金属氧化物直接制备难熔金属及合金的新工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有难熔金属及合金的制备工艺复杂、成本高、污染环境。因此,开发一种流程短、成本低且对环境友好的金属制备方法是研究者共同的目标。本文回顾并总结了金属钽、铬、钛及钛合金的制备方法,分析其相关工艺的特点,利用固体透氧膜(SOM)法对金属氧化物直接制备难熔金属及合金进行了研究。
     SOM法以固体透氧膜管内碳饱和的铜液为阳极,在所选择的熔盐中对氧化物阴极进行电解还原。只传导氧离子的固体透氧膜管将阳极与熔盐隔离开,因膜管对离子的选择性作用,使得参与阳极反应的阴离子只有O2-,通过控制电极电位保证特定金属离子在阴极选择性析出,参与电解反应的是金属氧化物而非其它物质。
     论文对熔盐性质、透氧膜的稳定性、阴极制备、电解影响因素及电解机理等方面进行了研究,并利用三相界面反应机制描述了SOM法的电化学过程。
     对熔盐的物性研究表明,1100℃下,55.5MgF2-44.5CaF2(wt%)熔盐挥发率小于5.4×10-7g/cm2·s,粘度为11.8 mPa·s,电导率为5.2 S·cm-1;CaCl_2熔盐的挥发率为1.9×10-6g/cm2·s,粘度为3.4mPa·s,电导率为3.6 S·cm-1;两类熔盐的粘度和挥发率低、电导率高,满足实验要求。
     在不同掺杂比例下,对自制的固体透氧膜管研究表明,8%mol Y_2O_3部分稳定的ZrO2管结构致密,光洁度好,具有良好的电性能,在1000~1300℃电导率为0.18~0.47S?cm-1,实验过程电化学性质稳定。
     对阴极制备及电解影响因素的研究表明,在4MPa的成型压力下,经1100~1150℃烧结2小时的Ta_2O_5和Cr_2O_3片均具有良好的电化学活性;电解2小时阴极产物中的氧含量可达到较低值;随着电解时间延长,金属颗粒会发生异常长大;当电解温度小于1100℃时,还原速度会急剧降低。若烧结温度升高到1300℃,电解Ta_2O_5试样出现致密的内核,而电解Cr_2O_3试样出现金属外壳。在产物具备一定强度的前提下,Ta_2O_5阴极的孔隙率和颗粒尺寸的合理范围为30~40%和0.6~1.0μm。Cr_2O_3阴极的孔隙率和颗粒尺寸的合理范围为40~50%和≤1.0μm。
     对SOM法与FFC法制备金属铬进行了实验对比。结果表明,SOM法具有较高的过电位,还原速度快,电流效率高,不会发生副反应。当电压从3.0V升到3.5V时,反应速度理论上提高7.7倍。
     利用遵义钛厂提供的含钛废渣进行了制备钛及其合金的研究。电解铁钛废渣,可获得TiFe和TiFe2合金;电解高钛废渣,可获得纯的金属钛。
     分析了体系中的离子迁移行为,研究了SOM法的电解机理,结果表明Ta2O5和Cr2O3电极的还原均分两步完成,Ca参与阴极还原是有利的,形成的中间产物寿命极短。通过分析试样内三相界线的分布及三相界线对电流的影响,证明了SOM法的还原过程符合三相界面反应机制。
     SOM法金属氧化物直接制备金属及合金,工艺流程短,能耗低,绿色环保,可以实现连续化生产,该冶金新工艺的开发对我国各类复合矿的开发利用具有重要的意义。
The existing pyrometallurgical process to prepare refractory metals and their alloys is complex, expensive, energy intensive and probably polluting. Therefore, it is common desirable to develop a simple, low-cost and environmentally sound process to prepare metal. The paper reviewed and summarized the methods for preparation of Ta, Cr, Ti and Ti alloy and analyzed their shortages. As a result, extracting of refractory metals and alloys from their respective oxides directly using SOM (Solid Oxide Membrane) process have been investigated.
     The electrolysis reduction of oxides cathode is performed by SOM process in the selective molten salt, which liquid copper, saturated with graphite powders and encased in a one-end-closed solid oxide membrane tube, acted as the anode. The anode and the molten are separated by SOM which conducts oxygen ion only. As a result, only oxygen ions are oxidezed at the anode. The desired metal cations are reduced selectively at the cathode through control the electrode potential. Therefore, only metallic oxides take part in electrolytic reaction.
     The property of the fluxes, the stability of solid oxide membrane, the formation of cathode pellets, the parameter of electrolysis and the electrolytic mechanism are studied in this paper respectively. And the electrochemical reduction mechanism of SOM process was depicted by using the three-phase interlines react mechanism. The study for property of the fluxes showed that the volatility, viscosity and conductivity of the molten 55.5MgF2-44.5CaF2(wt%) are less than 5.4×10-7g/cm2·s, 11.8mPa·s and 5.2 S·cm-1, and of the molten CaCl2 are 1.9×10-6g/cm2·s, 3.4mPa·s and 3.6S·cm-1, respectively. The two fluxes have high conductivity, low viscosity and volatility, which can satisfy the demand of experiment.
     The study for membrane tube with self made at different doping showed that the 8%mol Y2O3 stabilized ZrO2 tube has compact microstructure, good smooth finish and electro properties. The conductivity is between 0.18 and 0.47S?cm-1 at the temperature of 1000℃to 1300℃. The electrochemical property of the cell system kept stability in the course of experiment.
     The Ta2O5 and Cr2O3 pellets formed at 4 MPa and sintered at 1100~1150℃for 2 hours exhibited good electrochemical performance and the oxygen content of the products were low after electrolyzing for 2 hours at 1100℃. The metallic particles could increase obviously with electrolytic time. However, the rate of reaction declined rapidly, when the electrolytic temperature was lower than 1100℃. When the sintering temperature increase to 1300℃, the compact core has been shown in electrolyzed Ta2O5 samples, but the compact crust was occurred in the Cr2O3 samples. Under the premise of electrolysis samples with strength, it is suggested that rational range of the porosity and particle size of Ta2O5 cathode should be 30 to 40% and 0.6 to 1.0μm, and of Cr2O3 cathode should be 40 to 50% and less than 1.0μm, respectively.
     Ti and Ti alloy directly made from Titaniferous residue (Zunyi titanium plant) in the molten CaCl2 (1100℃) has been investigated by SOM process. The results showed that the alloys of TiFe and TiFe2 were obtained from Ti-Fe residue, the pure Ti was obtained from titanium-rich residue after electrolyzed for 6 hours respectively.
     The ionic migration action and the electrolytic mechanism during the operating of SOM process are investigated. The results showed that the electrochemical reduction of Ta2O5 and Cr2O3 pellets in molten CaCl2 are achieved via two steps. The reaction with Ca participated in is beneficial to reduction of cathode pellets, which the intermediate products are conductive with very short life. The distributing of three-phase boundary inside of pellets and the influence of three-phase boundary on current are dicussed. Which proved the electrochemical reduction of the SOM process obeys the three-phase interlines (3PIs) reaction mechanism at the metal/oxide/electrolyte interface.
     SOM process is an emerging short-flow technology for extraction of metals directly from their oxides, which is environmentally friendly, less energy cost, and operating continuously. The development of SOM process as a new metallurgy technology has significance for exploitation and utilization with different composite ore resource in China.
引文
[1]郭青蔚,稀有高熔点金属的应用及展望[J],世界有色金属, 1999(4):57-61
    [2]杨遇春,难熔金属二次资源的加工[J],有色金属再生与利用, 2004(3):10-12
    [3]《有色金属提取冶金手册》编辑委员会,有色金属提取冶金手册—稀有高熔点金属(下)[M],北京,冶金工业出版社, 1999:171.
    [4]葛启录,周武平,陈伟,加入WTO后我国难熔金属工业发展浅析[J],粉末冶金工业, 2003, 13(1):40-45
    [5]涂春根,我国钽原料工业的战略思考[J],有色金属, 2005(3):7-12
    [6] John Linden, Tantalum:Raw Material Supply [J],TIC Bull,2001, 105:1-6
    [7]《The Economics of Tantalum》8th Edition 2002 P2 Roskill Information Services Ltd.27a Leopold Road,London SW19 7BB.UK.ISBN 086214862-6
    [8]余仔烨,余毅骏.“外星”金属钛、锆、钽[J],稀有金属快报, 2004, 23(10):31-32
    [9]余天桃.父女元素-钽和铌[J].化学世界, 2003, 168-170
    [10]陈永生,东方钽业公司研究报告,2004
    [11]吴铭等,钽、铌冶金工艺学[M],北京:中国有色金属丁业总公司职工教育教材编审办公室, 1986,163
    [12]何季麟,钽铌工业的进步与展望[J],稀有金属, 2003, 27(1):23-25
    [13] Yuri P, Critical oxygen contents in porous anodes of solid tantalum capacitors [J]. J Mat Sci, 1998, (9):98-106
    [14] He Jilin, Pan Lutao, Lu zhenda. Observations on morphology and modifications to physical property of sodium reduced tantalum powders[C]. Presented at the 41st TIC Meeting, San Francisco, 2000
    [15] Millman W A, Gill J, Reynolds C, Tantalum and niobium technology roadmap[A], Proceedings of 22th Capacitor and Resistor Technology Symposium[C], 2002
    [16] Gupta C K,Jena P K, Journal Less—Common Met[J], 1965, (8):90-98
    [17] Park L, Okabe T.H, Waseda Y, J. Alloys Compounds, 280 (1998) 265-272.
    [18] Yoo S.H, Sudarshan T.S, Sethuram K, Subhash G, Dowdind R.J, Nanostructured Materials, 1999 (12):23–28.
    [19] Millman W.A, et al, Tantalum and Niobium Technology Roadmap[C],22th Capacitor and Resistor Technology Symposium, USA, 2002.
    [20]欧阳一凤,李荐,姜翠玲,钟海云,刘建清,王德全,钽、铌电解电容器工艺研究进[J],稀有金属与硬质合金, 2003,31(4),33-37
    [21]何季林,张宗国,徐忠亭,中国钽铌湿法冶金[J],稀有金属材料与工程, 1998, 27(1):9-13
    [22] Krishnamurthy N, Venkatnramani R, Garg S.P, Refining of tantalum by carbon deoxidation, J,Less Common Metals, 1984(97):51-58
    [23] Kock.W, and Paschen,P, Tantalum processing, properties and applications, J, Metals, 1989(41):33-39
    [24] Wilhelm.H.A, Bergmen.R.A, and Schmidt.R.A, Tantalum metal by bomb reduction of Ta2O5, 1970(22):1-5
    [25] Kamat G.R, Mukherjee T.K, and Grpota C.K, Preparation of tantalum by fluoride electrolysis, Trans, Indian Inst. Met, 1971(24):55-61
    [26] Isayuki Horio, et a1, Development of Tantalum and Niobium Powder Production, Metallurgical review of MMIJ, 2000, 17(1): 32-41
    [27] Bose D.K, Pyrometallurgy of niobium, tantalum and vanadium, Miner. Proe. and Ext. Review, 1992, 10:217-237
    [28] Nair K.U, Mukherjee T.K, Gupta C.K, Production of tantalum metal by the aluminothermic reduction of tantalum pentoxide, J, of Less Common Metals, 1975(41):87-95
    [29] Reichert K,et al, Production of niobium and tantalum powders[P], DE Pat:19831280,200001-20.
    [30] Oda Yukio,et al, Tantalum powder, niobium powder their manufacture,and capacitor anodes[P], JP Pat:2000226607, 2000-08-15
    [31]周进华,铁合金生产技术[M],北京:科学出版社, 1991.136
    [32]杜春林,中国铬矿资源2010年保证程度与前景[J],地质与勘探, 1997(2):8
    [33]陈津,王社斌,林万明,张猛,赵晶, 21世纪中国铬业资源现状与发展[J],铁合金,2005,1(181):39-43
    [34] Efimov E.A, Chernykh V.V, Electroplating with Chromium–Cobalt Alloy[J],Protection of Metals, 2001, 4(37):396–397
    [35] Handbook of Extractive Metallurgy, Habashi F, edi, Wiley-VCH, Weinheim, 1997, (4):1761-1811
    [36]阎江峰等,铬冶金[M],北京,冶金工业出版社, 2007.2
    [37] Sully A.H, Brandes E.A, Chromium, 2nded, Butterworth and Co, London,1967
    [38] N.P.Lyakishev and M.I.Gasik: Metallurgy of Chromium, Allerton Press, New York, NY, 1998
    [39]段传宝.国内外钛工业发展状况概述[J],上海钢研, 2003(01): 39-42
    [40] Kroll W J, The production of ductile titanium, Trans.Am. Electrochem. SOC, 1940, 78: 35
    [41]张健,吴贤,国内外海绵钛生产工艺现状[J],钛工业进展, 2006,( 23)2: 7-14
    [42]余代权,四氯化钛生产中废渣的回收利用实践[J],钛工业进展, 2002(1)42-46
    [43]余代权,钛生产中含钛废渣的电炉熔炼回收利用研究与实践[J],轻金属,2001(8):45-48
    [44]江虹,氯化炉渣的电炉熔炼回收利用[J],轻金属, 2001(5):46-48
    [45] Faller K, Froes F H. The Use of Titanium in Family Automobiles: Current Trends [J], Journal of Metals, 2001, 53(4): 27-28
    [46]文华里.世界钛生产技术与钛用途开发新动向[J],轻金属, 1997 (8):4-7
    [47]邓炬,正在崛起的中国钛工业[J],稀有金属快报,2007(6):1-6
    [48]王向东,郝斌,逯福生,贾翃,马云风,钛的基本性质、应用及我国钛工业概况[J],钛工业进展, 2004(1):6-10
    [49] Chen G.Z, Fray D.J, Farthing T.W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride [J]. Nature, 2000, 407(21):361-363.
    [50]Yan XY, Fray DJ, Production of niobium powder by direct electrochemical reduction of solid Nb2O5 in a eutectic CaCl2-NaCl melt, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2002(33):685-693
    [51] Yan XY, Fray DJ, Using electro-deoxidation to synthesize niobium sponge from solid Nb2O5 in alkali-alkaline-earth metal chloride melts, Journal of Materials Research, 2003 (18): 346-356
    [52] Yan XY, Fray DJ, Electrochemical studies on reduction of solid Nb2O5 in molten CaCl2-NaCl, Journal of the electrochemical society, 2005 (152):12-21
    [53] Chen G.Z, Gordo E, Fray D.J, Direct electrolytic preparation of chromium powder, Metallurgical and Materials Transactions B: 35, 2004(2): 223-233.
    [54] Elena Gordo, George Z. Chen, Derek J. Fray,Toward optimisation of electrolytic reduction of solid chromiumoxide to chromium powder in molten chloride salts,Electrochimica Acta 49 (2004) 2195–2208
    [55] Chen G Z,Fray D J,Farthing T W, Cathodic deoxygenation of the alpha case on titanium and alloys in molten calcium chloride[J].Metallurgical and Materials Transactions B, 200l(32):104l-1052.
    [56] Schwandt C, Fray D.J,Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride,Electrochimica Acta 51 (2005):66-76
    [57]Okabe T.H, Deura T.N, Oishi T., Ono K, Sadoway D.R, Electrochemical deoxidation of yttrium-oxygen solid solutions, Journal of Alloys and Compounds, 237, 1996(1-2):150-154
    [58] Jin X, Gao P, Wang D, Hu X, Chen G.Z, Electrochemical Preparation of Silicon and its Alloys from Solid Oxides in Molten Calcium Chloride[J],(2004) Angewandte Chemie - International Edition, 43 (6) 733-736.
    [59]李颖君,王淑兰,钟和香等,电化学还原TiO2反应机理及电极电势的研究[J],有色金属, 2003, 55(4):68-70
    [60] Wang Shulan, Li Yingjun, Reaction Mechanism of Direct Electro-reduction of Titanium Dioxide in Molten Calcium Chloride [J]. Journal of Electro analytical Chemistry, 2004( 571):37-40
    [61] Qian Xu, Li-Qin Deng, Yan Wu, Tao Ma,A study of cathode improvement for electro-deoxidation of Nb2O5 in a eutectic CaCl2–NaCl melt at 1073K,Journal of Alloys and Compounds 396 (2005) 288–294
    [62]胡小锋,许茜,李海滨,马青梅,电脱氧法制备金属钽的影响因素分析[J],中国稀土学报,2006(24): 261-270
    [63]刘美凤,郭占成,卢维昌. TiO2直接电解还原过程的研究[J].中国有色金属学报,2004,14(10):1752-1758
    [64]郭胜惠,彭金辉,张世敏等, CaCl2体系电解还原TiO2制取钛的研究[J].稀有金属, 2004,28(6):1092-1094
    [65]杜继红,奚正平,李晴宇,李争显,唐勇,电化学还原TiO2制备金属钛及反应过程的研究[J],稀有金属材料与工程, 2006,35(7)1045-1049
    [66]扈玫珑,白晨光等,钛金属制备方法的研究[J],科学导报, 2005(5)418-421
    [67] Ono K,Suzuki RO, A new concept for producing Ti sponge:Calciothermic reduction [J], JOM, 2002, 54(2):59-61
    [68] Suzuki RO,Teranuma K,Ono K, Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaC12[J], Metallurgical and Materials Transactions B, 2003, 34B:287-295.
    [69] Suzuki RO,Inoue H.Calciothermic reduction of titanium oxide in molten CaCI2[J], Metallurgical and Materials Transactions B, 2003, 34B:277-285
    [70] Suzuki RO, Ono K, OS process thermochemical approach to reduce titanium oxide in the molten CaCl2(C)Yazawa International Symposium: Metallurgical and Materials Processing, 2003(3)187-199.
    [71] Masahiko Baba, Youhei Ono, Ryosuke O. Suzuki,Tantalum and niobium powder preparation from their oxides by calciothermic reduction in the molten CaCl2,Journal of Physics and Chemistry of Solids 66 (2005) 466–470
    [72] Okabe T.H, Oda T, Mitsuda Y,“Titanium powder production by perform reduction process”, 10th World Conference on Titanium, Hamburg, Germany, Huly15,2003
    [73] Tanaka J, Okabe TH, Sakai N, New titanium production process with molten salt mediator [J] . Journal of the Japan Institute of Metals, 2001, 65(8): 659-667.
    [74] Park Il, Okabe TH, Waseda Y,Tantalum powder production by magnesiothermic reduction of TaCl5 through an electronically mediated reaction (EMR),Journal of Alloys and Compounds 280 (1998) 265–272
    [75]Okabe TH, Park Il, Jacob KT, Production of niobium powder by elect- ronically mediated reaction (EMR) using calcium as a reductant, Journal of Alloys and Compounds 288 (1999):200-210.
    [76] Uda T, Okabe T H, Waseda Y, et al. Phase Equilibria and Thermodynamics of the System Dy-Mg-Cl at 1073K, Journal of Alloys and Compounds, 1999, 284(1-2): 282-288
    [77] Gerdemann S J. Titanium process technologies [J]. Advances Materials & Processes, 2001,159 (7) : 41 43.
    [78] Kraft E H, Opportunities for Low Cost Titanium in Reduced Fuel Consumption, Improved Emissions, and Enhanced Durability Heavy-duty Vehicles[R].Washington: EHK Technologies, 2002. 31-38
    [79] Ottensmeyer R, Plath PJ,“A new process for production of titanium,”10th World Conference on Titanium, Hamburg, Germany, July 14, 2003
    [80] Summary of emerging low cost technologies for US Dept. of Energy/Oak Ridge National Laboratory
    [81]Chung-Seok SEO, Sang-Mun JEONG, Sung-Bin PARK, Jin-Young JUNG, Seong-Won PARK, Preparation of Tantalum Powder from Ta2O5 by an Electrochemical Reduction in an LiCl-Li2O Molten Salt System,[J] Journal of Chemical Engineering of Japan, 2006,39(1):77-82
    [82] Sang Mun Jeong , Hui Yong Yoo, Jin-Mok Hur, Chung-Seok Seo,Preparation of metallic niobium from niobium pentoxide by an indirect electrochemical reduction in a LiCl-Li2O molten salt, Journal of Alloys and Compounds xxx (2007): 4-8
    [83] David E. Wolly, Uday B Pal. and George B. Kenney,“SOM Technology for Direct Reduction of Magnesium from Its Oxide,”In Proc. Symp, Magnesium, Nashville, TN, TMS Annual Meeting, 2000:405.
    [84] Uday B Pal, David E Wolly and George B Kenney,“Emerging SOM Technology for the Green Synthesis of Metals from Oxides,”JOM, 2001, 53(10):32-35.
    [85] Pal.U.B,Emerging technologies for metals production[J],JOM,2001,53(10)25
    [86] Uday B Pal,David E Wolly, Ajay Krishnan and Timothy J. Kenney,“Solid Oxide Oxygen-Ion-Conducting Membrane Technology for Green Synthesis of Magnesium form Its Oxides,”Magnesium Technology 2002, ed. Howard Kaplan, TMS Publication, 2002:19-24.
    [87] Manning.C.P, Krishnan.A, Pal.U.B, Zironia-based inert anodes for green synthesis of matals and alloys, Conference Paper, Yazawa International Symposium, 2003(3),351-364
    [88] Krishnan A, Pal UB, Lu XG., Solid oxide membrane for Magnesium production directly from magnesium oxide[J], Metallurgical and Materials Transactions B,2005,36(4):463-473
    [89]鲁雄刚,周国治,丁伟中,蒋国昌,徐匡迪,带电粒子流控制技术在冶金过程中的应用及前景[J].钢铁研究学报,2003, 15(5):69-73
    [90]刘建民,鲁雄刚,李谦,陈朝轶,程红伟,周国治. SOM法还原TiO2制备金属钛的研究.魏寿昆院士百岁寿辰纪念文集/北京科技大学编.-北京:科学出版社,2006,292-298. ISBN7-03-017699-5
    [91]程红伟,鲁雄刚,李谦,刘建民,丁伟中,周国治.固体透氧膜法制备金属钽[J],金属学报.2006, 42(5):500-504
    [92] Ajay.Krishnan, Solid Oxide Membrane Process for The Direct Reduction of Magnesium from Magnesium Oxide[D],Boston University, US,2006,25-49
    [93] Masahiko Baba, Ryosuke O. Suzuki,Dielectric properties of tantalum powder with broccoli-like morphology[J],Alloys and Compounds 392 (2005) 225-230
    [94]邓丽琴,熔盐电脱氧法制备金属Nb及Nb-Ti合金[D],东北大学博士学位论文,2006.1
    [95]吴小松,电化学还原提取金属钛的阴极制备及行为研究[D],西安建筑科技大学,2007.6
    [96]马红萍,袁森等,预制体气孔率测试及其影响因素的研究[J],热加工工艺,2002(3):38-40
    [97] Oberg KE, Boorstein WM, Rapp RA, The diffusivity and solubility of oxygen in liquid copper and liquid silver from electrochemical measurements, Metallurgical and Materials Transactions B, 1973 (4): 61-67
    [98]周小红,施汉昌,何苗,采用微电极测定溶解氧有效扩散系数的研究[J],环境科学,2007, 28(3):558-562
    [99]张明杰,熔盐电化学原理与应用[M],北京,化学工业出版社,2006.9:3
    [100]李洪桂,稀有金属冶金原理及工艺[M],北京,冶金工业出版社,1981,272-345
    [101]王常珍,冶金物理化学研究方法[M],冶金工业出版社, 2000, 333-372.
    [102] Voronin BM, Volkov SV, Ionic conductivity of fluorite type crystals at high temperature, Journal of Physics and Chemistry of Solids, 2001(62):1349-1358.
    [103] Kim K.B, Sadoway D.R, Electrical conductivity measurements of molten alkaline-earth fluorides, Journal of the Electrochemical Society, 1992(132): 1027-1033.
    [104]谢刚,熔融盐理论与应用[M],冶金工业出版社,1989附录4
    [105] Berak J, Tomczak I, Phase equilibriums in the system MgO-P2O5-MgF2, Roczniki Chemii, 1965(39):519-526
    [106]梁英教,物理化学[M],北京,冶金工业出版社,2000,374-376
    [107]贺天民,吕喆,黄应龙等,低成本YSZ电解质膜管的制备和性能研究[J],功能材料2002, 33(1):70-72
    [108] Ramamoorthya R, Sundararamanb D, Ramasamya S,Ionic conductivity studies of ultrafine-grained yttria stabilized zirconia polymorphs[J] Solid State Ionics 123 (1999) 271-278
    [109] Antonucci V, Di Blasi A, Baglio V, Ornelas R, Matteucci F, Ledesma-Garcia J, Arriaga LG., AricòA.S, High temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser, Electrochimica Acta, In Press, Corrected Proof, Available online 12 April 2008
    [110] Yong De Yan, Mi Lin Zhang, Wei Han, Dian Xue Cao, Yi Yuan, Yun Xue, Zeng Chen, Electrochemical formation of Mg–Li alloys at solid magnesium electrode from LiCl–KCl melts, Electrochimica Acta, 2008, 53(8):3323-3328
    [111] Udagawa J, Aguiar P, Brandon N.P, Hydrogen production through steam electrolysis: Model-based dynamic behaviour of a cathode-supported intermediate temperature solid oxide electrolysis cell, Journal of Power Sources, 2008, 180 (1):46-55
    [112] Kinji Onoda, Susumu Yoshikawa, Effect of electrolysis conditions on photocatalytic activities of the anodized TiO2 films, Journal of Solid State Chemistry, 2007, 180(12):3425-3433
    [113] Anatoly Demin, Elena Gorbova, Panagiotis Tsiakaras, High temperature electrolyzer based on solid oxide co-ionic electrolyte: A theoretical model, Journal of Power Sources, 2007, 171(1):205-211
    [114] Zhang M.L, Yan Y.D, Hou Z.Y, Fan L.A, Chen Z, Tang D.X, An electrochemical method for the preparation of Mg–Li alloys at low temperature molten salt system, Journal of Alloys and Compounds, 2007, 440(1-2):362-366
    [115]崔国文,缺陷、扩散与烧结[M],北京,清华大学出版社,1990,142-163
    [116] Suzuki R.O, Baba M, One Y, Yamamoto K,Formation of broccoli-like morphology of tantalum powder[J],Alloys and Compounds 389(2005)310-316
    [117]陈朝轶,鲁雄刚, FFC法与SOM法用于金属铬制备的对比[J],金属学报, 2008, 44(2):145-149
    [118]李海滨,胡小锋,许茜等,熔盐电脱氧法制备铌影响因素的研究[J],中国稀土学报,2006;24:261-267
    [119]蒲灵,兰石,田犀,海绵钛生产工艺中氯化物废渣的处置研究,中国有色冶金[J], 2007, 4:59-63
    [120] Meng Ma, Dihua Wang, Wenguang Wang, Xiaohong Hu, Xianbo Jin, George Z. Chen,Extraction of titanium from different titania precursors by the FFC Cambridge process,Journal of Alloys and Compounds,420 (2006) 37–45
    [121]陈朝轶,鲁雄刚,李重和,邹星礼,黄少卿,固体透氧膜法用于制备金属钛的研究[J],中国稀土学报, 2008,26:370-374
    [122] Perry G.S, Perry and Shaw SJ, Solubility of calcium in CaO-CaC12, AWE Report No, O-16/90, AWE-Aldermaston, Reading, UK (1990)
    [123] Jin X, Gao P, Wang D.H, Chen, G. Z. Electrochemical Preparation of Silicon and its Alloys from Solid Oxides in Molten Calcium Chloride, Angewandte Chemie-International Edition, 2004,43 (6):33.
    [124] Turaeva M.S, Kot S.A, VGlumov O, Murin IV, Voltammetry with a Fluoride selective electrode with solid-phase reference system[J], Russian Journal of Applied Chemistry, 2001, 74(4): 596-602
    [125]李国勋,钽在熔盐中的电化学行为[J],稀有金属, 1991(3):213-218
    [126] Tian Wu, Xianbo Jin, Wei Xiao, Xiaohong Hu, Dihua Wang, and George Z. Chen, Thin Pellets: Fast Electrochemical Preparation of Capacitor Tantalum Powders,Chem. Mater. 2007(19):153-160
    [127]李红,蒋雄, HAsO2在金电极上的阴极还原行为[J],华南师范大学学报(自然科学版),2000 (1):73-76
    [128]郭胜惠,熔盐电解TiO2制取海绵钛新技术研究[D],昆明理工大学硕士论文,2004:58
    [129]王淑兰,李颖君,电还学还原TiO2的物理化学研究[J],中国稀土学报,2002(9):247-249
    [130]邓祩皓,龚竹青,易丹青,苏玉长,三价铬还原沉积机理[J],中南大学学报,2005, 36(2):213-218
    [131] Mart?′nez A.M, Castrillejo Y, B?rresen B, Bermejo M.R, Vega M,Chemical and electrochemical behaviour of chromium in molten chlorides , Journal of Electroanalytical Chemistry 493 (2000) 1-14(Spain)
    [132]邱国红,汪的华,金先波,胡晓宏,陈政,Cr2O3粉末在CaCl2熔盐中直接电化学还原的金属通腔电极研究[J],电化学, 2006, 12(3):304-309
    [133] Yuan Deng, Dihua Wang, Wei Xiao, Xianbo Jin, Xiaohong Hu, George Z Chen,Electrochemistry at Conductor/Insulator/Electrolyte Three-Phase Interlines: A Thin LayerModel,J. Phys. Chem. B 2005(109):14043-14051
    [134] Fergus JW, Effect of cathode and electrolyte transport properties onchromium poisoning in solid oxide fuel cells,International Journal of Hydrogen Energy 32 (2007) 3664-3671
    [135]邓丽琴,许茜,李兵,电脱氧法制铌用Nb2O5阴极活性的改进[J],金属学报,2005, 41(5):551-555
    [136]朱梅,徐献芝,杨基明,气体多孔电极反应微观机理及宏观现象的研究[J],中国工程科学,2005, 7(5):79-83
    [137]徐献芝,朱梅,杨基明,考虑多孔电极内气液分布的数学模型[J],中国工程科学,2005(7):36-40
    [138] LI Di, Electrochemistry principle [M], Beijing, 2003(11):308-309