouanne, M., Balkanski, M., Appl. Surf. Sci., 1988, 619, 33; c) Gopal, S., Viswanathan, C., Karunagaran, B., Narayandass, S. K., Mangalaraj, D., Yi, J., Cryst. Res. Technol., 2005, 40, 557; d) Marsillac, S., Marie, C. A. M., Bernède, J. C., Conan, A., Thin. Solid. Film., 1996, 288, 14.
    (1) a) Srivastava, S. K., Pramanik, M., Palit, D., Mathur, B. K., Kar, A. K., Samanta, R. B. K. Haeuseler, H., Cordes, W., Chem. Mate., 2001, 13, 4342; b) Zheng, N. F., Bu, X. H., Feng, P. Y., J. Am. Chem. Soc., 2003, 125, 1138; c) Zheng, N. F., Bu, X. H., Feng P. Y., Nature., 2003, 426, 428; d) Wang, C., Li,Y. Q., Bu, X. H., Zheng, Na. F., Zivkovic, O., Yang, C. S., Feng, P. Y., J. Am. Chem. Soc., 2001, 123, 11506; e) Wang, C., Bu, X. H., Zheng, N. F., Feng, P. Y., J. Am. Chem. Soc., 2002, 124, 10268; f) Bu, X. H., Zheng, N. F., Li, Y. Q., Feng, P. Y., J. Am. Chem. Soc., 2002, 124, 12646; g) Bu, X. H., Zheng, N. F., Li, Y. Q., Feng, P. Y., J. Am. Chem. Soc., 2003, 125, 6024.
    (2) a) Li, H., Kim, J., O'Keeffe, M., Yaghi, O. M., Angew. Chem. Int. Ed., 2003, 42, 1819; b) Li, H., Kim, J., Groy, T. L., O’Keeffe, M., and Yaghi, O. M., J. Am. Chem. Soc., 2001, 123, 4867; c) Wang, C., Li, Y. Q., Bu, X. H., Zheng, N. F., Zivkovic, O., Yang, C. S., Feng, P.Y., J. Am. Chem. Soc., 2001, 123, 11506; d) Vaqueiro, P., Romero, M. L., J. Phys. Chem. Solids., 2007, 68 1239.
    (3) a) Vaqueiro, P., Inorg. Chem., 2006, 45, 4150; a) Zhou, J., Bian, G. Q., Zhang,Y., Zhu, Q. Yu., Li, C. Y., Dai, J., Inorg. Chem., 2007, 46, 6347; c) Zhou, J., Zhang, Y., Bian, G. Q., Li, C. Y., Chen, X. X., Dai, J., Crystal Growth & Design., 2008, 8, 2235; d) Zhou, J., Zhang, Y., Bian, G. Q., Zhu, Q. Y., Li, C. Y., Dai, J., CrystalGrowth & design., 2007, 7, 1889.
    (4) a) Baleiz?o, C. Nagl, S. Sch?ferling, Berberan-Santos, M. M. N. Wolfbeis, O. S., Anal. Chem., 2008, 80, 6449–6457; b) Jiang,Y.X., Fang, X. H., Bai, C. L., Anal. Chem., 2004, 76,5230-5235; C) Han, B. H., Manners,L. Winnik, M. A., Anal. Chem., 2005, 77,8075-8085; d) Wang, J., Jiang, Y. X., Zhou, C. S., Fang, X. H., Anal. Chem., 2005, 77,3542-3546; e) Fuller, Z. J., Bare, W. D., Kneas, K. A., Xu, W. Y., Demas, J. N., DeGraff, B. A., Anal. Chem., 2003, 75,2670-2677
    (5) a) Gladiali, S., Chelucci, G., Delogu,G., Chessa, G., Soccolini, F., J. Organomet. Chem., 1989, 370, 285; b) Gladiali, S., Pinna, L., Delogu, G., De Martin, S., Zassinovich, G., Mestroni, G., Tetrahedron Asym., 1990, 1, 635; c)Lehn, J., Ziessel, M, J. Organomet. Chem., 1990, 382, 157; d) Weijnen, J. G. J., Koudijs, A., Schellekens, G. A., Engbersen, J. F. J., J. Chem. Soc. Perkin Trans. 2., 1992, 829; e)Beer, R. H., Jimenez, J., Drago, R. S. J. Org. Chem., 1993, 58, 1746;f) Schmittel, M., Ammon, H., Chem. Commun. ,1995, 687.
    (6) Sigman, D. S., Acc. Chem. Res., 1986 , 19, 180.
    (7) Schmittel, M., Ammon, H., W?hrle, C., Chem. Ber., 1995, 128, 845.
    (8) a) Berlinguette, C. P., Andrasi, A. D., Sieber, A., Gudel, H. U., Achim, C., Dunber, K. R., J. Am. Chem. Soc., 2005, 127, 6766; b) Zheng, N. F., Lu, H. W., Bu, X. H., Feng, P. Y., J. Am. Chem. Soc., 2006, 128, 4528; c) Miller, M. T., Gamzel, P. K., Karpishin, T. B., Inorg Chem., 1999, 3414; d)甄启雄,叶保辉,刘劲刚,计亮年,王雷.,高等学校化学学报, 1999 ,20, 1661; e) Amouyal, E., Homsi, A., Chambron, J. C., Sauvage, J. P., J Chem Soc Dalton Trans., 1990. 1841 1845; f) Toyota, S., Woods, C. R., Benaglia, M., Siegel, J. S., Tetrahedron Lett., 1998, 2697; g) Colasson, B. X., Sauvage, J. P., Inorg. Chem., 2004, 43, 1895; h) Hamelin, O., Pecaut, J., Fontecave, M., Chem. Eur. J., 2004, 10, 2548; i) Baranoff, E., Collin, J. P., Furusho, Y., Laemmel, A. C., Sauvage, J. P., Inorg. Chem., 2002, 41, 1215.
    (9) a) Balzani, V., Juris, A., Venturi, M., Campagna, S., Serroni, S., Chem. Rev., 1996, 96, 759; b) Balzani, V., Ceroni, P., Juris, A., Venturi, M., Puntariero, F., Campagna, S., Serroni, S., Coord. Chem Rev, 2001, 219–21, 545; c) Demadis, K. D., Hartshorn, C. M., Meyer, T. J., Chem. Rev., 2001, 101, 2655; d) Brunschwig, B. S.,Creutz, C., Sutin, N., Chem. Soc. Rev., 2002, 31, 168; e) Coe, B. J., Houbrechts, S., Asselberghs, I., Persoons, A., Angew. Chem., Int. Ed., 1999, 38, 366; f) Coe, B. J., Chem. Eur. J., 1999, 5, 2464; g) Gratzel, M., O’Regan, B., Nature, 1991, 353, 737; h) Hagfeldt, A., Gratzel, M., Chem. Rev., 1995, 95, 49; i) Chichak, K., Branda, N. R., Chem. Commun., 2000, 1211; j) Chichak, K., Jacquemard, U., Branda, N. R., Eur. J. Inorg. Chem., 2002, 357; k) Sun, S. S., Lees, A. J., Inorg. Chem., 1999, 38, 4181; l) Sun, S. S., Lees, A. J., Inorg. Chem., 2001, 41, 3154; m) Erkkila, K. E., Odom, D. T., Barton, J. K., Chem. Rev., 1999, 99, 2777.
    (10) A. Kromm, W.S. Sheldrick, Z. Anorg. Allg. Chem. 2008, 634, 225; b) Wang, Xin., Sheng, Tian-Lu., Hu, S. M., Fu, R. B., Chen, J. S., Wu, X. T., J. Solid State Chem., 2009, publishing.
    (11) Messeri, T., Sternbach, D. D., Tomkinson, N. C. O., Tetrahedron Lett., 1998, 39 1673.
    (12) Correspondence, Appl. Surf. Sci., 2008,254, 5291.
    (13) a) Datta, A., Panda, S. K., Ganguli, D., Mishra, P., Chaudhuri, S., Crystal Growth & Design., 2007, 7, 163; b) Xiong, Y. J., Xie, Y., Du, G. A., Tian, X. B., Qian, Y. T., J. Solid State Chem., 2002, 166, 336.
    (14) Li, Y., Zhang, Z. X., Fang, F. Y., Song, W. D., Li, K. C., Miao, Y. L., Gu, C. S., Pan, L. Y., J. Mol. Struct., 2007, 837, 269.