低温熔盐电解制备铝及合金
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
FFC法是一种在氯化钙基熔盐体系中将固态金属氧化物直接电解制备固态金属或合金的方法,具有工艺简单,成本低等优点。如果采用惰性阳极则是一种绿色生产工艺。
     FFC法不要求固态金属氧化物溶解到熔盐中,避开了传统以氧化物为原料进行低温熔盐电解氧化物溶解度、溶解速度降低等问题。操作温度范围也可以根据需要,通过调整熔盐组成来控制。该法为低温熔盐电解制备金属提供了新思路。另外,氯化钙基氯化物熔盐的低熔点也为实现低温熔盐电解提供了条件。
     本论文以CaCl_2-NaCl熔盐为电解质,石墨为阳极,利用FFC法,施加3.1V恒电位,低温熔盐电解固态Al_2O_3、Al_2O_3-MgO、Dy_2O_3-Fe、Dy_2O_3-Fe_2O_3制备出了Al及Al-Mg、DyFe_2合金。
     采用直接阿基米德法、CVCC法结合阻抗测量技术测定了550℃~800℃,含CaCl_2质量百分数为71%~87%的铝电解用熔盐电解质体系密度和电导率。结果发现,在550℃~750℃范围,含CaCl_2质量百分数为71%~87%的CaCl_2-NaCl-Al_2O_3(饱和)熔盐体系的密度随着氯化钙含量的增加而增大,但不是线性关系;氧化铝的溶解降低了熔盐体系的电导率,增加了电导活化能。在550℃~800℃范围,含CaCl_2质量百分数为71%~82%的CaCl_2-NaCl-Al_2O_3(饱和)熔盐体系中组元是离子状态,电导率与温度呈线性关系,氯化钙的增加降低了熔盐体系的电导率和电导活化能。
     开发出新型石墨孔腔工作电极。其可靠、有效性通过对NiO和TiO_2两种具有代表性氧化物粉体循环伏安曲线和恒电位电解的检测进行了确认。应用新型石墨孔腔工作电极研究了固态Al_2O_3低温熔盐电解机理及阴极还原过程。研究表明Al_2O_3的还原机理是三价铝→铝一步完成,还原过程是部分氧化铝先电解生成金属铝和氧离子,氧离子和钙离子与未电解的氧化铝反应生成CaAl_2O_4和CaAl_4O_7,CaAl_2O_4和CaAl_4O_7进一步还原生成金属铝、CaAl_4O_7和Ca_3Al_2O_6,CaAl_4O_7进一步还原生成金属铝和Ca_3Al_2O_6,Ca_3Al_2O_6最终被还原成金属铝。
     对固体Al_2O_3的烧结、电解工艺进行了研究。确定颗粒粒径φ<38μm,烧结温度1400℃,烧结时间9h为氧化铝阴极片合适的烧结工艺条件;液态铝镁合金为导电体,熔盐温度800℃,烧结氧化铝为阴极,含氯化钙质量百分数82%的熔盐为合适的电解工艺条件。
     对Al_2O_3-MgO混合粉烧结片电解制备Al-Mg合金进行了研究。确定烧结温度1300℃,烧结时间8h是合适的阴极片烧结工艺条件;研究发现Al-Mg合金制备的阴极还原过程是部分Al_2O_3先被还原生成铝和中间产物CaAl_2O_4,CaAl_4O_7,中间产物和MgAl_2O_4电解生成金属镁和铝,电解出来的金属镁与金属铝合金化形成Al-Mg合金。
     对Fe-Dy_2O_3、Fe_2O_3-Dy_2O_3混合粉烧结片电解制备DyFe_2合金进行了研究。研究发现高的氯化钙含量和电解温度对合金制备有利;Fe-Dy_2O_3阴极片电解的阴极过程是氧化镝先电解出金属镝,金属镝扩散到铁粉中形成合金,合金化的过程是DyFe_5→DyFe_3→DyFe_2;烧结温度800℃,烧结时间4h为Fe_2O_3-Dy_2O_3阴极片的合适制备条件。DyFe_2合金电解制备阴极过程是Fe_2O_3先电解出Fe,DyFeO_3电解出Fe和Dy_2O_3,Dy_2O_3再电解出Dy原子,生成的Fe、Dy原子合金化过程是DyFe_5→DyFe_2。分析了阳极气体产生的顺序是先CO_2后CO。
The method of direct electrochemical reduction solid oxides to prepare solid metals or alloys in molten CaCl_2 base chloride salts is named FFC Cambridge Process, which is simple and low cost, and is a green process using the inert anode.
     The problems that include oxide required dissolving into molten salt and oxide's low solubility and low dissolved rate in traditional low temperature molten salt can be avoided through FFC method. It is a new method to apply the FFC for preparing metals or alloys in low temperature molten salts. Addition to, CaCl_2-NaCl has the low melt point and it assures the feasibility of application of FFC in low temperature molten salt.
     In the paper, the FFC Cambridge Process method was used to prepare Al and Al-Mg, DyFe_2 in molten CaCl_2-NaCl. A graphite rod was employed as the anode and Al_2O_3, Al_2O_3-MgO, Dy_2O_3-Fe, Dy_2O_3-Fe_2O_3 were served as cathode respectively. The voltage between the cathode and the anode was 3.1 V. Preparation of Al and Al-Mg, DyFe_2 alloys in low temperature molten salt by FFC was studied and Al, Al-Mg, DyFe_2 alloys were obtained.
     The electrical conductivity and density of molten salts for Al electrolysis was measured by direct Archimedes method and CVCC technology from 550℃to 800℃respectively. The density of molten CaCl_2-NaCl-Al_2O_3 (w(CaCl_2)= 71%-87% corresponding to NaCl, saturated Al_2O_3) systems was increased with the incressing CaCl_2 content, however, the relation of density and CaCl_2 content was not linear from 550℃to 750℃. The additive Al_2O_3 decreased the electrical conductivity, and increased the activation energy of conductance in CaCl_2-NaCl system. The relation of the electrical conductivity of molten CaCl_2-NaCl-Al_2O_3 (w(CaCl_2)= 71%-82%corresponding to NaCl, saturated Al_2O_3) and temperature was linear from 550℃to 800℃. With the CaCl_2 content incresed, the electrical conductivity of systems was decreased, and the activation energy of conductance was also decreased.
     The new graphite cavity working electrode is developed and applied. Dependability and validity of the new graphite cavity working electrode was affirmed through testing cycle voltage curves and constant potential electrolysis of the NiO and TiO_2 typical powders. The electrochemical reduction mechanism of solid Al_2O_3 was obtained by the cycle voltage method with the graphite working electrode and the reduction process were known by the constant potential electrolysis at different times. The reduction mechanism of solid Al_2O_3 was one step from Al~(3+)→Al. The reduction process was as follows. Firstly, Al_2O_3 was partially electrolyzed to form Al and O~(2-), then CaAl_2O_4 and CaAl_4O_7 was formed by the O~(2-) and Ca~(2+) in the molten salts compound with Al_2O_3, CaAl_2O_4 was electrolyze to form Al and CaAl_4O_7, and CaAl_4O_7 was electrolyzed to form Al and Ca_3Al_2O_6, finally the Ca_3Al_2O_6 was electrolyzed to form Al.
     To prepare the suitable electrolysis cathode Al_2O_3 pellet, the Al_2O_3 particle size, molding pressure, sinter temperature and sinter time were investigated. The optimal conditions of Al_2O_3 cathode pellet preparation were that the particle size was 38μm, the sinter temperature was 1400℃and the sinter time was 9h. The effect of the different cathode materials, such as the commercial Al_2O_3 powder, the Al_2O_3 sintered pellets, corundum powder, corundum tubes and the sintered Al_2O_3 tubes on the electrolysis were studied by using different conductors including metallic wire, melted Al and Al-Mg alloy. The result showed that the melted Al-Mg alloy as the conductor, the sintered Al_2O_3 rods as cathode, at 800℃and in molten salts with w(CaCl_2)= 82% were optimal electrolysis conditions.
     The effects of Al_2O_3-MgO mixture's sinter temperature and time on the electrolysis were investigated. The appropriate sintered conditions were at 1300℃and 8h sinter. The electrochemical reduction process of the cathode were as follows. First, Al_2O_3 was electrolyzed to form Al, CaAl_2O_4 and CaAl_4O_7, then MgAl_2O_4 was electrolyzed to form Al and Mg during the Al-Ca compound oxides were electrolyzed, finally the Mg and Al atoms obtained was alloyed.
     The effects of the temperature and CaCl_2 content in molten salt on electrolysis were studied when Fe-Dy_2O_3 was used as the cathode. The result indicated that high electrolysis temperature and high CaCl_2 content was advantage to prepare pure DyFe_2. The electrochemical reduction process of Fe-Dy_2O_3 was that as follows. First Dy_2O_3 was electrolyzed to form Dy, then Dy atoms diffused into Fe body, the formation sequence of alloy was DyFe_5→DyFe_3→DyFe_2. The effects of the sinter temperature and time of Fe_2O_3-Dy_2O_3 mixture on electrolysis were investigated. The appropriate sinter conditions were at 800℃and 4h sinter. The effect of the molten salt temperature and CaCl_2 content on the electrolysis was studied. The result indicated that high electrolysis temperature and high CaCl_2 content was advantage to prepare pure DyFe_2. Temperature was key factor to form DyFe_2. The electrochemical reduction process of Fe_2O_3-Dy_2O_3 were that first Fe_2O_3 was electrolyzed to form Fe, then DyFeO_3 was electrolyzed to form Fe and Dy_2O_3, and Dy_2O_3 was electrolyzed to form Dy, finally Fe and Dy were alloyed to form DyFe_5→DyFe_2. The anode gases were CO_2 and CO.
引文
1. Okabe T H, Nakamura M, Oishi T, Ono K. Electrochemical deoxidation of titanium[J], Metallurgical and Materials Transactions B, 1993, 24(3):119-155.
    
    2. Okabe T H, Hirota K, Kasai E, Saito F, Waseda Y, Jacob K T. Thermodynamic properties of oxygen in RE-0 (RE=Gd, Tb,Dy,Er) solid solutions[J], J Alloys and Compounds(279), 1998, 184-191.
    
    3. Hirota K, Okabe T.H, Saito F, Waseda Y, Jacob K T. Electrochemical deoxida-tion of RE-O (RE=Gd, Tb, Dy, Er) solid solutions[J], J Alloys and Compounds, 1999, 282 :101-108.
    
    4. Fray D J, Farthing T W, Chen G Z. UK.Pat, PCT/GB99/01781.1998-06-05.
    
    5. Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride[J], Nature, 2000,407:361-363.
    
    6. Jin X B, Gao P, Wang D H, Hu X H, Chen G Z. Electrochemical Preparation of Silicon and Its Alloys from Solid Oxides in Molten Calcium ChloridefJ], Angew. Chem. Int. Ed., 2004,43, 733 -736.
    
    7. Gordo Elena, Chen G Z, Fray D J. Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts[J], Electrochimica Acta, 2004,49: 2195-2208.
    
    8. Qiu G H, Wang D H, Ma M, Jin X B, Chen G Z. Electrolytic synthesis of TbFe_2 from Tb_4O_7 and Fe_2O_3 powders in molten CaCl_2[J], Electroanalytical Chemistry, 2006, 589:139-147.
    
    9. Zhu Y, Ma M, Wang D H, Jiang K, Hu X H, Jin X B, Chen G Z. Electrolytic reduction of mixed solid oxides in molten salts for energy efficient production of the TiNi alloy[J], Chinese Science Bulletin, 2006, 51(20): 2535—2540.
    
    10. Li G M, Wang D H, Jin X B, Chen G Z. Electrolysis of solid MoS_2 in molten CaCl_2 for Mo extraction without CO_2 emission[J], Electrochemistry Communications, 2007, 9(8): 1951-1957.
    
    11. Yu L P, Sun H J, He J, Wang D H, Jin X B, Hu M H, Chen G Z. Electro-reduction of cuprous chloride powder to copper nanoparticles in an ionic liquid[J], Electrochemistry Communications, 2007, 9(6):1374-1381.
    
    12. Fray D J, Chen G Z. Rediiction of titanium and other metal oxides using electrodeoxidation[J], Materials Science and Technology, 2004, 20(3): 295-300.
    
    13. Schwandta C, Alexanderb D T L, Fray D J. The electro-deoxidation of porous titanium dioxide precursors in molten calcium chloride under cathodic potential control[J], Electrochimica Acta, 2009, 54(14): 3819-3829.
    
    14. Mohandas K S, Fray D J. FFC Cambridge process and removal of oxygen from metal-oxygen systems by molten salt electrolysis: an overview[J], Transactions of the Indian Institute of Metals, 2004, 57(6):579-592.
    
    15. Yan X Y, Fray D J. Production of niobium powder by diect electrochemical reduction of solid Nb_2Os in a eutectic CaCl_2-NaCl melt[J], Metallurgical and Materials Transactions B, 2002, 33:685-692.
    16. Hirota K, Okabe T H, Saito F, Waseda Y, Jacob K T, Electrochemical deoxidation of RE-O (RE=Gd, Tb,Dy,Er) solid solutions[J], J Alloys and Compounds, 1999, 282:101-108.
    17. Flower H M. A moving oxygen story[J], Nature, 2000, 407:305-307.
    18. Ortrud,Kubaschewski.Iron-BinaryPhaseDiagrams[M], Springer-Verlag Berlin, 1982:110.
    19. Yan X Y. Chemical and electrochemical processing of aluminum dross using molten salts[J], Metallurgical and Materials Transactions B, 2008, 348(39B): 9135-9144.
    20. Kar P, Evans J W. A shrinking core model for the electro-deoxidation of metal oxides in molten halide salts[J], Electrochimica Acta, 2008,53:5260-5265.
    21. Kar P, Evans J W. A model for the electrochemical reduction of metal oxides in molten salt electrolytes[J], Electrochimica Acta, 2008, 54:835-843.
    22. Lamplough F E E. Proc Cambridge Phil Soc, 1912,16:194.
    23.周卫铭,郭忠诚.铝电解惰性阳极材料的研究现状[J],冶金丛刊,2004,149(1):1-3.
    24. Thonstad J, Rolseth S. Alternative electrolyte compositions for aluminium electrolysis[J], Trans Inst Min Metall Sect C Miner Process Extr Metall, 2005,114(3): C188-C191.
    25.邱竹贤,张明杰,何鸣鸿,李庆峰,边友康,屈长林.低温铝电解的研究--节省电能的研究[J],轻金属,1984,6:33.
    26. Kan H M, Wang Z W, Shi Z N, Ban Y G, Cao X Z, Yang S H, Qiu Z X. Liquidus temperature, density and electrical conductivity of low temperature electrolyte for aluminum electrolysis[J], Light Metals, 2007,531-535.
    27.王兆文,石忠宁,高炳亮等.一种高电导率铝电解用低温电解质及其使用方法[P].专利号:CN200810228121.6,2009-03-18.
    28. Sleppy W C, Cochran C N. Bench scale electrolysis of aluminium in sodium fluoride-aluminium fluride melts below 900℃[J], Light Metals, 1979: 385-395.
    29. Grjotheim K, Kvande H. Physico-chemical properties of low-melting baths in aluminium electrolysis [J], Metall, 1985, 39(6):510-513.
    30. Qiu Z X, He M H, Li Q F. Aluminium electrolysis at lower temperature[J], Light Metals, 1985:529-544.
    31.任凤莲,李海斌,蔡震峰.铝电解质初晶温度测定装置及初晶数模的研究[J],冶金分析,2005,25(3):9-12.
    32. Solheim A, Rolseth S, Skybakmoen E, St(?)en L, Sterten (?), St(?)re T. Liquidus temperature and alumina solubility in the system Na_3AlF_6-AlF_3-LiF-CaF_2-MgF_2[J], Light Metals, 1995: 451-460.
    33. Foster P A, Jr. Phase diagram of a portion of the system Na_3AlF_6-AlF_3-Al_2O_3[J], American Ceramic Society, 1975, 58(7):288-291.
    34. Skybakmoen E, Solheim A, Sterten (?). Alumina solubility in molten salt systems of interest for aluminum electrolysis and related phase diagram data[J], Metallurgical and Materials Transactions B, 1997, 28(1):81-86.
    35. Hives J, Thonstad J. Electrical conductivity of low-melting electrolytes for aluminium smelting[J]. Electrochimica Acta, 2004,49:5111-5114.
    36. Hives J, Thonstad J, Sterten A. Electrical conductivity of molten cryolite-based mixtures obtained with a tube-type cellmade of pyrolytic boron nitride[J], Metallurgical and MaterialsTransactions, 1996, 27B(4):255-261.
    37. Lu H M, Fang K M, Qiu Z X. Low temperature aluminum floating electrolysis in heavy electrolyte Na3AlF6-AlF3-BaC12-NaCl bath system[J], Acta Metallurgica Sinica (English Letters), 2000, 13(4): 949-954.
    38. Lu H M, Yu L L. Technique and mechanism of aluminum floating electrolysis in molten heavy Na3AlF_6-AlF_3-BaF_2-CaF_2 bath system[J], Light Metals, 2003:351-356.
    39. Rolseth S, Gudbrandsen H, Thonstad J. Lowtemperature aluminum electrolysis in a high density electrolyte[J], Aluminum. 2005, 81(5):448-450.
    40. Rotum A, Solheim A, Sterten (?). Phase diagram data in the system Na_3AlF_6-Li_3AlF_6-AlF_3-Al_2O_3. Light Metals 1990[C], Warrendale: Minerals, Metals & Materials Soc, 1990:311-316.
    41. Skybakmoen E, Solheim A, Steren (?). Phase diagram data in the system Na_3AlF_6-Li_3AlF_6-AlF_3-Al_2O_3 [J], Light Metals, 1990:317-323.
    42. Fellner P, Midtlyng S, Sterten (?), Thonstad J.. Electrical conductivity of low melting baths for aluminium electrolysis: the system Na_3AlF_6-Li_3AlF_6-AlF_3 and the influence of additions of Al_2O_3, CaF_2 and MgF_2 [J], Applied Electrochemistry, 1993, 23:78-81.
    43. Matiasovsky K, Malinovsky M, Danek V. Specific electrical conductivity of molten fluorides[J], Electrochimica Acta, 1970, 15(1):25-32.
    44. Wang J W, Lai Y Q, Tian Z L, Liu Y X. Temperature of primary crystallization in party of system Na_3AlF_6-K_3AlF_6-AlF_3, Light Metals 2008[C], Warrendale: Minerals, Metals & Materials Soc, 2008:513-518.
    45. Kryukovsky V A, Frolov A V, Tkatcheva O Yu, Redkin A A, Zaikov Y P, Khokhlov V A, Apisarov A P. Electrical conductivity of low melting cryolite melts, Light Metals 2006[C], Warrendale: Minerals, Metals & Materials Soc, 2006: 409-413.
    46.卢惠民.一种低温电解生产铝的方法及其专用的铝电解槽[P],专利号:CN200510011143.3 2005-9-28.
    47. Sterten (?), Rolseth S, Skybakmoen E, Solheim A, Thonstad J. Some aspects of Low-melting baths in aluminium electrolysis[J], Light Metals, 1988:663-670.
    48. Zhou C H, Shen J Y, Li G X. Phase diagram calculation of quai-binary system Na_3AlF_6-K_3AlF_6[J], Transactions of NFsoc, 1995, 5(2):26-29.
    49.周传华,马淑兰, 李国勋, 沈剑韵.新型低温铝电解质体系的研究--氧化铝的溶解度与溶解速度[J],有色金属,1998,50(2):81-84.
    50. Yang J H, Hryn J N, Davis B R, Roy A, Krumdick G K, Pomykala J A Jr. New opportunities for aluminum electrolysis with metal anodes in a low temperature electrolyte system, Light Metals, 2004:321-326.
    51. Yang J H, Hryn J N, Krumdick G K. Aluminum electrolysis tests with inert anodes in KF-AlF_3-based electrolytes[J], Light Metals, 2006: 421-424.
    52. Yang J H, Graczyk, D G, Wunsch, C, Hryn, J .N. Alumina solubility in KF-AlF_3-based low-temperature electrolyte system[J], Light Metals, 2007: 537-541.
    53. Zaikov Y, Khramov A, Kovrov V, Kryukovsky V, Apisarov A, Tkacheva O, Chemesov O, Shurov N. Electrolysis of aluminum in the low melting electrolytes based on potassium cryolite[J], Light Metals, 2008:505-508.
    54. Russell A S. Developments in Aluminium Smelting[J], Aluminium, 1981, 57(6): 405-409.
    55.K.格罗泰姆.氯化铝电解法炼铝[J],东北工学院学报,1981,27(2):101-107.
    56. Dawless R K, Lacamera A F, Klingensmith C H. Molten salt bath for electrolytic production of aluminum[P], US. Pat. 6423682, 1984-4-3.
    57.李庆峰,邱竹贤.铝在NaCl-AlCl_3熔盐体系中的电化学沉积[J],稀有金属材料与工程,1995,(3):59-63.
    58. Gesenhues U, Reuhl K, Wendt H. Vapour pressure and composition above mixed melts of alkali chlorides and aluminium chloride [J], Mass Spectrometry and Ion Physics, 1983, 47: 251-252
    59. Hurlev F H, Wier T P. The electrodeposition of aluminum from nonaqueous solutions at room temperature [J], Electrochem Soc,1951, 98 (5): 207-212.
    60. Abbptt A P, Eardley C A, Farleynr S, et al. Novel room temperature molten salts for aluminum electrodeposition [J], Trans IMF, 1999, 77 (1): 262-268.
    61. Peled E, Gileadi E. The electrodeposition aluminium from aromatic hydrocarbon[J], Electrochem. Soc, 1976, 123(1):15-19.
    62. Kamavaram V, Reddy R G. Aluminum extraction in ionic liquids at low temperature[J], Non-Ferrous Materials Extraction and Processing, 2006, 97-108.
    63.顾彦龙,石峰,邓友全.室温离子液体:一类新型的软介质和功能材料[J],科学通报,2004,49(6):515-521.
    64.夏扬,王吉会,王茂范.铝合金电镀的研究进展[J],材料导报,2005,19(12):60-63.
    65.李岩,凌国平,刘柯钊,陈长安,张桂凯.不锈钢基体室温熔盐电沉积铝[J],浙江人学学报(工学版),2009,43(7):1316-1321.
    66.陈建华.低温熔盐体系铝电沉积[J],表面技术,1994,23(4):159-163.
    67.冯秋元,丁志敏,贾利山,关君实.低温熔融盐电镀铝的研究[J],材料保护,2004,(4):1-3.
    68.范春华,李冰,江卢山.室温氯化铝-有机熔盐电沉积铝的研究进展[J],材料保护,2007,(10):50-53.
    69. Lai P K, Skyllas-Kazacos M. Electrodeposition of aluminium in aluminium chloride/1-methyl-3-ethylimidazolium chloride[J], Journal of Electroanalytical Chemistry, 1988, 248 (2) :431-440 .
    70. Zhao Y G, VanderNoot T J. Electrodeposition of aluminium from nonaqueous organic electrolytic systems and room temperature molten salts[J], Electrochimica Acta, 1997,42 (1) :3-13 .
    71. Qin Q X, Skyllas-Kazacos M. Electrodeposition and dissolution of aluminium in ambient temperature molten salt system aluminium chloride n-butylpyridinium chloride[J], Journal of Electroanalytical Chemistry, 1984, 168 (1-2): 193-206 .
    72. Zhao Y G, VanderNoot T J. Electrodeposition of aluminium from room temperature AlClTMPAC molten salts[J], Electrochimica Acta, 1997,42 (11) :1639-1643 .
    73.李景升,杨占红,王小花,李旺兴,陈建华,王升威,李景威.AlCl_3-NaCl-KCl熔融盐中铝的电沉积[J],中南大学学报(自然科学版),2008,(04):672-676.
    74.孙淑萍,李东春.铝在室温熔盐中的电沉积[J],轻合金加工技术,2003,(11):28-30.
    75.高丽霞,王丽娜,齐涛,李玉平,初景龙,曲景奎.离子液体AlCl_3/Et_3NHCl中电沉积法制备金属铝[J],物理化学学报,2008,(06):939-944.
    76. Minh N Q, Yao N P. The electrolysis of aluminium sulphide in molten fluorides[J], Light Metals, 1984, 643-650.
    77.冯乃祥,彭建平.从铝电解生产新技术看我国与国际水平之差距[J],轻金属,2005,3:3-5
    78.冯乃祥,戚喜全,彭建平.1.35kA TiB2/C阴极泄流式铝电解槽电解实验[J],中国有色金属学报,2005,15(12):2047-2053.
    79. Friedrich H, Schumann S. Research for a "new age of magnesium" in the automotive industry[J], Journal of Materials Procession Technology, 2001, 117: 276-281.
    80. Kojima Y. Project of platform science and technology for advanced magnesium alloys[J], Materials Transactions, 2000, 42(7): 1154-1159.
    81. Brown R. Magnesium automotive meeting [J], Light Metal Age, 1992(6): 8-24.
    82. Polmear I J. Magnesium alloys and application [J], Materials Science and Technology, 1994(1): 1- 16.
    83. Ranmkrishnan S, Koltun P. Global warming impact of the magnesium produced in China using the Pidgeon process[J], Resources Conservation and Recycling, 2004(42): 49 - 64.
    84.余琨,黎文献,王日初,等.变形镁合金的研究、开发及应用[J],中国有色金属学报,2003,13(2):277-288.
    85.曾小勤,王渠东,吕宜振,等.镁合金应用新进展[J],铸造,1998(11):39-43.
    86.吕宜振,翟春泉,王渠东,等.压铸镁合金的应用现状及发展趋势[J].铸造,1998(12):50-53.
    87.周海涛,马春江,曾小勤,等.变形镁合金材料的研究进展[J].材料导报,2003,17(11):16-18.
    88.李晓波.炼镁工艺的发展趋势[D],中国金属通报,2005,47:12-13.
    89. Massalski T. B.. Binary Alloy Phase Diagrams[M], ASM International, Materials Park, OH, 1990.
    90. Legvold S, Alsted J, Rhyne J. Giant magnetostriction in dysprosium and holmium single crystals[J], PhysicalReviewLetters, 1963, 10(12): 509-511.
    91. Clark A E, Bozorth R M, Desavage B F. Anomalousther-malexpansion and magnetostriction of single crystals of dysprosium [J], Physical Letter, 1963, 5(2):100-102.
    92.黎文献,余琨,谭敦强,马正青,陈鼎.稀土超磁致伸缩材料的研究[J],矿冶工程,2000,20(3):64-67.
    93.邬义杰.超磁致伸缩材料发展及其应用现状研究[J],机电工程,2004,21(4):55-59.
    94.高有辉,周谦莉,祝景汉.稀土-铁大磁致伸缩材料[J],金属功能材料,1994,1:16-21.
    95.蒋成保,宫声凯,徐惠彬.超磁致伸缩材料及其在航空航天工业中的应用[J],航空学报,2000,21,spec:35-38.
    96.李扩社,徐静,杨红川.稀土超磁致伸缩材料发展概况[J],稀土,2004,25(4):51-56.
    97.杜挺,张洪平,邝马华.稀土铁系超磁致伸缩材料的应用研究[J],金属功能材料,1997,4:173-176.
    98.张文毓.稀土磁致伸缩材料的应用[J],金属功能材料,2004,11(4):42-46.
    99.李松涛,孟凡斌,刘何燕,陈贵峰,沈俊,李养贤.超磁致伸缩材料及其应用研究[J],物理,2004,33(10):748-752.
    100.胡明哲,李强,李银祥,张一玲.磁致伸缩材料的特性及应用研究(Ⅰ)[J],稀有金属材料与工程,2000,29(6):366-369.
    101.胡明哲,李强,李银祥,张一玲.磁致伸缩材料的特性及应用研究(Ⅱ)[J],稀有金属材料与工程,2001,30(1):1-3.
    102.李国栋.1998~1999年国际磁性材料性功能进展[J],功能材料,2001,32(3):225-226.
    103.郭广思,水丽,王广太,隋智通.还原扩散法制备DyFe_2反应机理探讨[J],金属学报,2002,38(3):291-294.
    104.黄文莉.镝铁合金熔铸试验研究[J],江西有色金属,2003,17(4):25-27.
    105.李炜.熔盐电解法制取镝铁合金的研究[J],江西有色金属,1999,13(11):19-33.
    106.刘冠昆,童叶翔,洪惠婵,杨绮琴,陈胜洋,辜进喜.氯化物熔体中镝铁合金形成的电化学研究[J],中国稀土学报,1997,15(4):300-303.
    107.王静.稀土在功能材料中的应用与新进展[J],化学推进剂与高分子材料,2003,1(5):29-33.
    108.雷伯朝,刘斌.高纯金属镝的制备工艺研究与工业实践[J],稀有金属与硬质合金,2001,147:18-20.
    109.张世荣.金属镝的制备、提纯及应用[J],稀有金属与硬质合金,2000,142:53-59.
    110.余强国.镁热法制备高纯金属镝[J],稀有金属与硬质合金,2001,145:11-14.
    111.林河成.稀土金属市场分析及预测[J],稀有稀土金属,2003,4:31-35.
    112.林河成.国内稀土金属的生产、应用及市场[J],稀土,2003,24(1):75-77.
    113.林河成.我国稀土金属生产现状及其市场[J],世界有色金属,1996,(2):14.
    114.林河成.我国金属镝材料的生产及应用[J],稀有金属快报,2001,5-7.
    115.梁英教,车荫吕,刘晓霞.无机物热力学数据手册[M],沈阳:东北大学出版社,1993.
    116. Yan X Y, Fray D J. Production of niobium powder by direct electrochemical reduction of solid Nb_2O_5 in a eutectic CaCl_2-NaCl melt.[J], Metallurgical and Materials Transactions B, 2002, 33:685-692.
    117.Х.Л.斯特雷列茨著,韩薇,霍光庶,宫常福等译.电解法制镁[M],北京:冶金工业出版社,1981:118-239.
    118.王常珍.冶金物理化学研究方法[M],北京:冶金:工业出版社,2002年:298-301.
    119. Wang X W, Ray D P, Alton T T. Electrical conductivity of cryolitic melts[C] .Light Metals 1992. Warrendale: Minerals,Metals&Materials Soc, 1991,481-488 .
    120. Kim K B, Sadoway D R. Electrical conductivity measurements of molten alkaline-earth fluoride[J], Journal of the Electrochemical Society, 1992, 139 (4) :1027-1033 .
    121. Wang X W, Ray D P, Alton T T. A multiple regression equation for the electrical conductivity of cryolitic melts[C], Light Metalsl993. Warrendale: Minerals,Metals&Materials Soc, 1992, 247-255 .
    122.阚洪敏,王兆文,班允刚,邱竹贤.Na_3AlF_6-AlF_3-Al_2O_3-CaF_2-LiF-NaCl系电解质密度的研究[J],东北大学学报(自然科学版),2007,(4):541-544.
    123.胡宪伟,王兆文,高炳亮,石忠宁.NdF_3-LiF-Nd_2O_3系熔盐电导率的CVCC法研究[J],东北大学学报(自然科学版),2008,29(9):1294-1297.
    124.黄有国,赖延清,田忠良,李庆余.高温熔盐电导率测试方法[J],轻金属,2006,10:33-37.
    125.王兆文,胡宪伟,高炳亮,石忠宁.CVCC法测定冰晶石系熔盐电导率的应用研究[J],东北大学学报(自然科学版),2006,27(7):786-789.
    126.胡宪伟,王兆文,路贵民,石忠宁,曹晓舟,崔建忠,赵兴亮.连续变化电导池常数法测定电导率的等效电路分析及应用[J],中国有色金属学报,2008,18(03):551-556.
    127. Hives J, Thonstad J, Sterten A, Fellner P. Electrical conductivity of molten cryolite-based mixtures obtained with tube-type cell made of pyrolytical boron nitride[J]. Light Metals, 1994: 187.
    128.查全性等著.电极过程动力学导论[M],北京:科学出版社,1987年:3-10.
    129. Chen G Z, Fray D J. Voltammetric studies of the oxygen-titanium binary system in molten calcium chloride [J].Electrochem. Soc., 2002, 49:455.
    130. Suzuki R O. Calciothermic reduction of TiO_2 and in situ electrolysis of CaO in the molten CaCl_2[J], Phys. Chem. Solids, 2005, 66(2-4): 461-465.
    131. Qiu GH, Ma M, Wang D H, Jin X B, Hu X H, Chen G Z. Metallic Cavity Electrodes for Investigation of Powders Electrochemical Reduction of NiO and Cr_2O_3 Powders in Molten CaCl_2[J], 2005,1152(10):E328-E336.
    132. Dring K, Dashwood R, Inman D. Voltammetry of titanium dioxide in molten calcium chloride at 900 ℃ [J], Electrochem. Soc. 2005, 152(3): E104-E113.
    133. Qiu G H, Feng X H, Liu M M, Tan W F, Liu F. Investigation on electrochemical reduction process of Nb_2O_5 powder in molten CaCl_2 with metallic cavity electrode [J], Electrochimica Acta, 2008,53:4074-4081.
    134. Zhu Y, Ma M, Wang D H, Jiang K, Hu X H, Jin X B, Chen G Z.Electrolytic reduction of mixed solid oxides in molten salts for energy efficient production of the TiNi alloy [J], Chinese Science Bulletin, 2006,51(20):2535-2540.
    135. Alexander D T L, Schwandt C, Fray D J. Microstructural kinetics of phase transformations during electrochemical reduction of titanium dioxide in molten calcium chloride [J], Acta Materialia, 2006, 54:2933-2944.
    136. Wang S L, Xue Y, Sun H. Electrochemical study on the electrodeoxidation of Nb_2O_5 in equimolar CaCl_2 and NaCl melt[J], Journal of Electroanalytical Chemistry, 2006, 595:109-114.
    137. Schwandt C, Fray D J. Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride [J], Electrochimica Acta, 2005, 51:66-76.
    138.陈建,潘复生.氧化铝膜对铝基复合材料润湿行为的影响[J],材料科学与工程,1999,17(2):85-90.
    139.李斗星,周朝霞,樊中云.通过集体合金化制备界面相容的Al_2O_(3p)/Al颗粒增强铝基复合材料[J],金属学报,2002,38(6):602-608.
    140.颜悦,彭应国,张少卿.氧化铝颗粒增强铝基复合材料无压浸渗过程的探索研究[J],1997,17(3):22-26.
    141.于志强,武高辉,姜龙涛.亚微米Al_2O_3颗粒表面稀土改性对Al基复合材料界面润湿性的影响[J],中国有色金属学报,2005,15(7):1082-1091.
    142.谢宏伟.DyFe_2合金制备的研究[D],沈阳东北大学,2005.