机械张应力对成牙骨质细胞矿化相关基因表达影响的体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙根的吸收和修复经常存在于正畸牙移动过程中。成牙骨质细胞在牙根修复过程中具有重要的意义。位于牙根表面的成牙骨质细胞可以抵抗破骨细胞的附着,从而避免牙根吸收;在已吸收的牙根表面,成牙骨质细胞分泌形成新生的牙骨质样组织对其进行修复。当牙根吸收与修复平衡被打破后,牙根吸收形成。正畸牙移动过程中,机械张应力对成牙骨质细胞矿化功能的影响尚不清楚,国内外尚未见报导。
     本研究目的是建立一种新的体外培养成牙骨质细胞方法,采用四点弯曲加力系统,以成牙骨质细胞为研究对象建立细胞应力刺激体外模型,检测在不同刺激强度、不同作用时间的张应力刺激下,成牙骨质细胞矿化相关基因BSP mRNA的表达,在分子生物学水平上研究张应力刺激对成牙骨质细胞矿化功能表达的影响,探讨在正畸牙移动过程中,机械张应力对成牙骨质细胞矿化功能的影响。
     结果显示:
     1、体外分离培养牛来源的成牙骨质细胞表达牙骨质黏附蛋白、碱性磷酸酶、骨桥蛋白及骨钙素。
     2、体外培养的成牙骨质细胞可在体外形成矿化组织,具有矿化功能。
     3、张应力刺激可促进成牙骨质细胞的BSP mRNA的表达,2000με表达BSP mRNA较4000με应力强。
Background and objective: Root Resorption is a common consequence of orthodontic teeth movement. Cementoblast plays important roles in the progress of root resorption and repair. Cementoblast is located on the surface of the root cementum to inhibit the attachment of the osteoclasts and form the new cementum-like tissue in the lacuna on the resorpted root surface. The pathologic resorption is formed when the balance of the resorption and repair is disturbed. The development of the strain apparatuses in vitro has allowed investigate the effects of the mechanical stimuli on cementoblasts functions. To understand and control effects of strain on cementum forming, It is essential to learn the effects of mechanical strains on the cementoblasts. The goal of this research is to determine the effects of the mechanical strain on the expression of the mineral associated gene in cementoblasts in vitro.
    Methods: Cementoblasts was isolated from the cementum of the bovine root surface. The expression of cementum-derived attachment proteins, bone sialoproteins, osteopotin was examined by cell immunochemistry. The cementoblasts was cultured with the osteogenic medium for 13 days; the deposit of the calcium was evaluated by Von Kossa stain. The cementoblasts was loaded mechanical strain by four points bending system for 3,6,12,24 and 36 hours, the static mechanical strain magnitude was 2000με and 4000με, strain cycle was set to lcycle/sec(0.5Hz). After loading the mechanical strain,
引文
1. Popowics T, Foster BL, Swanson EC, Fong H, Somerman MJ. Defining the roots of cementum formation. Cells Tissues Organs 2005;181:248-257.
    
    2. Brudvik P, Rygh P. The repair of orthodontic root resorption: an ultrastructural study. Eur J Orthod 1995;17:189-198.
    
    3. Brudvik P, Rygh P. Transition and determinants of orthodontic root resorption-repair sequence. Eur J Orthod 1995;17:177-188.
    
    4. Emslie RD. Some considerations on the role of cementum in periodontal disease. J Clin Periodontol 1978;5:1-12.
    
    5. Saygin NE, Giannobile WV, Somerman MJ. Molecular and cell biology of cementum. Periodontol 2000 2000;24:73-98.
    
    6. Poison A, Caton J, Poison AP, Nyman S, Novak J, Reed B. Periodontal response after tooth movement into intrabony defects. J Periodontol 1984;55:197-202.
    
    
    7. Schroeder HE. Human cellular mixed stratified cementum: a tissue with alternating layers of acellular extrinsic- and cellular intrinsic fiber cementum. Schweiz Monatsschr Zahnmed 1993;103:550-560.
    
    8. Tenorio D, Cruchley A, Hughes FJ. Immunocytochemical investigation of the rat cementoblast phenotype. J Periodontal Res 1993;28:411-419.
    
    9. Arzate H, Olson SW, Page RC, Narayanan AS. Isolation of human tumor cells that produce cementum proteins in culture. Bone Miner 1992;18:15-30.
    
    10. Grzesik WJ, Kuzentsov SA, Uzawa K, Mankani M, Robey PG, Yamauchi M. Normal human cementum-derived cells: isolation, clonal expansion, and in vitro and in vivo characterization. J Bone Miner Res 1998; 13:1547-1554.
    
    
    11. D'Errico JA, MacNeil RL, Takata T, Berry J, Strayhorn C, Somerman MJ. Expression of bone associated markers by tooth root lining cells, in situ and in vitro. Bone 1997;20:117-126.
    
    12. D'Errico JA, Berry JE, Ouyang H, Strayhorn CL, Windle JJ, Somerman MJ. Employing a transgenic animal model to obtain cementoblasts in vitro. J Periodontol 2000;71:63-72.
    
    13. Arzate H, Olson SW, Page RC, Gown AM, Narayanan AS. Production of a monoclonal antibody to an attachment protein derived from human cementum. Faseb J1992;6:2990-2995.
    
    14. Narayanan AS, Ikezawa K, Wu D, Pitaru S. Cementum specific components which influence periodontal connective tissue cells. Connect Tissue Res 1995;33:19-21.
    
    15. McAllister B, Narayanan AS, Miki Y, Page RC. Isolation of a fibroblast attachment protein from cementum. J Periodontal Res 1990;25:99-105.
    
    16. Wu D, Ikezawa K, Parker T, Saito M, Narayanan AS. Characterization of a collagenous cementum-derived attachment protein. J Bone Miner Res 1996; 11:686-692.
    
    17. Saito M, Iwase M, Maslan S, Nozaki N, Yamauchi M, Handa K et al. Expression of cementum-derived attachment protein in bovine tooth germ during cementogenesis. Bone 2001;29:242-248.
    
    
    18. Arzate H, Alvarez-Perez MA, Aguilar-Mendoza ME, Alvarez-Fregoso O. Human cementum tumor cells have different features from human osteoblastic cells in vitro. J Periodontal Res 1998;33:249-258.
    
    19. Ten Cate AR. The development of the periodontium--a largely ectomesenchymally derived unit. Periodontol 2000 1997;13:9-19.
    
    20. Cho MI, Garant PR. Expression and role of epidermal growth factor receptors during differentiation of cementoblasts, osteoblasts, and periodontal ligament fibroblasts in the rat. Anat Rec 1996;245:342-360.
    
    
    21. Hammarstrom L. The role of enamel matrix proteins in the development of cementum and periodontal tissues. Ciba Found Symp 1997;205:246-255; discussion 255-260.
    
    22. Melcher AH, Cheong T, Cox J, Nemeth E, Shiga A. Synthesis of cementum-like tissue in vitro by cells cultured from bone: a light and electron microscope study J Periodontal Res; 1986: p. 592-612.
    
    23. Tenorio D, Foyle DM, Hughes FJ. The modulatory role of cementum matrix on osteoblastic cells in vitro. J Periodontal Res 1997;32:362-374.
    
    24. MacNeil RL, D'Errico JA, Ouyang H, Berry J, Strayhorn C, Somerman MJ. Isolation of murine cementoblasts: unique cells or uniquely-positioned osteoblasts? Eur J Oral Sci 1998; 106 Suppl 1:350-356.
    
    25. D'Errico JA, Ouyang H, Berry JE, MacNeil RL, Strayhorn C, Imperiale MJ et al. Immortalized cementoblasts and periodontal ligament cells in culture. Bone 1999;25:39-47.
    
    26. Kitagawa M, Kitagawa S, Kudo Y, Ogawa I, Miyauchi M, Tahara H et al. Establishment of cementoblast cell lines from rat cementum lining cells by transfection with temperature-sensitive simian virus-40 T-antigen gene. Bone 2005;37:220-226.
    
    27. Handa K, Saito M, Yamauchi M, Kiyono T, Sato S, Teranaka T et al. Cementum matrix formation in vivo by cultured dental follicle cells. Bone 2002;31:606-611.
    
    28. Hou JX, Cao CF, Meng HX. [The in vivo formation of cementum-like tissue by bovine cementoblasts]. Zhonghua Kou Qiang Yi Xue Za Zhi 2003;38:70-72.
    
    29. Liu HW, Yacobi R, Savion N, Narayanan AS, Pitaru S. A collagenous cementum-derived attachment protein is a marker for progenitors of the mineralized tissue-forming cell lineage of the periodontal ligament. J Bone Miner Res 1997;12:1691-1699.
    
    30. Yonemura K, Narayanan AS, Miki Y, Page RC, Okada H. Isolation and partial characterization of a growth factor from human cementum. Bone Miner 1992;18:187-198.
    
    31. Narayanan SA, Yonemura K. Purification and characterization of a novel growth factor from cementum. J Periodontal Res 1993;28:563-565.
    
    32. Ikezawa K, Hart CE, Williams DC, Narayanan AS. Characterization of cementum derived growth factor as an insulin-like growth factor-I like molecule. Connect Tissue Res 1997;36:309-319.
    
    33. Ivanovski S, Komaki M, Bartold PM, Narayanan AS. Periodontal-derived cells attach to cementum attachment protein via alpha 5 beta 1 integrin. J Periodontal Res 1999;34:154-159.
    
    34. Nakae H, Narayanan AS, Raines E, Page RC. Isolation and partial characterization of mitogenic factors from cementum. Biochemistry 1991;30:7047-7052.
    
    35. Miki Y, Narayanan AS, Page RC. Mitogenic activity of cementum components to gingival fibroblasts. J Dent Res 1987;66:1399-1403.
    
    36. MacNeil RL, Berry J, Strayhorn C, Somerman MJ. Expression of bone sialoprotein mRNA by cells lining the mouse tooth root during cementogenesis. Arch Oral Biol 1996;41:827-835.
    
    37. Bronckers AL, Farach-Carson MC, Van Waveren E, Butler WT. Immunolocalization of osteopontin, osteocalcin, and dentin sialoprotein during dental root formation and early cementogenesis in the rat. J Bone Miner Res 1994;9:833-841.
    
    38. Bosshardt DD, Zalzal S, McKee MD, Nanci A. Developmental appearance and distribution of bone sialoprotein and osteopontin in human and rat cementum. AnatRec 1998;250:13-33.
    
    39. Nanci A. Content and distribution of noncollagenous matrix proteins in bone and cementum: relationship to speed of formation and collagen packing density. J Struct Biol 1999;126:256-269.
    
    40. Hauschka PV, Wians FH, Jr. Osteocalcin-hydroxyapatite interaction in the extracellular organic matrix of bone. Anat Rec 1989;224:180-188.
    
    41. Nohutcu RM, McCauley LK, Koh AJ, Somerman MJ. Expression of extracellular matrix proteins in human periodontal ligament cells during mineralization in vitro. J Periodontol 1997;68:320-327.
    
    42. Hakki SS, Berry JE, Somerman MJ. The effect of enamel matrix protein derivative on follicle cells in vitro. J Periodontol 2001;72:679-687.
    
    43. Collignon H, Davicco MJ, Barlet JP. Isolation of cells from ovine fetal long bone and characterization of their osteoblastic activities during in vitro mineralization. Arch Physiol Biochem 1997;105:158-166.
    
    44. Robey PG Vertebrate mineralized matrix proteins: structure and function. Connect Tissue Res 1996;35:131-136.
    
    
    45. Bosshardt DD, Selvig KA. Dental cementum: the dynamic tissue covering of the root. Periodontol 2000 1997;13:41-75.
    
    46. Butler WT. Dentin matrix proteins. Eur J Oral Sci 1998; 106 Suppl 1:204-210.
    
    47. Butler WT, Brunn JC, Qin C. Dentin extracellular matrix (ECM) proteins: comparison to bone ECM and contribution to dynamics of dentinogenesis. Connect Tissue Res 2003 ;44 Suppl 1:171-178.
    
    48. Fisher LW, Torchia DA, Fohr B, Young MF, Fedarko NS. Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem Biophys Res Commun 2001;280:460-465.
    
    49. Sodek J, Zhu B, Huynh MH, Brown TJ, Ringuette M. Novel functions of the matricellular proteins osteopontin and osteonectin/SPARC. Connect Tissue Res 2002;43:308-319.
    
    50. Chen J, Shapiro HS, Sodek J. Development expression of bone sialoprotein mRNA in rat mineralized connective tissues. J Bone Miner Res 1992;7:987-997.
    
    51. Chen J, Zhang Q, McCulloch CA, Sodek J. Immunohistochemical localization of bone sialoprotein in foetal porcine bone tissues: comparisons with secreted phosphoprotein 1 (SPP-1, osteopontin) and SPARC (osteonectin). Histochem J 1991;23:281-289.
    
    52. Chen JK, Shapiro HS, Wrana JL, Reimers S, Heersche JN, Sodek J. Localization of bone sialoprotein (BSP) expression to sites of mineralized tissue formation in fetal rat tissues by in situ hybridization. Matrix 1991; 11:13 3 -143.
    
    53. Fisher LW, McBride OW, Termine JD, Young MF. Human bone sialoprotein. Deduced protein sequence and chromosomal localization. J Biol Chem 1990;265:2347-2351.
    
    54. Kasugai S, Nagata T, Sodek J. Temporal studies on the tissue compartmentalization of bone sialoprotein (BSP), osteopontin (OPN), and SPARC protein during bone formation in vitro. J Cell Physiol 1992;152:467-477.
    
    55. Oldberg A, Franzen A, Heinegard D. The primary structure of a cell-binding bone sialoprotein. J Biol Chem 1988;263:19430-19432.
    
    
    56. Kasugai S, Todescan R, Jr., Nagata T, Yao KL, Butler WT, Sodek J. Expression of bone matrix proteins associated with mineralized tissue formation by adult rat bone marrow cells in vitro: inductive effects of dexamethasone on the osteoblastic phenotype. J Cell Physiol 1991;147:111-120.
    
    57. Nagata T, Bellows CG, Kasugai S, Butler WT, Sodek J. Biosynthesis of bone proteins [SPP-1 (secreted phosphoprotein-1, osteopontin), BSP (bone sialoprotein) and SPARC (osteonectin)] in association with mineralized-tissue formation by fetal-rat calvarial cells in culture. Biochem J 1991;274 ( Pt 2):513-520.
    
    58. Miyauchi A, Alvarez J, Greenfield EM, Teti A, Grano M, Colucci S et al. Recognition of osteopontin and related peptides by an alpha v beta 3 integrin stimulates immediate cell signals in osteoclasts. J Biol Chem 1991;266:20369-20374.
    
    59. McKee MD, Zalzal S, Nanci A. Extracellular matrix in tooth cementum and mantle dentin: localization of osteopontin and other noncollagenous proteins, plasma proteins, and glycoconjugates by electron microscopy. Anat Rec 1996;245:293-312.
    
    60. Macneil RL, Sheng N, Strayhorn C, Fisher LW, Somerman MJ. Bone sialoprotein is localized to the root surface during cementogenesis. J Bone Miner Res 1994;9:1597-1606.
    
    61. Fisher LW, Whitson SW, Avioli LV, Termine JD. Matrix sialoprotein of developing bone. J Biol Chem 1983;258:12723-12727.
    
    62. Fisher LW, Hawkins GR, Tuross N, Termine JD. Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. J Biol Chem 1987;262:9702-9708.
    
    63. Raynal C, Delmas PD, Chenu C. Bone sialoprotein stimulates in vitro bone resorption. Endocrinology 1996;137:2347-2354.
    
    64. Hunter GK, Goldberg HA. Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci U S A 1993;90:8562-8565.
    
    65. Zhou HY, Takita H, Fujisawa R, Mizuno M, Kuboki Y. Stimulation by bone sialoprotein of calcification in osteoblast-like MC3T3-E1 cells. Calcif Tissue Int 1995;56:403-407.
    
    66. Mukai M, Yoshimine Y, Akamine A, Maeda K. Bone-like nodules formed in vitro by rat periodontal ligament cells. Cell Tissue Res 1993;271:453-460.
    
    
    67. Gibson CW, Yuan ZA, Hall B, Longenecker G, Chen E, Thyagarajan T et al. Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem 2001 ;276:31871-31875.
    68. Hatakeyama J, Sreenath T, Hatakeyama Y, Thyagarajan T, Shum L, Gibson CW et al. The receptor activator of nuclear factor-kappa B ligand-mediated osteoclastogenic pathway is elevated in amelogenin-null mice. J Biol Chem 2003;278:35743-35748.
    
    69. Viswanathan HL, Berry JE, Foster BL, Gibson CW, Li Y, Kulkarni AB et al. Amelogenin: a potential regulator of cementum-associated genes. J Periodontol 2003;74:1423-1431.
    
    70. Shimizu E, Saito R, Nakayama Y, Nakajima Y, Kato N, Takai H et al. Amelogenin stimulates bone sialoprotein (BSP) expression through fibroblast growth factor 2 response element and transforming growth factor-betal activation element in the promoter of the BSP gene. J Periodontol 2005;76:1482-1489.
    
    71. Saygin NE, Tokiyasu Y, Giannobile WV, Somerman MJ. Growth factors regulate expression of mineral associated genes in cementoblasts. J Periodontol 2000;71:1591-1600.
    
    72. Brown TD. Techniques for mechanical stimulation of cells in vitro: a review. J Biomech2000;33:3-14.
    
    73. Frost HM. Perspectives: bone's mechanical usage windows. Bone Miner 1992;19:257-271.
    
    74. Burr DB, Milgrom C, Fyhrie D, Forwood M, Nyska M, Finestone A et al. In vivo measurement of human tibial strains during vigorous activity. Bone 1996;18:405-410.
    
    75. Kaspar D, Seidl W, Neidlinger-Wilke C, Claes L. In vitro effects of dynamic strain on the proliferative and metabolic activity of human osteoblasts. J Musculoskelet Neuronal Interact 2000; 1:161 -164.
    
    76. Lanyon LE, Goodship AE, Pye CJ, MacFie JH. Mechanically adaptive bone remodelling. J Biomech 1982;15:141-154.
    
    77. Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 1984;66:397-402.
    
    78. Fermor B, Gundle R, Evans M, Emerton M, Pocock A, Murray D. Primary human osteoblast proliferation and prostaglandin E2 release in response to mechanical strain in vitro. Bone 1998;22:637-643.
    79. Schnell S, Mendoza C. Enzymological considerations for a theoretical description of the quantitative competitive polymerase chain reaction (QC-PCR). J Theor Biol 1997;184:433-440.
    
    80. Waha A, Watzka M, Koch A, Pietsch T, Przkora R, Peters N et al. A rapid and sensitive protocol for competitive reverse transcriptase (cRT) PCR analysis of cellular genes. Brain Pathol 1998;8:13-18.
    
    81. Actor JK, Limor JR, Hunter RL. A flexible bioluminescent-quantitative polymerase chain reaction assay for analysis of competitive PCR amplicons. J Clin Lab Anal 1999; 13:40-47.
    
    82. Veis A, Tompkins K, Alvares K, Wei K, Wang L, Wang XS et al. Specific amelogenin gene splice products have signaling effects on cells in culture and in implants in vivo. J Biol Chem 2000;275:41263-41272.
    
    83. Swanson EC, Fong HK, Foster BL, Paine ML, Gibson CW, Snead ML et al. Amelogenins regulate expression of genes associated with cementoblasts in vitro. Eur J Oral Sci 2006;114 Suppl 1:239-243.
    
    84. Zhao M, Berry JE, Somerman MJ. Bone morphogenetic protein-2 inhibits differentiation and mineralization of cementoblasts in vitro. J Dent Res 2003;82:23-27.
    
    
    85. Domon S, Shimokawa H, Yamaguchi S, Soma K. Temporal and spatial mRNA expression of bone sialoprotein and type I collagen during rodent tooth movement. Eur J Orthod 2001;23:339-348.
    
    86. Shimizu E, Matsuda-Honjyo Y, Samoto H, Saito R, Nakajima Y, Nakayama Y et al. Static magnetic fields-induced bone sialoprotein (BSP) expression is mediated through FGF2 response element and pituitary-specific transcription factor-1 motif. J Cell Biochem 2004;91:1183-1196.
    1. Hammarstrom L, Alatli I, Fong CD. Origins of cementum. Oral Dis 1996;2:63-69.
    
    2. Paynter KJ, Pudy G A study of the structure, chemical nature, and development of cementum in the rat. Anat Rec 1958; 131:233-251.
    
    3. Luo W, Slavkin HC, Snead ML. Cells from Hertwig's epithelial root sheath do not transcribe amelogenin. J Periodontal Res 1991;26:42-47.
    
    4. Slavkin HC, Bessem C, Fincham AG, Bringas P, Jr., Santos V, Snead ML et al. Human and mouse cementum proteins immunologically related to enamel proteins. Biochim Biophys Acta 1989;991:12-18.
    
    5. Slavkin HC, Bringas P, Jr., Bessem C, Santos V, Nakamura M, Hsu MY et al. Hertwig's epithelial root sheath differentiation and initial cementum and bone formation during long-term organ culture of mouse mandibular first molars using serumless, chemically-defined medium. J Periodontal Res 1989;24:28-40.
    
    
    6. Hammarstrom L. Enamel matrix, cementum development and regeneration. J Clin Periodontol 1997;24:658-668.
    
    7. Christoffersen J, Landis WJ. A contribution with review to the description of mineralization of bone and other calcified tissues in vivo. Anat Rec 1991;230:435-450.
    
    8. Butler WT. Dentin matrix proteins. Eur J Oral Sci 1998; 106 Suppl 1:204-210.
    
    9. Fisher LW, Torchia DA, Fohr B, Young MF, Fedarko NS. Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem Biophys Res Commun 2001;280:460-465.
    
    10. Robey PG Vertebrate mineralized matrix proteins: structure and function. Connect Tissue Res 1996;35:131-136.
    
    
    11. Sodek J, Zhu B, Huynh MH, Brown TJ, Ringuette M. Novel functions of the matricellular proteins osteopontin and osteonectin/SPARC. Connect Tissue Res 2002;43:308-319.
    
    12. Bosshardt DD, Zalzal S, McKee MD, Nanci A. Developmental appearance and distribution of bone sialoprotein and osteopontin in human and rat cementum. Anat Rec 1998;250:13-33.
    
    
    13. Bronckers AL, Engelse MA, Cavender A, Gaikwad J, D'Souza RN. Cell-specific patterns of Cbfal mRNA and protein expression in postnatal murine dental tissues. Mech Dev 2001;101:255-258.
    
    14. D'Errico JA, MacNeil RL, Takata T, Berry J, Strayhorn C, Somerman MJ. Expression of bone associated markers by tooth root lining cells, in situ and in vitro. Bone 1997;20:117-126.
    
    15. Nanci A. Content and distribution of noncollagenous matrix proteins in bone and cementum: relationship to speed of formation and collagen packing density. J Struct Biol 1999; 126:256-269.
    
    16. Hauschka PV, Wians FH, Jr. Osteocalcin-hydroxyapatite interaction in the extracellular organic matrix of bone. Anat Rec 1989;224:180-188.
    
    17. Bronckers AL, Farach-Carson MC, Van Waveren E, Butler WT. Immunolocalization of osteopontin, osteocalcin, and dentin sialoprotein during dental root formation and early cementogenesis in the rat. J Bone Miner Res 1994;9:833-841.
    
    18. Kagayama M, Li HC, Zhu J, Sasano Y, Hatakeyama Y, Mizoguchi I. Expression of osteocalcin in cementoblasts forming acellular cementum. J Periodontal Res 1997;32:273-278.
    
    19. Tenorio D, Cruchley A, Hughes FJ. Immunocytochemical investigation of the rat cementoblast phenotype. J Periodontal Res 1993;28:411-419.
    
    20. McAllister B, Narayanan AS, Miki Y, Page RC. Isolation of a fibroblast attachment protein from cementum. J Periodontal Res 1990;25:99-105.
    
    21. Wu D, Ikezawa K, Parker T, Saito M, Narayanan AS. Characterization of a collagenous cementum-derived attachment protein. J Bone Miner Res 1996;11:686-692.
    
    22. Saito M, Iwase M, Maslan S, Nozaki N, Yamauchi M, Handa K et al. Expression of cementum-derived attachment protein in bovine tooth germ during cementogenesis. Bone 2001;29:242-248.
    
    23. Arzate H, Alvarez-Perez MA, Aguilar-Mendoza ME, Alvarez-Fregoso O. Human cementum tumor cells have different features from human osteoblastic cells in vitro. J Periodontal Res 1998;33:249-258.
    
    24. Arzate H, Olson SW, Page RC, Gown AM, Narayanan AS. Production of a monoclonal antibody to an attachment protein derived from human cementum. Faseb J 1992;6:2990-2995.
    
    25. Pitaru S, McCulloch CA, Narayanan SA. Cellular origins and differentiation control mechanisms during periodontal development and wound healing. J Periodontal Res 1994;29:81-94.
    
    26. Liu HW, Yacobi R, Savion N, Narayanan AS, Pitaru S. A collagenous cementum-derived attachment protein is a marker for progenitors of the mineralized tissue-forming cell lineage of the periodontal ligament. J Bone Miner Res 1997;12:1691-1699.
    
    27. Handa K, Saito M, Yamauchi M, Kiyono T, Sato S, Teranaka T et al. Cementum matrix formation in vivo by cultured dental follicle cells. Bone 2002;31:606-611.
    
    28. Jones FS, Jones PL. The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn 2000;218:235-259.
    
    29. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci 2002;115:3861-3863.
    
    
    30. Lukinmaa PL, Mackie EJ, Thesleff I. Immunohistochemical localization of the matrix glycoproteins—tenascin and the ED-sequence-containing form of cellular fibronectin—in human permanent teeth and periodontal ligament. J Dent Res 1991;70:19-26.
    
    31. Zhang X, Schuppan D, Becker J, Reichart P, Gelderblom HR. Distribution of undulin, tenascin, and fibronectin in the human periodontal ligament and cementum: comparative immunoelectron microscopy with ultra-thin cryosections. J Histochem Cytochem 1993 ;41:245-251.
    
    32. Matias MA, Li H, Young WG, Bartold PM. Immunohistochemical localisation of extracellular matrix proteins in the periodontium during cementogenesis in the rat molar. Arch Oral Biol 2003;48:709-716.
    
    
    33. Ikezawa K, Ohtsubo M, Norwood TH, Narayanan AS. Role of cyclin E and cyclin E-dependent kinase in mitogenic stimulation by cementum-derived growth factor in human fibroblasts. Faseb J 1998;12:1233-1239.
    
    34. Cho MI, Garant PR. Development and general structure of the periodontium. Periodontol 2000 2000;24:9-27.
    35. Ten Cate AR. The development of the periodontium-a largely ectomesenchymally derived unit. Periodontol 2000 1997;13:9-19.
    
    36. Bosshardt DD, Schroeder HE. Cementogenesis reviewed: a comparison between human premolars and rodent molars. Anat Rec 1996;245:267-292.
    
    37. Bosshardt DD, Selvig KA. Dental cementum: the dynamic tissue covering of the root. Periodontol 2000 1997;13:41-75.
    
    38. Beck F, Tucci J, Russell A, Senior PV, Ferguson MW. The expression of the gene coding for parathyroid hormone-related protein (PTHrP) during tooth development in the rat. Cell Tissue Res 1995;280:283-290.
    
    39. Webb PP, Moxham BJ, Benjamin M, Ralphs JR. Changing expression of intermediate filaments in fibroblasts and cementoblasts of the developing periodontal ligament of the rat molar tooth. J Anat 1996;188 (Pt 3):529-539.
    
    40. MacNeil RL, Thomas HF. Development of the murine periodontium. II. Role of the epithelial root sheath in formation of the periodontal attachment. J Periodontol 1993;64:285-291.
    
    41. Cho MI, Garant PR. Ultrastructural evidence of directed cell migration during initial cementoblast differentiation in root formation. J Periodontal Res 1988;23:268-276.
    
    42. Kagayama M, Sasano Y, Zhu J, Hirata M, Mizoguchi I, Kamakura S. Epithelial rests colocalize with cementoblasts forming acellular cementum but not with cementoblasts forming cellular cementum. Acta Anat (Basel) 1998; 163:1 -9.
    
    43. Sismanidou C, Hilliges M, Lindskog S. Healing of the root surface-associated periodontium: an immunohistochemical study of orthodontic root resorption in man. Eur J Orthod 1996;18:435-444.
    
    44. Talic N, Evans CA, Daniel JC, George A, Zaki AM. Immunohistochemical localization of alphavbeta3 integrin receptor during experimental tooth movement. Am J Orthod Dentofacial Orthop 2004; 125:178-184.
    
    
    45. Yamashiro T, Tummers M, Thesleff I. Expression of bone morphogenetic proteins and Msx genes during root formation. J Dent Res 2003;82:172-176.
    
    46. Arzate H, Olson SW, Page RC, Narayanan AS. Isolation of human tumor cells that produce cementum proteins in culture. Bone Miner 1992; 18:15-30.
    47. MacNeil RL, D'Errico JA, Ouyang H, Berry J, Strayhorn C, Somerman MJ. Isolation of murine cementoblasts: unique cells or uniquely-positioned osteoblasts? Eur J Oral Sci 1998;106 Suppl 1:350-356.
    
    48. Gao J, Symons AL, Haase H, Bartold PM. Should cementoblasts express alkaline phosphatase activity? Preliminary study of rat cementoblasts in vitro. J Periodontol 1999;70:951-959.
    
    49. Grzesik WJ, Kuzentsov SA, Uzawa K, Mankani M, Robey PG, Yamauchi M. Normal human cementum-derived cells: isolation, clonal expansion, and in vitro and in vivo characterization. J Bone Miner Res 1998;13:1547-1554.
    
    50. Grzesik WJ, Cheng H, Oh JS, Kuznetsov SA, Mankani MH, Uzawa K et al. Cementum-forming cells are phenotypically distinct from bone-forming cells. J Bone Miner Res 2000; 15:52-59.
    
    51. Carnes DL, Maeder CL, Graves DT. Cells with osteoblastic phenotypes can be explanted from human gingiva and periodontal ligament. J Periodontol 1997;68:701-707.
    
    52. Cheng H, Caterson B, Neame PJ, Lester GE, Yamauchi M. Differential distribution of lumican and fibromodulin in tooth cementum. Connect Tissue Res 1996;34:87-96.
    
    53. D'Errico JA, Ouyang H, Berry JE, MacNeil RL, Strayhorn C, Imperiale MJ et al. Immortalized cementoblasts and periodontal ligament cells in culture. Bone\ 1999;25:39-47.
    
    54. D'Errico JA, Berry JE, Ouyang H, Strayhorn CL, Windle JJ, Somerman MJ. Employing a transgenic animal model to obtain cementoblasts in vitro. J Periodontol 2000;71:63-72.
    
    
    55. Saygin NE, Tokiyasu Y, Giannobile WV, Somerman MJ. Growth factors regulate expression of mineral associated genes in cementoblasts. J Periodontol 2000;71:1591-1600.
    
    56. Saygin NE, Giannobile WV, Somerman MJ. Molecular and cell biology of cementum. Periodontol 2000 2000;24:73-98.
    
    57. Kitagawa M, Kitagawa S, Kudo Y, Ogawa I, Miyauchi M, Tahara H et al. Establishment of cementoblast cell lines from rat cementum lining cells by transfection with temperature-sensitive simian virus-40 T-antigen gene. Bone 2005;37:220-226.
    
    58. Yonemura K, Narayanan AS, Miki Y, Page RC, Okada H. Isolation and partial characterization of a growth factor from human cementum. Bone Miner 1992;18:187-198.
    
    59. Narayanan SA, Yonemura K. Purification and characterization of a novel growth factor from cementum. J Periodontal Res 1993;28:563-565.
    
    60. Ikezawa K, Hart CE, Williams DC, Narayanan AS. Characterization of cementum derived growth factor as an insulin-like growth factor-I like molecule. Connect Tissue Res 1997;36:309-319.
    
    61. Ivanovski S, Komaki M, Bartold PM, Narayanan AS. Periodontal-derived cells attach to cementum attachment protein via alpha 5 beta 1 integrin. J Periodontal Res 1999;34:154-159.
    
    62. Nakae H, Narayanan AS, Raines E, Page RC. Isolation and partial characterization of mitogenic factors from cementum. Biochemistry 1991;30:7047-7052.
    
    63. Miki Y, Narayanan AS, Page RC. Mitogenic activity of cementum components to gingival fibroblasts. J Dent Res 1987;66:1399-1403.
    
    64. MacNeil RL, Berry J, Strayhorn C, Somerman MJ. Expression of bone sialoprotein mRNA by cells lining the mouse tooth root during cementogenesis. Arch Oral Biol 1996;41:827-835.
    
    65. Goldring SR. Inflammatory mediators as essential elements in bone remodeling. Calcif Tissue Int 2003 ;73:97-100.
    
    66. Grcevic D, Katavic V, Lukic IK, Kovacic N, Lorenzo JA, Marusic A. Cellular and molecular interactions between immune system and bone. Croat Med J 2001;42:384-392.
    
    67. Hofbauer LC, Heufelder AE. Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J Mol Med 2001;79:243-253.
    
    68. Hasegawa T, Yoshimura Y, Kikuiri T, Yawaka Y, Takeyama S, Matsumoto A et al. Expression of receptor activator of NF-kappa B ligand and osteoprotegerin in culture of human periodontal ligament cells. J Periodontal Res 2002;37:405-411.
    69. Sakata M, Shiba H, Komatsuzawa H, Fujita T, Uchida Y, Yoshino H et al. Osteoprotegerin levels increased by interleukin-lbeta in human periodontal ligament cells are suppressed through prostaglandin E(2) synthesized de novo. Cytokine2002;18:133-139.
    
    70. Zhang D, Yang YQ, Li XT, Fu MK. [Expression of OPG and RANKL at protein level in human periodontal ligament cells and the effect of lalpha,25(OH)(2) vitamin D(3) on the secretion of OPG protein in vitro.]. Beijing Da Xue Xue Bao 2004;36:646-649.
    
    71. Zhang D, Yang YQ, Li XT, Fu MK. The expression of osteoprotegerin and the receptor activator of nuclear factor kappa B ligand in human periodontal ligament cells cultured with and without lalpha,25-dihydroxyvitamin D3. Arch Oral Biol 2004;49:71-76.
    
    72. Fukushima H, Kajiya H, Takada K, Okamoto F, Okabe K. Expression and role of RANKL in periodontal ligament cells during physiological root-resorption in human deciduous teeth. Eur J Oral Sci 2003; 111:346-352.
    
    73. Oshiro T, Shiotani A, Shibasaki Y, Sasaki T. Osteoclast induction in periodontal tissue during experimental movement of incisors in osteoprotegerin-deficient mice. Anat Rec 2002;266:218-225.
    
    74. Tenorio D, Hughes FJ. An immunohistochemical investigation of the expression of parathyroid hormone receptors in rat cementoblasts. Arch Oral Biol 1996;41:299-305.
    
    75. Bielaczyc A, Golebiewska M. Ultrastructural changes of a tooth root in young rats fed a low calcium and vitamin D-deficient diet. Rocz Akad Med Bialymst 1997;42 Suppl 2:153-158.
    
    76. Chen JJ, Jin H, Ranly DM, Sodek J, Boyan BD. Altered expression of bone sialoproteins in vitamin D-deficient rBSP2.7Luc transgenic mice. J Bone Miner Res 1999;14:221-229.
    
    77. Chen J, Shapiro HS, Sodek J. Development expression of bone sialoprotein mRNA in rat mineralized connective tissues. J Bone Miner Res 1992;7:987-997.
    
    78. Chen J, Zhang Q, McCulloch CA, Sodek J. Immunohistochemical localization of bone sialoprotein in foetal porcine bone tissues: comparisons with secreted phosphoprotein 1 (SPP-1, osteopontin) and SPARC (osteonectin). Histochem J 1991;23:281-289.
    
    79. Chen JK, Shapiro HS, Wrana JL, Reimers S, Heersche JN, Sodek J. Localization of bone sialoprotein (BSP) expression to sites of mineralized tissue formation in fetal rat tissues by in situ hybridization. Matrix 1991 ;11:133-143.
    
    80. Fisher LW, McBride OW, Termine JD, Young MF Human bone sialoprotein. Deduced protein sequence and chromosomal localization. J Biol Chem 1990;265:2347-2351.
    
    81. Kasugai S, Nagata T, Sodek J. Temporal studies on the tissue compartmentalization of bone sialoprotein (BSP), osteopontin (OPN), and SPARC protein during bone formation in vitro. J Cell Physiol 1992;152:467-477.
    
    82. Oldberg A, Franzen A, Heinegard D. The primary structure of a cell-binding bone sialoprotein. J Biol Chem 1988;263:19430-19432.
    
    83. Fisher LW, Whitson SW, Avioli LV, Termine JD. Matrix sialoprotein of developing bone. J Biol Chem 1983;258:12723-12727.
    
    84. Fisher LW, Hawkins GR, Tuross N, Termine JD. Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. J Biol Chem 1987;262:9702-9708.
    
    85. Raynal C, Delmas PD, Chenu C. Bone sialoprotein stimulates in vitro bone resorption. Endocrinology 1996;137:2347-2354.
    
    86. Hunter GK, Goldberg HA. Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci U S A 1993;90:8562-8565.
    
    87. Zhou HY, Takita H, Fujisawa R, Mizuno M, Kuboki Y. Stimulation by bone sialoprotein of calcification in osteoblast-like MC3T3-E1 cells. Calcif Tissue Int 1995;56:403-407.
    
    88. Cho MI, Garant PR. Expression and role of epidermal growth factor receptors during differentiation of cementoblasts, osteoblasts, and periodontal ligament fibroblasts in the rat. Anat Rec 1996;245:342-360.
    
    89. Mukai M, Yoshimine Y, Akamine A, Maeda K. Bone-like nodules formed in vitro by rat periodontal ligament cells. Cell Tissue Res 1993;271:453-460.
    90. Gibson CW, Yuan ZA, Hall B, Longenecker G, Chen E, Thyagarajan T et al. Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem 2001 ;276:31871 -31875.
    
    91. Hatakeyama J, Sreenath T, Hatakeyama Y, Thyagarajan T, Shum L, Gibson CW et al. The receptor activator of nuclear factor-kappa B ligand-mediated osteoclastogenic pathway is elevated in amelogenin-null mice. J Biol Chem 2003;278:35743-35748.
    
    92. Viswanathan HL, Berry JE, Foster BL, Gibson CW, Li Y, Kulkarni AB et al. Amelogenin: a potential regulator of cementum-associated genes. J Periodontol 2003;74:1423-1431.
    
    93. McKee MD, Zalzal S, Nanci A. Extracellular matrix in tooth cementum and mantle dentin: localization of osteopontin and other noncollagenous proteins, plasma proteins, and glycoconjugates by electron microscopy. Anat Rec 1996;245:293-312.
    
    
    94. Macneil RL, Sheng N, Strayhorn C, Fisher LW, Somerman MJ. Bone sialoprotein is localized to the root surface during cementogenesis. J Bone Miner Res 1994;9:1597-1606.
    
    95. Shimizu E, Saito R, Nakayama Y, Nakajima Y, Kato N, Takai H et al. Amelogenin stimulates bone sialoprotein (BSP) expression through fibroblast growth factor 2 response element and transforming growth factor-betal activation element in the promoter of the BSP gene. J Periodontol 2005;76:1482-1489.