BaO-TiO_2系一维铁电纳米材料制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁电元器件的不断小型化、集成化、功能化对低维铁电材料的研究和应用提出了新的要求,制备新型一维铁电纳米材料并对其性能进行研究以揭示其铁电性能与尺度、维度以及组成的相关性具有重要的理论价值和现实意义。
     本文以BaO-TiO2体系为研究对象,采用熔融盐法、模板法制备BaTiO3、BaTi2O5等一维铁电纳米材料,对材料的制备、结构进行深入研究,并采用现代测试手段对所制备的单根一维铁电纳米材料进行了压电、铁电及漏电流性能的研究。论文主要研究内容如下:
     (1)采用熔融盐法制备高产率BaTi2O5单晶纳米线。制备出的BaTi2O5单晶纳米线矩形截面长80-200nm,宽70-150nm,纳米线长度为几微米到几十微米。系统研究起始源材料、熔盐种类、熔盐比例、温度、时间等对产物相组成和形态的影响规律,获得了制备高产率单晶BaTi2O5纳米线的最佳工艺条件。BaTi2O5纳米线的生长受晶体的各向异性主导,在生长不受限制的熔融盐条件下具有很强的各向异性生长趋势,生长成为一维纳米结构。同时,反应初期,伴随BaTi2O5相形成BaTiO3、Ba4Ti13O30相也存在,而且Ba4Ti13O30是一维形态。随着反应时间的延长,各物相间经过复杂的化学反应最终形成纯相的单晶BaTi2O5纳米线。
     (2)对目前尚存争议的熔融盐法制备BaTiO3纳米线的工艺进行研究,如表面活性剂、熔融盐种类、温度、保温时间等对产物相组成和形态的影响。研究表明,熔融盐法直接制备BaTiO3一维纳米材料有一定难度,此方法所得产物中存在的少量一维相可以被标定为:BaTi2O5,BaTi5O11,BaTi13O30,Ba6Ti17O40-x等物相,没有观察到一维BaTiO3存在。这说明,具有高对称性晶体结构的立方相BaTiO3不易在熔融盐环境中呈现各向异性生长,而BaTi2O5,BaTiO11, Ba4Ti13O30,Ba6Ti17O40-x等具有高非对称性结构的物相在熔融盐环境中易于沿着某一特定的方向取向生长。基于此,通过调整原料Ba/Ti比、控制工艺参数,制得了Ba4Ti13O30、BaTi5O11等一维纳米材料。该熔融盐法为制备BaO-TiO2体系一维纳米材料提供了一条新途径。
     (3)采用模板法制备一维BaTiO3纳米材料。提出通过熔融盐模板法制备单晶BaTiO3纳米线的新思路:以单晶BaTi2O5纳米线为模板,通过化学共沉淀法在其表面包覆一层草酸钡,再置于熔融盐中煅烧,成功制备出单晶BaTiO3纳米线。与直接于空气中煅烧前驱体得到的BaTiO3纳米线比较,熔融盐环境更有益于制得结晶完好的单晶BaTiO3纳米线。此外,以钛酸钾纤维为模板,采用水热法低温条件下经过离子交换成功制备了BaTiO3纤维。以水合钛纤维为模板,通过化学共沉淀法在其表面包覆一层草酸钡,再经过空气中煅烧也成功制备了BaTiO3纳米线。该类方法制备BaTiO3纳米线符合自牺牲模板引导的原位反应机理,其中化学共沉淀法对一维模板的包覆是关键因素。这种自牺牲模板引导的原位反应制备一维纳米材料的方法是制备复杂氧化物一维纳米材料的有效途径。
     (4)单根BaTiO3、BaTi2O5铁电纳米线性能的研究是一个全新的课题。采用SPM、铁电工作站和纳米操控平台等手段研究了单根BaTiO3,BaTi2O5纳米线的性能。原位压电性能测试表明,BaTi2O5纳米线具有较好的压电性能,实验测得其d33*值约为300pm/V,而BaTiO3纳米线的d33*值较低约为15pm/V。沿纳米线直径方向铁电性能测试表明,在相同电压下,BaTi2O5纳米线的Pr约为BaTiO3纳米线的10倍;而沿纳米线生长方向的铁电性能测试表明,BaTi2O5纳米线和BaTiO3纳米线的Pr在一个数量级。单根BaTi2O5纳米线漏电流研究表明,在低电压范围内,漏电流复合欧姆定律,在高电压范围内漏电流符合空间限制电流机制(SCLC)),其电导率约为2×10-6S/cm。
As the ferroelectric devices are taken development on minimization, integration and functionalization, there is growing interest in preparing low-dimensional ferroelectric nanostructure materials. The preparing of new one-dimensional ferroelectric nanostructures and exploring the relationship between their ferroelectric property and the scale and dimension are of great importance for both of fundamental research and technical applications.
     In this dissertation, the BaO-TiO2 system materials were chosen as the object of study. One-dimensional nanomaterials such as BaTiO3 nanowires and BaTi2O5 nanowires were synthesized by molten salt synthesis method or templating method. The synthesis process and the structure of the materials were studied intensively. Moden testing methods were used to explore the properties of the individual ferroelectric one-dimensional materials, such as piezoelectric property, ferroelectric property and leakage current. The main contents of the dissertation are described as follows:
     (1) Single-crystalline BaTi2O5 nanowires have been successfully prepared by a molten salt synthesis rout in high yield. The as-synthesized BaTi2O5 nanowires have a uniform structure with rectangular cross section (about 80-200 nm in width,70-150 nm in thickness) and lengths reaching up to tens of micrometers. The effects of raw material, salt type, the ratio of mixed salts, annealing temperature and annealing time on the phase composition and morphology of the products have been discussed. The optimum process condition has been obtained. The growth of BaTi2O5 nanowires is resulted from the anisotropy of the crystal structure. In the molten salt environment, BaTi2O5 crystal was more easily to form a wire-like structure. BaTiO3, Ba4Ti13O30 were formed together with BaTi2O5 phases at the beginning of the synthesis. And Ba4Ti13O30 was in a one-dimensional structure. With the annealing time prolong, pure phase BaTi2O5 nanowires are obtained after series of reactions under the synthesis temperature.
     (2) The molten salt synthesis route, previously reported to yield BaTiO3 nanowires was full of disputes and has been re-examined. The effects of surfactant, salt type, the ratio of mixed salts, annealing temperature and annealing time on the products'phase composition and morphology have been discussed. The results show that it is difficult to get BaTiO3 nanowires by molten salt synthesis method. The small amount of 1-D nanotructures in the sample can be indexed as BaTi2O5, BaTi5O11, BaTi3O7, Ba6Ti17O40 phases. None of the examined 1-D nanostructures in the sample could be indexed as BaTiO3. BaTiO3 is hard to grow anisotropically in the molten salt enviroment due to its high symmetry crystal structure. However, the BaTiO5, BaTi5O11, BaTi3O7,Ba6Ti17O40 phases with high anisometric crystal structures are more easily to form anisometric shapes. Based on above discussion, by adjusting the Ba/Ti ratio of the raw material and the process condition, pure phase one-dimensional Ba4Ti13O30 and BaTi5O11 nanomaterials were also obtained by molten salt synthesis method. This paper provides a new methodology for the synthesis of one-dimensional nanomaterial in BaO-TiO2 system.
     (3) One-dimensional BaTiO3 materials have been synthesized by template method. A new method based on templating and molten salt treatment is introduced to synthesize single-crystalline BaTiO3 nanowires. Pure phase single-crystalline BaTi2O5 nanowires were coated with BaC2O4·0.5H2O shell by the precipitation process. And then, the precursor was annealed in molten salt. Single-crystalline BaTiO3 nanowires were obtained finally. Compared with the BaTiO3 nanowires obtained by just annealing the precursor in air, the molten salt environment benefit the synthesis of BaTiO3 nanowires with perfect crystallinity. Besides, using K2Ti4O9 fibers as template, BaTiO3 fibers were obtained via the K2Ti4O9 fibers ion-exchanged with barium ions by hydrothermal process. Using H2Ti8O17 nanowires coated with BaC2O4·0.5H2O by a precipitation process as template, BaTiO3 nanowires were also obtained after annealed in air for a period of time. This kind of method is a self-sacrificial guide in-situ reaction, provides an efficient way to synthesis complex oxides with one-dimensional nanostructure. The coating process is a key factor in template synthesis of BaTiO3 nanowires.
     (4) The investigation of individual property of ferroelectric BaTiO3 and BaTi2O5 nanowires is still a challenge. The properties of individual BaTiO3 and BaTi2O5 nanowires were explored by SPM, Radiant Precision Workstation and nanomanipulate system. Piezoresponce force microscope measurements indicated that the d33* of BaTiO3 and BaTi2O5 were 15pm/V and 300 pm/V, respectively. BaTi2O5 has the better piezoresponce. The ferroelectric test along the nanowire's diameter direction revealed that the Pr of BaTi2O5 is about 10 times bigger than BaTiO3 under the same voltage. And the test along the nanowire's growth direction revealed that Pr of BaTi2O5 and BaTiO3 are similar. The Leakage current test of individual BaTi2O5 nanowires revealed that the leakage current obeyed the ohmic law under low voltage, and obeyed the space-charge limited current (SCLC) law under higher voltage. The conductivity value of BaTi2O5 nanowires is about 2×10-6 S/cm.
引文
[1]Dearaujo C A P, Cuchiaro J D, McMillan L D, et al., Fatigue-free ferroelectric capacitors with platinum-electrodes [J]. Nature,1995,374, (6523):627-629.
    [2]Lee J J, Thio C L, Desu S B, Retention and imprint properties of ferroelectric thin-films [J]. Physica Status Solidi a-Applied Research,1995,151, (1):171-182.
    [3]Scott J F, Dearaujo C A P, Ferroelectric memories [J]. Science,1989,246, (4936): 1400-1405.
    [4]Wang Z L, Characterizing the structure and properties of individual wire-like nanoentities [J]. Advanced Materials,2000,12, (17):1295-+.
    [5]Hu J T, Odom T W, Lieber C M, Chemistry and physics in one dimension:Synthesis and properties of nanowires and nanotubes [J]. Accounts of Chemical Research,1999,32, (5): 435-445.
    [6]Odom T W, Huang J L, Kim P, et al., Structure and electronic properties of carbon nanotubes [J]. Journal of Physical Chemistry B,2000,104, (13):2794-2809.
    [7]Liang W J, Bockrath M, Bozovic D, et al., Fabry-Perot interference in a nanotube electron waveguide [J]. Nature,2001,411, (6838):665-669.
    [8]Duan X F, Huang Y, Cui Y, et al., Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J]. Nature,2001,409, (6816):66-69.
    [9]Huang M H, Mao S, Feick H, et al., Room-temperature ultraviolet nanowire nanolasers [J]. Science,2001,292, (5523):1897-1899.
    [10]Thum-Albrecht T, Schotter J, Kastle C A, et al., Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates [J]. Science,2000,290, (5499):2126-2129.
    [11]Statton W O, The Phase Diagram of the BaO-TiO2 System [J]. The Journal of Chemical Physics,1951,19,(1):33-40.
    [12]Rase D E, Roy R, Phase equilibria in the system BaO-TiO2 [J]. Journal of the American Ceramic Society,1955,38, (3):102-113.
    [13]O'bryan H M, Thomson J, Phase-equilibria in TiO2-rich region of system BaO-TiO2 [J]. Journal of the American Ceramic Society,1974,57, (12):522-526.
    [14]Negas T, Roth R S, Parker H S, et al., Subsolidus phase relations in BaTiO3-TiO2 system [J]. Journal of Solid State Chemistry,1974,9, (3):297-307.
    [15]Ritter J J, Roth R S, Blendell J E, Alkoxide precursor synthesis and characterization of phases in the barium-titanium oxide system [J]. Journal of the American Ceramic Society, 1986,69, (2):155-162.
    [16]Kirby K W, Wechsler B A, Phase-relations in the barium titanate-titanium oxide system [J]. Journal of the American Ceramic Society,1991,74, (8):1841-1847.
    [17]Lu X G, Jin Z P, Thermodynamic assessment of the BaO-TiO2 quasibinary system [J]. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry,2000,24, (3): 319-338.
    [18]Lee S, Randall C A, Liu Z K, Modified phase diagram for the barium oxide-titanium dioxide system for the ferroelectric barium titanate [J]. Journal of the American Ceramic Society,2007,90, (8):2589-2594.
    [19]Lu X F, Zhang D L, Zhao Q D, et al., Large-scale synthesis of necklace-like single-crystalline PbTiO3 nanowires [J]. Macromolecular Rapid Communications,2006,27, (1):76-80.
    [20]Moazzami R, Hu C M, Shepherd W H, Electrical characteristics of ferroelectric pzt thin-films for dram applications [J]. IEEE Transactions on Electron Devices,1992,39, (9): 2044-2049.
    [21]Ma B H, Kwon D K, Narayanan M, et al., Leakage current characteristics and dielectric breakdown of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film capacitors grown on metal foils [J]. Journal of Physics D-Applied Physics,2008,41, (20).
    [22]Akashi T, Iwata H, Goto T, Dielectric property of single crystalline BaTi2O5 prepared by a floating zone method [J]. Materials Transactions,2003,44, (8):1644-1646.
    [23]Akashi T, Iwata H, Goto T, Preparation of BaTi2O5 single crystal by a floating zone method [J]. Materials Transactions,2003,44, (4):802-804.
    [24]Akishige Y, Fukano K, Shigematsu H, New ferroelectric BaTi2O5 [J]. Japanese Journal of Applied Physics, Part 2:Letters,2003,42, (8A):946.
    [25]Kimura T, Goto T, Yamane H, et al., A ferroelectric barium titanate, BaTi2O5 [J]. Acta Crystallographica Section C-Crystal Structure Communications,2003,59:1128-1130.
    [26]Xu Y B, Huang G H, Long H, Sol-gel synthesis of BaTi2O5 [J]. Materials Letters,2003,57, (22-23):3570-3573.
    [27]Yang C F, Lo S H, Cheng C M, Effect of glass addition on BaTi4O9 microwave ceramics [J]. Journal of Materials Science Letters,1998,17, (12):1029-1032.
    [28]Lin W Y, Speyer R F, Dielectric properties of microstructure-controlled Ba2Ti902o resonators [J]. Journal of the American Ceramic Society,1999,82, (2):325-330.
    [29]Yang C F, The microwave characteristics of glass-BaTi4O9 ceramics [J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes& Review Papers,1999,38, (6A): 3576-3579.
    [30]Mergen A, Fabrication of dielectric Ba2Ti902o ceramic by a polymerized complex method [J]. Ceramics-Silikaty,2009,53, (4):231-236.
    [31]Lin I N, Chang C B, Leou K C, et al., Effect of reaction sintering process on the microwave dielectric properties of Ba2Ti9O20 materials [J]. Journal of the European Ceramic Society, 2010,30, (2):159-163.
    [32]Jang B Y, Jeong Y H, Lee S J, et al., Microwave dielectric properties of the BaTi5O11 thin film grown on the poly-Si substrate using rf magnetron sputtering [J]. Journal of the European Ceramic Society,2006,26, (10-11):2151-2154.
    [33]Zhou H F, Wang H, Chen Y H, et al., Microwave Dielectric Properties of BaTi5O11 Ceramics Prepared by Reaction-Sintering Process with the Addition of CuO [J]. Journal of the American Ceramic Society,2008,91, (10):3444-3447.
    [34]Scott J F, Ferroelec Memories. Springer:New York,2000.
    [35]Ahn C H, Rabe K M, Triscone J M, Ferroelectricity at the nanoscale:Local polarization in oxide thin films and heterostructures [J]. Science,2004,303, (5657):488-491.
    [36]Harrison F, The crystal structure of barium dititanate, BaO.2TiO2 [J]. Acta Crystallographica,1956,9, (6):495-500.
    [37]Choi W B, Chung D S, Kang J H, et al., Fully sealed, high-brightness carbon-nanotube field-emission display [J]. Applied Physics Letters,1999,75, (20):3129-3131.
    [38]Li L Y, Dong Y F, Jiang W F, et al., High-performance capacitive humidity sensor based on silicon nanoporous pillar array [J]. Thin Solid Films,2008,517, (2):948-951.
    [39]Benvenuto P, Kafi A K M, Chen A C, High performance glucose biosensor based on the immobilization of glucose oxidase onto modified titania nanotube arrays [J]. Journal of Electroanalytical Chemistry,2009,627, (1-2):76-81.
    [40]Cui Y, Wei Q Q, Park H K, et al., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J]. Science,2001,293, (5533):1289-1292.
    [41]Kong J, Franklin N R, Zhou C W, et al., Nanotube molecular wires as chemical sensors [J]. Science,2000,287, (5453):622-625.
    [42]Kong J, Chapline M G, Dai H J, Functionalized carbon nanotubes for molecular hydrogen sensors [J]. Advanced Materials,2001,13, (18):1384-1386.
    [43]Trahey L, Becker C R, Stacy A M, Electrodeposited bismuth telluride nanowire arrays with uniform growth fronts [J]. Nano Letters,2007,7, (8):2535-2539.
    [44]Lee J, Farhangfar S, Cagnon L, et al., Tuning the crystallinity of thermoelectric Bi2Te3 nanowire arrays grown by pulsed electrodeposition [J]. Nanotechnology,2008,19, (36).
    [45]Yoo B, Xiao F, Bozhilov K N, et al., Electrodeposition of thermoelectric superlattice nanowires [J]. Advanced Materials,2007,19, (2):296-+.
    [46]Kang S H, Choi S H, Kang M S, et al., Nanorod-based dye-sensitized solar cells with improved charge collection efficiency [J]. Advanced Materials,2008,20, (1):54-+.
    [47]Yao Q H, Liu J F, Peng Q, et al., Nd-doped TiO2 nanorods:Preparation and application in dye-sensitized solar cells [J]. Chemistry-an Asian Journal,2006,1, (5):737-741.
    [48]Adachi M, Murata Y, Takao J, et al., Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism [J]. Journal of the American Chemical Society,2004,126, (45):14943-14949.
    [49]Han Y J, Kim J M, Stucky G D, Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15 [J]. Chemistry of Materials,2000,12, (8):2068-2069.
    [50]Sun L, Searson P C, Chien C L, Electrochemical deposition of nickel nanowire arrays in single-crystal mica films [J]. Applied Physics Letters,1999,74, (19):2803-2805.
    [51]Zhang H, Ma X Y, Xu J, et al., Directional CdS nanowires fabricated by chemical bath deposition [J]. Journal of Crystal Growth,2002,246, (1-2):108-112.
    [52]Li Y, Zhang Q M, Huang F Z, et al., Template-directed synthesis of sulfide semiconductors [J]. Chinese Journal of Inorganic Chemistry,2002,18, (1):79-82.
    [53]Wang G X, Park J S, Park M S, et al., Synthesis and high gas sensitivity of tin oxide nanotubes [J]. Sensors and Actuators B-Chemical,2008,131, (1):313-317.
    [54]Ren X, Jiang C H, Li D D, et al., Fabrication of ZnO nanotubes with ultrathin wall by electro deposition method [J]. Materials Letters,2008,62, (17-18):3114-3116.
    [55]Zhou J Z, Dong P, Cai C D, et al., Chemically modified AAO template and application to PANI nanowires synthesis [J]. Acta Physico-Chimica Sinica,2004,20, (11):1287-1291.
    [56]Qi L, Zhou J Z, Weng S H, et al., Size effect of conductivities of polyaniline nanowires [J]. Chemical Journal of Chinese Universities-Chinese,2007,28, (3):562-564.
    [57]袁新松.几种一维无机纳米材料的自牺牲模板法合成与表征.[硕士学位论文],合肥工业大学2008.
    [58]Dai H, Wong E W, Lu Y Z, et al., Synthesis and characterization of carbide nanorods [J]. Nature,1995,375, (6534):769-772.
    [59]Gates B, Wu Y, Yin Y, et al., Single-Crystalline Nanowires of Ag2Se Can Be Synthesized by Templating against Nanowires of Trigonal Se [J]. Journal of the American Chemical Society,2001,123, (46):11500-11501.
    [60]Mu L, Wan J, Ma D, et al., A Room Temperature Self-sacrificing Template Route to Ag2Te Fibers [J]. Chemistry Letters,2005,34, (1):52-53.
    [61]杨保俊,自牺牲模板法合成MnOOH纳米管的研究[J].稀有金属与硬质合金,2009,37,(3).
    [62]Wagner R S, Ellis W C, Vapor-liquid-solid mechanism of single crystal growth [J]. Applied Physics Letters,1964,4, (5):89-90.
    [63]Wu Y Y, Yang P D, Germanium nanowire growth via simple vapor transport [J]. Chemistry of Materials,2000,12, (3):605-607.
    [64]Hochbaum A I, Fan R, He R R, et al., Controlled growth of Si nanowire arrays for device integration [J]. Nano Letters,2005,5, (3):457-460.
    [65]Chen C C, Yeh C C, Chen C H, et al., Catalytic growth and characterization of gallium nitride nanowires [J]. Journal of the American Chemical Society,2001,123, (12): 2791-2798.
    [66]De Franceschi S, van Dam J A, Bakkers E, et al., Single-electron tunneling in InP nanowires [J]. Applied Physics Letters,2003,83, (2):344-346.
    [67]Park H D, Prokes S M, Cammarata R C, Growth of epitaxial InAs nanowires in a simple closed system [J]. Applied Physics Letters,2005,87, (6).
    [68]Wang Y W, Zhang L D, Liang C H, et al., Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires [J]. Chemical Physics Letters, 2002,357, (3-4):314-318.
    [69]Ma C, Wang Z L, Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws-A step towards nanomanufacturing [J]. Advanced Materials,2005,17, (21): 2635-2639.
    [70]Kong Y C, Yu D P, Zhang B, et al., Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach [J]. Applied Physics Letters,2001,78, (4):407-409.
    [71]Chen Y Q, Cui X F, Zhang K, et al., Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation [J]. Chemical Physics Letters,2003, 369, (1-2):16-20.
    [72]Pan Z W, Dai Z R, Wang Z L, Nanobelts of semiconducting oxides [J]. Science,2001,291, (5510):1947-1949.
    [73]Geng B Y, Meng G W, Zhang L D, et al., CdSe-Filled silica nanotubes [J]. Chemical Communications,2003, (20):2572-2573.
    [74]Jiang Z, Xie T, Geng B Y, et al., Synthesis of core-shell nanowires of FeCoNi alloy core with silicon oxide layers [J]. Inorganic Chemistry Communications,2004,7, (6):812-814.
    [75]Yu H, Li J B, Loomis R A, et al., Cadmium selenide quantum wires and the transition from 3D to 2D confinement [J]. Journal of the American Chemical Society,2003,125, (52): 16168-16169.
    [76]Hull K L, Grebinski J W, Kosel T H, et al., Induced branching in confined PbSe nanowires [J]. Chemistry of Materials,2005,17, (17):4416-4425.
    [77]Wang F D, Dong A G, Sun J W, et al., Solution-liquid-solid growth of semiconductor nanowires [J]. Inorganic Chemistry,2006,45, (19):7511-7521.
    [78]Li Y D, Wang J W, Deng Z X, et al., Bismuth nanotubes:A rational low-temperature synthetic route [J]. Journal of the American Chemical Society,2001,123, (40):9904-9905.
    [79]Sun X M, Li Y D, Cylindrical silver nanowires:Preparation, structure, and optical properties [J]. Advanced Materials,2005,17, (21):2626-+.
    [80]Zhang Y X, Li G H, Jin Y X, et al., Hydrothermal synthesis and photoluminescence of TiO2 nanowires [J]. Chemical Physics Letters,2002,365, (3-4):300-304.
    [81]Wang X, Li Y D, Rational synthetic strategy. From layered structure to MnO2 nanotubes [J]. Chemistry Letters,2004,33, (1):48-49.
    [82]Qiu Z R, Wong K S, Wu M M, et al., Microcavity lasing behavior of oriented hexagonal ZnO nanowhiskers grown by hydrothermal oxidation [J]. Applied Physics Letters,2004,84, (15):2739-2741.
    [83]Liao H W, Wang Y F, Liu X M, et al., Hydrothermal preparation and characterization of luminescent CdWO4 nanorods [J]. Chemistry of Materials,2000,12, (10):2819-2821.
    [84]Hu J Q, Lu Q Y, Deng B, et al., A hydrothermal reaction to synthesize CuFeS2 nanorods [J]. Inorganic Chemistry Communications,1999,2, (12):569-571.
    [85]Xie B, Wu Y, Jiang Y, et al., Shape-controlled synthesis of BaWO4 crystals under different surfactants [J]. Journal of Crystal Growth,2002,235, (1-4):283-286.
    [86]Durand B, Roubin M, Molten-salts reactions a process for fine-grained solids preparation [J]. Molten Salt Chemistry and Technology,1991,73:663-668.
    [87]Yoon K H, Cho Y S, Kang D H, Molten salt synthesis of lead-based relaxors [J]. Journal of Materials Science,1998,33, (12):2977-2984.
    [88]Geantet C, Kerridge D H, Decamp T, et al., Hydrotreating Properties of MoS2 Catalysts Prepared from Thiocyanate Melts [J]. Molten Salt Chemistry and Technology,1991,73: 693-698.
    [89]Arendt R H, Rosolowski J H, Szymaszek J W, Lead zirconate titanate ceramics from molten salt solvent synthesized powders [J]. Materials Research Bulletin,1979,14, (5): 703-709.
    [90]Kimura T, Kanazawa T, Yamaguchi T, Preparation of Bi4Ti3O12 Powders in the Presence of Molten Salt Containing LiCl [J]. Journal of the American Ceramic Society,1983,66, (8): 597-600.
    [91]Idrissi H, Aboujalil A, Deloume J P, et al., Molten Salt Prepared Lead Titanate:Powder Characterization, Sintering and Physical Properties [J]. Journal of the European Ceramic Society,1999,19, (11):1997-2004.
    [92]Jiang Z Y, Xu T, Xie Z X, et al., Molten salt route toward the growth of ZnO nanowires in unusual growth directions [J]. Journal of Physical Chemistry B,2005,109, (49): 23269-23273.
    [93]Hou D D, Liu Y K, Synthesis and characterization of SnO2 nanorods [J]. Journal of Inorganic Materials,2002,17, (4):691-695.
    [94]Xu C K, Zhao X L, Liu S, et al., Large-scale synthesis of rutile SnO2 nanorods [J]. Solid State Communications,2003,125, (6):301-304.
    [95]Ke X F, Cao J M, Zheng M B, et al., Molten salt synthesis of single-crystal Co3O4 nanorods [J]. Materials Letters,2007,61, (18):3901-3903.
    [96]Tas A C, Molten salt synthesis of calcium hydroxyapatite whiskers [J]. Journal of the American Ceramic Society,2001,84, (2):295-300.
    [97]Wang X, Gao L S, Zhou F, et al., Large-scale synthesis of alpha-LiFeO2 nanorods by low-temperature molten salt synthesis (MSS) method [J]. Journal of Crystal Growth,2004, 265, (1-2):220-223.
    [98]Tian Y, Chen D R, Jiao X L, et al., Facile preparation and electrochemical properties of cubic-phase Li4Mn5O12 nanowires [J]. Chemical Communications,2007, (20):2072-2074.
    [99]Wang Y G, Ma J F, Tao J T, et al., Morphology-controlled synthesis of CdWO4 nanorods and nanoparticles via a molten salt method [J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2006,130, (1-3):277-281.
    [100]Begg B D, Vance E R, Nowotny J, Effect of Particle-Size on the Room-Temperature Crystal-Structure of Barium-Titanate [J]. Journal of the American Ceramic Society,1994, 77, (12):3186-3192.
    [101]Luan W L, Gao L, Kawaoka H, et al., Fabrication and characteristics of fine-grained BaTiO3 ceramics by spark plasma sintering [J]. Ceramics International,2004,30, (3): 405-410.
    [102]Guo X, Pithan C, Ohly C, et al., Enhancement of p-type conductivity in nanocrystalline BaTiO3 ceramics [J]. Applied Physics Letters,2005,86, (8):082110.
    [103]Buscaglia M T, Viviani M, Buscaglia V, et al., High dielectric constant and frozen macroscopic polarization in dense nanocrystalline BaTiO3 ceramics [J]. Physical Review B, 2006,73, (6):064114.
    [104]Urban J J, Yun W S, Gu Q, et al., Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate [J]. Journal of the American Chemical Society,2002,124, (7):1186-1187.
    [105]Urban J J, Spanier J E, Lian O Y, et al., Single-crystalline barium titanate nanowires [J]. Advanced Materials,2003,15, (5):423-426.
    [106]Yun W S, Urban J J, Gu Q, et al., Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe Microscopy [J]. Nano Letters,2002,2, (5): 447-450.
    [107]Joshi U A, Lee J S, Template-free hydrothermal synthesis of single-crystalline barium titanate and strontium titanate nanowires [J]. Small,2005,1, (12):1172-1176.
    [108]Joshi U A, Yoon S H, Baik S G, et al., Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires:A structural investigation [J]. Journal of Physical Chemistry B,2006,110, (25):12249-12256.
    [109]Tripathy S K, Sahoo T, Mohapatra M, et al., XRD studies on hydrothermally synthesised BaTiO3 from TiO2-Ba(OH)(2)-NH3 system [J]. Materials Letters,2005,59, (28): 3543-3549.
    [110]Sahoo T, Tripathy S K, Mohapatra A, et al., X-ray diffraction and microstructural studies on hydrothermally synthesized cubic barium titanate from TiO2-Ba(OH)(2)-H2O system [J]. Materials Letters,2007,61, (6):1323-1327.
    [111]Kwon S G, Park B H, Choi K, et al., Solvothermally synthesized tetragonal barium titanate powders using H2O/EtOH solvent [J]. Journal of the European Ceramic Society,2006,26, (8):1401-1404.
    [112]Matsui K, Noguchi T, Islam N M, et al., Rapid synthesis of BaTiO3 nanoparticles in supercritical water by continuous hydrothermal flow reaction system [J]. Journal of Crystal Growth,2008,310, (10):2584-2589.
    [113]Jiang C L, Kiyofumi K, Wang Y F, et al., Synthesis of BaTiO3 nanowires at low temperature [J]. Crystal Growth& Design,2007,7, (12):2713-2715.
    [114]Zhang S Y, Jiang F S, Qu G, et al., Synthesis of single-crystalline perovskite barium titanate nanorods by a combined route based on sol-gel and surfactant-templated methods [J]. Materials Letters,2008,62, (16):2225-2228.
    [115]高远浩,李灵芝,牛和林,单晶BaTiO3纳米线的低温溶剂热法制备和表征[J].化学通报,2004,5:383-386.
    [116]Mao Y B, Banerjee S, Wong S S, Large-scale synthesis of single-crystal line perovskite nanostructures [J]. Journal of the American Chemical Society,2003,125, (51): 15718-15719.
    [117]Xu C Y, Zhang Q, Zhang H, et al., Synthesis and characterization of single-crystalline alkali titanate nanowires [J]. Journal of the American Chemical Society,2005,127, (33): 11584-11585.
    [118]Rorvik P M, Lyngdal T, Saeterli R, et al., Influence of volatile chlorides on the molten salt synthesis of ternary oxide nanorods and nanoparticles [J]. Inorganic Chemistry,2008,47, (8):3173-3181.
    [119]Deng H, Qiu Y C, Yang S H, General surfactant-free synthesis of MTiO3 (M= Ba, Sr, Pb) perovskite nanostrips [J]. Journal of Materials Chemistry,2009,19, (7):976-982.
    [120]李凌,王芳,王传彬,et al.,无铅铁电材料-BaTi2O5的研究进展[J].硅酸盐通报,2009,24,(4):751-755.
    [121]Xu J, Akishige Y, Relaxor in KF-doped BaTi2O5 ceramics by spark plasma sintering [J]. Applied Physics Letters,2008,92, (5):052902.
    [122]Beltran H, Gomez B, Maso N, et al., Electrical properties of ferroelectric BaTi2O5 and dielectric Ba6Ti17O40 ceramics [J]. Journal of Applied Physics,2005,97, (8):084104.
    [123]Xu J, Akishige Y, Synthesis and dielectric properties of KF-doped BaTi2O5 ceramics [J]. Ferroelectrics,2007,356:316-+.
    [124]Akishige Y, Synthesis and physical properties of single crystals and ceramics of new ferroelectric BaTi2O5 [J]. Japanese Journal of Applied Physics, Part 1:Regular Papers, Short Notes& Review Papers,2005,44, (9B):7144-7147.
    [125]Pfaff G, Synthesis and characterization of BaTi2O5 [J]. Journal of Materials Science Letters,1990,9, (10):1145-1147.
    [126]Javadpour J, Eror N G, Raman-spectroscopy of higher titanate phases in the BaTiO3-TiO2 system [J]. Journal of the American Ceramic Society,1988,71, (4):206-213 and references therein.
    [127]Tangjuank S, Tunkasiri T, Sol-gel synthesis and characterization of BaTi2O5 powders [J]. Applied Physics a-Materials Science& Processing,2005,81, (5):1105-1107.
    [128]Akishige Y, Fukano K, Shigematsu H, Crystal growth and dielectric properties of new ferroelectric barium titanate:BaTi2O5 [J]. Journal of Electroceramics,2004,13, (1-3): 561-565.
    [129]Wang L, Li G C, Zhang Z K, Synthesis of BaTi2O5 nanobelts [J]. Materials Research Bulletin,2006,41, (4):842-846.
    [130]Yu J Y, Tang S L, Wang R L, et al., Synthesis of single-crystalline barium dititanate nanobelts [J]. Crystal Growth& Design,2008,8, (5):1481-1483.
    [131]Xia Y N, Yang P D, Sun Y G, et al., One-dimensional nanostructures:Synthesis, characterization, and applications [J]. Advanced Materials,2003,15, (5):353-389.
    [132]Chaudhari G N, Bambole D R, Bodade A B, Structural and gas sensing behavior of nanocrystalline BaTiO3 based liquid petroleum gas sensors [J]. Vacuum,2006,81, (3): 251-256.
    [133]Craighead H G, Nanoelectromechanical systems [J]. Science,2000,290, (5496): 1532-1535.
    [134]钟维烈,铁电体物理学.北京:科学出版社,2000.
    [135]张福学,王丽坤,现代压电学(中).北京:科学出版社,2003,52-65.
    [136]Spanier J E, Kolpak A M, Urban J J, et al., Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires [J]. Nano Letters,2006,6, (4):735-739.
    [137]Wang Z Y, Hu J, Yu M F, One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire [J]. Applied Physics Letters,2006,89, (26):263119.
    [138]Wang Z Y, Suryavanshi A P, Yu M F, Ferroelectric and piezoelectric behaviors of individual single crystalline BaTiO3 nanowire under direct axial electric biasing [J]. Applied Physics Letters,2006,89, (8):082903.
    [139]Wang Z Y, Hu J, Suryavanshi A P, et al., Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load [J]. Nano Letters,2007,7, (10): 2966-2969.
    [140]Wang Z Y, Hu J, Yu M F, Axial polarization switching in ferroelectric BaTiO3 nanowire [J]. Nanotechnology,2007,18, (23):235203.
    [141]Schilling A, Bowman R M, Catalan G, et al., Morphological control of polar orientation in single-crystal ferroelectric nanowires [J]. Nano Letters,2007,7, (12):3787-3791.
    [142]Fu H X, Bellaiche L, Ferroelectricity in barium titanate quantum dots and wires [J]. Physical Review Letters,2003,91, (25):257601.
    [143]Naumov, Ⅱ, Bellaiche L, Fu H X, Unusual phase transitions in ferroelectric nanodisks and nanorods [J]. Nature,2004,432, (7018):737-740.
    [144]Geneste G, Bousquet E, Junquera J, et al., Finite-size effects in BaTiO3 nanowires [J]. Applied Physics Letters,2006,88, (11):112906.
    [145]Hong J W, Fang D N, Size-dependent ferroelectric behaviors of BaTiO3 nanowires [J]. Applied Physics Letters,2008,92, (1):012906.
    [146]Zheng Y, Woo C H, Wang B, Pulse-Loaded Ferroelectric Nanowire as an Alternating Current Source [J]. Nano Letters,2008,8, (10):3131-3136.
    [147]Zhang Y H, Hong J W, Liu B, et al., Molecular dynamics investigations on the size-dependent ferroelectric behavior of BaTiO3 nanowires [J]. Nanotechnology,2009,20, (40):405703.
    [148]Ma W H, Surface tension and Curie temperature in ferroelectric nanowires and nanodots [J]. Applied Physics a-Materials Science& Processing,2009,96, (4):915-920.
    [149]Pilania G, Alpay S P, Ramprasad R, Ab initio study of ferroelectricity in BaTiO3 nanowires [J]. Physical Review B,2009,80, (1):014113.
    [150]Hushur A, Kojima S, Shigematsu H, et al., Raman scattering study on new ferroelectric BaTi2O5 single crystals [J]. Journal of the Korean Physical Society,2005,46, (1):86-89.
    [151]Bertozzi G, Surface Tension of Liquid Alkali Halide Binary Systems [J]. The Journal of Physical Chemistry,1965,69, (8):2606-2607.
    [152]仲维卓,华素坤,晶体生长形态学.科学出版社,1999,198-211.
    [153]进藤大辅,平贺贤二,刘安生(译),材料评价的分析电子显微方法.北京:冶金工业出版社,1998,37-73.
    [154]Cheng B, Guo H, Yu J G, et al., Facile preparation, characterization and optical properties of rectangular PbCrO4 single-crystal nanorods [J]. Journal of Alloys and Compounds,2007, 431,(1-2):L4-L7.
    [155]Mai L Q, Gu Y H, Han C H, et al., Orientated Langmuir-Blodgett Assembly of VO2 Nanowires [J]. Nano Letters,2009,9, (2):826-830.
    [156]Davies P K, Roth R S, Defect intergrowths in barium polytitanates:2. BaTi5O11 [J]. Journal of Solid State Chemistry,1987,71, (2):503-512.
    [157]Tillmanns E, Die Kristallstruktur von BaTi5O11[J]. Acta Crystallographica Section B,1969, 25, (8):1444-1452.
    [158]Lu H C, Burkhart L E, Schrader G L, Sol-gel process for the preparation of Ba2Ti902o and BaTi5O11 [J]. Journal of the American Ceramic Society,1991,74, (5):968-972.
    [159]Toshimi F k, Chihiro S, Masahiko O, Effects of heating rate on sintering of alkoxide-derived BaTi5O11 powder [J]. Journal of Materials Research 1992,7, (1):192-196.
    [160]Song Y, Wang F P, Jiang Z H, et al., Hydrothermal synthesis for the preparation of BaTi5O11 fibers [J]. Journal of Materials Science Letters,1999,18, (3):177-179.
    [161]Tangjuank S, Yu L D, Tunkasiri T, Homogeneous precipitation synthesis and characterization of BaTi5O11 powders [J]. Smart Materials& Structures,2003,12, (4): 656-659.
    [162]Jeong Y H, Jang B Y, Lee S J, et al., Structural and dielectric properties of the BaTi5O11 thin film grown on the poly-Si substrate using RF magnetron sputtering [J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes& Review Papers,2004,43, (8A):5506-5509.
    [163]Tillmann.E, Crystal structure of tetrabarium tridecatitanate [J]. Inorganic& Nuclear Chemistry Letters,1971,7, (12):1169-&.
    [164]Palathinkal T J, Cheng H F, Lee Y C, et al., Low loss tunable thick films based on (Ba,Sr)TiO3 and Ba4Ti1303o materials [J]. Integrated Ferroelectrics,2004,66:213-221.
    [165]Wang S F, Chiang C C, Wang C H, et al., Phase stability of B2O3-added Ba2Ti902o ceramic: Processing effects [J]. Journal of Materials Research,2003,18, (1):201-207.
    [166]Vanderah T A, Roth R S, Siegrist T, et al., Subsolidus phase equilibria and crystal chemistry in the system BaO-TiO2-Ta2O5 [J]. Solid State Sciences,2003,5, (1):149-164.
    [167]Cheng H F, Joseph P T, Lee Y C, et al., Effect of high-Q Ba4Ti13O30 materials on the dielectric properties of (Ba-x,Sr1-x)TiO3 films for microwave communication [J]. Journal of Electromagnetic Waves and Applications,2007,21, (11):1445-1451.
    [168]Poznyak S K, Talapin D V, Kulak A I, Structural, optical, and photoelectrochemical properties of nanocrystalline TiO2-In2O3 composite solids and films prepared by sol-gel method [J]. Journal of Physical Chemistry B,2001,105, (21):4816-4823.
    [169]Wen T, Zhang J, Chou T P, et al., Template-Based Growth of Oxide Nanorod Arrays by Centrifugation [J]. Journal of Sol-Gel Science and Technology,2005,33, (2):193-200.
    [170]王丹.金属氧化物一维纳米材料的制备及其气敏、光、电、磁性能研究.[博士学位论文],中山大学,2007.
    [171]Woudenberg F C M, Sager W F C, ten Elshof J E, et al., Nanostructured barium titanate thin films from nanoparticles obtained by an emulsion precipitation method [J]. Thin Solid Films,2005,471, (1-2):134-139.
    [172]Wada S, Hoshina T, Yasuno H, et al., Size dependence of dielectric properties for nm-sized barium titanate crystallites and its origin [J]. Journal of the Korean Physical Society,2005, 46, (1):303-307.
    [173]Akdogan E K, Safari A, Phenomenological theory of size effects on the cubic-tetragonal phase transition in BaTiO3 nanocrystals [J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes& Review Papers,2002,41, (11B):7170-7175.
    [174]王福平,姜兆华,宋英,et al., KDC法合成四钛酸钾纤维的反应机制研究[J].硅酸盐学报,1999,27,(4).
    [175]蔡宗英.铅基钛酸盐粉体熔盐法制备及其机理研究.[博士学位论文],北京科技大学,2007.
    [176]Ohara Y, Miyayama M, Shimizu T, et al., Barium titanate fabricated from fur-fibres [J]. Journal of Materials Science-Materials in Electronics,1996,7, (1):27-33.
    [177]Lee J K, Lee K H, Kim H, Microstructural evolution of potassium titanate whiskers during the synthesis by the calcination and slow-cooling method [J]. Journal of Materials Science, 1996,31, (20):5493-5498.
    [178]Ring T A, Fundamentals of ceramic powder processing and synthesis.1996,191.
    [179]Han K R, Jang J W, Cho S Y, et al., Preparation and dielectric properties of
    low-temperature-sinterable (Zr0.8Sn0.2)Ti04 powder [J]. Journal of the American Ceramic Society,1998,81, (5):1209-1214.
    [180]Colon G, Aviles M A, Navio J A, et al., Thermal behaviour of a TiO2-ZrO2 microcomposite prepared by chemical coating [J]. Journal of Thermal Analysis and Calorimetry,2002,67, (1):229-238.
    [181]Kan A, Ogawa H, Low-temperature synthesis and microwave dielectric properties of Mg4Nb2O9 ceramics synthesized by a precipitation method [J]. Journal of Alloys and Compounds,2004,364, (1-2):247-249.
    [182]Buscaglia M T, Buscaglia V, Viviani M, et al., Ferroelectric hollow particles obtained by solid-state reaction [J]. Nanotechnology,2008,19, (22):225602.
    [183]Bera J, Sarkar D, Formation of BaTiO3 from barium oxalate and TiO2 [J]. Journal of Electroceramics,2003,11, (3):131-137.
    [184]Rossel M, Hohe H R, Leipner H S, et al., Raman microscopic investigations of BaTiO3 precursors with core-shell structure [J]. Analytical and Bioanalytical Chemistry,2004,380, (1):157-162.
    [185]Wen H, Wang X H, Deng X Y, et al., Characterization of (100)-oriented BiScO3-PbTiO3 thin films synthesized by a modified sol-gel method [J]. Applied Physics Letters,2006,88, (22):222904.
    [186]Deng X Y, Wang X H, Wen H, et al., Phase transitions in nanocrystalline barium titanate ceramics prepared by spark plasma sintering [J]. Journal of the American Ceramic Society, 2006,89, (3):1059-1064.
    [187]Deng X Y, Wang X H, Chen L L, et al., Observation of ferroelectric domain patterns in nanocrystalline BaTiO3 ceramics [J]. Applied Physics Letters,2006,89, (15).
    [188]Deng X Y, Wang X H, Wen H, et al., Ferroelectric properties of nanocrystalline barium titanate ceramics [J]. Applied Physics Letters,2006,88, (25):252905.
    [189]Wang X H, Deng X Y, Wen H, et al., Phase transition and high dielectric constant of bulk dense nanograin barium titanate ceramics [J]. Applied Physics Letters,2006,89, (16): 162902.
    [190]Wang L H, Dai Y, Deng Z, Nanoscale and Spatial Variations Investigation of Etch Damage In Integrated Ferroelectric Capacitor Side Wall by Piezoresponse Force Microscopy [J]. Japanese Journal of Applied Physics,2009,48, (1):011401.
    [191]Harada S, Dunn S, Synthesis and analysis of lead titanate nano-islands [J]. Integrated Ferroelectrics:An International Journal,2007,87, (1):67-76.
    [192]Yang Y, Wang X H, Zhong C F, et al., Ferroelectric PbTiO3 nanotube arrays synthesized by hydrothermal method [J]. Applied Physics Letters,2008,92, (12):122907.
    [193]Takahashi R, Yonezawa Y, Nakajima K, et al., Nanoskyscrapers of ferroelectric Bi4Ti3O12 [J]. Applied Physics Letters,2006,88, (15):152904.
    [194]Maiwa H, Kim S H, Temperature dependence of electrical and electromechanical properties of Pb(Mg1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3-Pb(Zr,Ti)O3 thin films [J]. Ceramics International, 2008,34, (4):961-965.
    [195]Maiwa H, Iizawa N, Togawa D, et al., Electromechanical properties of Nd-doped Bi4Ti3O12 films:A candidate for lead-free thin-film piezoelectrics [J]. Applied Physics Letters,2003, 82,(11):1760-1762.
    [196]Hwang S C, Lynch C S, McMeeking R M, Ferroelectric/ferroelastic interactions and a polarization switching model [J]. Acta Metallurgica et Materialia,1995,43, (5):2073-2084.
    [197]Lynch C S, The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT [J]. Acta Materialia,1996,44, (10):4137-4148.
    [198]Zhao M H, Wang Z L, Mao S X, Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope [J]. Nano Letters,2004,4, (4): 587-590.
    [199]Chen Q M, Qin L F, Wang Q M, Property characterization of AlN thin films in composite resonator structure [J]. Journal of Applied Physics,2007,101, (8):084103.
    [200]Zubko P, Jung D J, Scott J F, Electrical characterization of PbZr0.4Ti0.6O3 capacitors [J]. Journal of Applied Physics,2006,100, (11):7.
    [201]Das R R, Bhattacharya P, Katiyar R S, et al., Leakage current behavior of SrBi2Ta2O9 ferroelectric thin films on different bottom electrodes [J]. Journal of Applied Physics,2002, 92, (10):6160-6164.
    [202]Yang Y S, Lee S J, Kim S H, et al., Schottky barrier effects in the electronic conduction of sol-gel derived lead zirconate titanate thin film capacitors [J]. Journal of Applied Physics, 1998,84, (9):5005-5011.
    [203]Schloss L F, McIntyre P C, Polarization recovery of fatigued Pb(Zr,Ti)O-3 thin films: Switching current studies [J]. Journal of Applied Physics,2003,93, (3):1743-1747.
    [204]Ito D, Fujimura N, Yoshimura T, et al., Influence of Schottky and Poole-Frenkel emission on the retention property of YMnO3-based metal/ferroelectric/insulator/semiconductor capacitors [J]. Journal of Applied Physics,2003,94, (6):40364041.
    [205]Nagaraj B, Aggarwal S, Ramesh R, Influence of contact electrodes on leakage characteristics in ferroelectric thin films [J]. Journal of Applied Physics,2001,90, (1): 375-382.
    [206]Bhattacharyya S, Laha A, Krupanidhi S B, Analysis of leakage current conduction phenomenon in thin SrBi2Ta2O9 films grown by excimer laser ablation [J]. Journal of Applied Physics,2002,91, (7):4543-4548.
    [207]Chen J L, Chen H M, Lee J Y M, An investigation on the leakage current and time dependent dielectric breakdown of ferroelectric lead-zirconate-titanate thin film capacitors for memory device applications [J]. Applied Physics Letters,1996,69, (26):4011-4013.
    [208]Zafar S, Jones R E, Jiang B, et al., The electronic conduction mechanism in barium strontium titanate thin films [J]. Applied Physics Letters,1998,73, (24):3533-3535.
    [209]Drezner Y, Nitzani M, Berger S, Piezoelectric ultrathin BaTiO3 films [J]. Applied Physics Letters,2005,86, (4).
    [210]Morrison F D, Zubko P, Jung D J, et al., High-field conduction in barium titanate [J]. Applied Physics Letters,2005,86, (15):152903.
    [211]Li P, Lu T M, Conduction mechanisms in BaTiO3 thin films [J]. Physical Review B,1991, 43:12461-12464.
    [212]Bussolotti F, D'Ortenzi L, Grossi V, et al., In situ manipulation and electrical characterization of multiwalled carbon nanotubes by using nanomanipulators under scanning electron microscopy [J]. Physical Review B,2007,76, (12):125415.
    [213]Peng Y, Cullis T, Inkson B, Accurate electrical testing of individual gold nanowires by in situ scanning electron microscope nanomanipulators [J]. Applied Physics Letters,2008,93, (18).
    [214]Jonscher A K, Dielectric Relaxation in Solids. London:Chelsea Dielectrics Press,1983.
    [215]Kao K C, Hwang W, Electrical Transport in Solids:With Particular Reference to Organic Semiconductors. London:Pergamon,1981.