微米尺度构件金属型铸造成形规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微精密铸造工艺可以低成本、大批量的高效制备三维复杂微金属构件,是近几年来问世的最具竞争力的微构件微细加工工艺之一。本文研发了新型金属型微铸造工艺,并对涉及到的微米尺度空间内液态金属的充型流动规律和停止流动机理以及凝固成形规律,微铸件的显微组织与力学性能等一系列基础科学理论问题进行了深入系统研究,并揭示了微米尺度下流动、凝固、显微组织和力学性能等方面的显著微尺度效应及微观机理。
     液态金属在微米尺度空间内充型流动时,金属液粘度急剧降低,气体反压力和毛细管力作用显著,宏观流动的传统Navier-Stokes方程不再适用,在考虑上述诸附加修正项后,建立了适合于液态金属微米尺度流动的新型Navier-Stokes微分方程,以及相关的物理和数学模型,对微米尺度空间内液态金属流动、传热和凝固过程进行了计算机数值模拟。
     微管道内液态金属的充型流动,呈现出宏观尺度流动时所没有的三个显著微尺度效应——附面层相对厚度的增大,“凸进效应”的形成和负压力梯度区的产生:管径进入微尺度后,管径越细,靠近壁面的附面层厚度与管径的比值越大,沿径向流体流动的速度梯度越大,流股前沿与宏观流动时相比更加向前凸出,形成“凸进效应”,且“凸进效应”随时间增加和压力减小而愈加显著。此外,在流动前沿区域和上游区域之间的中部区域会产生负压力区,且管径越细越明显。
     微管道内液态金属的停止流动机理呈现出非常明显的微尺度效应:停止流动机理由宏观尺度时的端部堵塞机理,转变为微尺度时端部堵塞与后续流体的半固态堵塞两者复合的停止流动机理,该转变对应的临界尺寸为500μm。
     微齿轮铸件的流动、传热和凝固数值模拟结果表明,金属液保持入射惯性首先填充后面的齿轮轴,撞击后方型腔型壁后,产生二次压头,然后再向齿轮的齿盘部位反充,形成回流现象。型腔内气体被高速运动的金属液搅拌、切割,形成若干微气泡,被带入主流区,从排气道排除。
     借助新型的金属型微铸造工艺,实际铸造成形了不同厚度的片状微铸件和具有三维复杂形状的微齿轮铸件,片状微铸件最薄可达200μm,充型长度可达60mm。微齿轮铸件的所有尺寸已进入微米尺度:齿轮盘外径580μm,齿盘厚350μm,齿轮轴直径300μm,长400μm,最小充型壁厚可达50μm。证明了金属型微铸造工艺制备三维复杂微米尺度铸件的可行性。
     微铸件的显微组织表现出强烈的微尺度效应。首先,与宏观尺度试样相比,随铸件尺寸的减小,微铸件的组织显著细化。再者,微铸件中初生相β-Zn的含量增加,共晶组织逐渐减少,微铸件的共晶组织形态为棒状形态,完全不同于宏观尺度铸件的层片状形态。固溶强化、细晶强化以及棒状共晶引起的界面强化是微铸件的主要强化因素。
     微铸件的力学性能表现也出了强烈的微尺度效应。片状微铸件的抗拉强度和延伸率均比常规厚度2mm时提高近1倍。断口韧窝处存在大量纳米尺度的颗粒,阻碍了相邻晶粒间滑移系的开动和微裂纹的扩展。微齿轮铸件的硬度比宏观尺度铸件提高了约1.7倍,微齿轮铸件的室温蠕变速率敏感指数m值明显小于宏观尺度铸件,说明微铸件具有更高的抗蠕变性能,使用寿命更长。
Micro-precision casting is one of the most competitive processing technology for micro-parts in recent years. And it can prepare three-dimension complicated micro-metal parts with low-cost and mass. In this paper, a new micro-permanent mold casting processing technology is developed. And the involved basic science and theory, such as the filling flow law of fluid, the cessation mechanism and solidification forming in micro-scale, microstructure and mechanical properties of micro-castings, were studied deeply and systematically. Meanwhile, the micro-scale effects and microscopic mechanism about flow, solidification, microstructure and mechanical properties were revealed.
     When flow in micro-scale space, the viscosity of liquid metal decreases sharply and the gas anti-pressure and capillary force have significant effects on liquid metal flow . In this case, traditional macroscopic N-S equation cannot be applied. So amelioration N-S equation and related physical and mathematical model was established.
     Three obvious micro-scale effects which cannot occur under macroscopic state were observed when liquid metal fill in micro-pipe: increasion of boundry layer relative thickness, form of“convex effects”and generation of the gradient zone of negative pressure. The ratio between the boundry layer thickness and the pipe diameter increases with the decrease of the pipe diameter. In micro-scale, the stream-front is more prominent in comparision with that of macroscopic flow with increase of speed gradient. Then“convex effects”is formed, which increase significantly as the time increase and the pressure decreases. In addition, the gradient zone of negative pressure between the zone of flow front and upper zone is found. And the gradient zone becomes more and more obvious with the decrease of pipe diameter. The obvious micro-scale effects of the cessation of liquid metal flow in micro-pipe were observed. The cessation mechanism changed from the macroscopic front blocking mechanism to the composite cessation mechanism mixed with the front blocking mechanism and the semi-solid blocking mechanism. And the critical size of transition is 500μm.
     The results of numerical simulation of micro-flow, micro-heat transfer and micro-solidification of micro-gear castings illustrated that the second pressure head is formed by filling firstly melt metal into opposite gear axis to impact the back wall of mould cavity. Then the back flow is formed by reversible filling melt metal into each tooth of micro-gear. The gases in the mould cavity are stirred and cut by high speed motion of melt metal, and get out from discharge ports by the overflow of melt metal.
     The the plate microparts with different thickness and three-dimension microgears were prepared by micro-permanent mold casting. The minimum thickness of plate microparts is 200μm, and the length is 60mm. All the size of microgears reached the micron scale: the diameter of gear disk is 580μm, the thickness of gear disk is 350μm, the diameter of gear axis is 300μm, the length is 400μm and the minimum wall thickness is 50μm. This feasibility that three-dimensional complicate castings in micron-scale are produced by micro-permanent mold casting processing were proved.
     The microstructure of micro-parts exhibit obvious micro-scale effects. Firstly, compared with samples in macroscopic, the grain size is refined significantly as the size of micro-castings decrease. Secondly, the primary phaseβ-Zn decreases gradually, while eutectic structure increases. The morphology of eutectic structure of micro-castings is rod-like and different from lamellar on regular castings. Fine grain strengthening, solid solution strengthening and interface strengthening caused by rod eutectic were the main intensified factors.
     Mechanical properties of micro-castings also exhibit obvious micro-scale effects. Tensile strength and elongation of flake-like micro-castings are improved one time than that of castings of normal thickness of 2mm. Plentiful nano-scale particles in the dimples were found and hinder the beginning of slip systems in the intercrystalline and the extension of micro cracks. The hardness of micro-castings is higher than that of regular castings, by 1.7 times in the maximum. The sensitivity index m of strain rate of room temperature creep is apparently lower than that of macro-castings. This illustrates that micro-castings have higher creep resistance and longer service life.
引文
1 R. P. Feynman. There's Plenty of Room at the Bottom. Journal of Microelectromechanical Systems. 1992, 1(1):60-66
    2 http://www.zyvex.com/nanotech/feynman.html
    3 S. C. Terry. A Miniature Silicon Accelerometer with Built-in Damping. Digest IEEE Solid-State Sensor and Actuator Workshop, IEEE, 1988, Istenbul: 114-116
    4 J. Fluitman. Microsystem Technology:objectives. Sensors and Actuators A. 1996, 56:151-166
    5黄志奇,杜平安,卢凉.微机电系统科学与技术的现状研究.机械设计. 2003, 20(1):4-6
    6 T. Hirano. Japanese activities in micromachining. MST News. 1995,14:14-17
    7黄良甫,贾付云.微机电系统的加工技术及其研究进展.真空与低温. 2003, 9(1):1-5
    8温诗铸.关于微机电系统研究.中国机械工程. 2003, 14(2):159-164
    9张威,张大成,王阳元. MEMS概况及发展趋势.微纳电子技术. 2002, 1:22-27
    10 H. Fujita. Microactuaors and micromachines. Preceedings of the IEEE, 1998, 86(8):1721-1732
    11林辉.マィクロメヵニズムの现状と今后の课题.精密工学会志. 1990, (4):445-451
    12王亚珍,朱文坚.微机电系统(MEMS)技术及发展趋势.机械设计与研究. 2004, 20(1):10-13
    13 B. Janusz.微电子机械系统在硅谷的发展及其对压力传感器技术的影响.传感器世界. 1997,3
    14周兆英,王晓浩,叶雄英等.微型机电系统.中国机械工程. 2000, 11(1-2):163-168
    15 X. V. Thompson. New Microsystems Application. Fast Growth. 2002 Http://www.smalltimes.com
    16 K. Wise, K. Najafi. Microfabrication techniques for integrated sensor and Microsystems. Sciences. 1991, 1254:1335-1342
    17 O. Kr?mer, O. Fromhein, H. Gemmeke , T. Kühner, J. Mohr. High-precision readout circuit for LIGA acceleration sensors. Sensors and Actuators A: Physical. 1995, 46: 196-200
    18 I. Bolshakova. Magnetic microsensors: Technology, properties, application. Sensors and Actuators A: Physical. 1998, 68: 282-285
    19 S. Middelhoek. Celebration of the tenth transducers conference: the past, present and future research and development. Sensors and Actuators A. 2000, 82:2-23
    20张凤田,唐祯安.加热式气压微传感器与电路集成技术.中国集成电路. 2006, 1:23-25
    21 S. Y. Wu, Q. Lin, Y. Yin. MEMS flow sensors for nano-fluidic applications. Sensors and Actuators A: Physical. 2001, 89(1-2) :152-158
    22张霞.微机电系统与微加速度计.物理与工程. 2004, 14(1):18-25
    23 S. Patrick, O. G. Jens, M. K. Lars. Piezoelectric Triaxial Accelerometer. Journal of Micromechanical and Microengineering. 1996, 6(1):131-133
    24 F. Mailly, A. Giani, A. Martinez, F. P. Delannoy, A. Boyer. Micromachined Thernal Accelerometer. Sensors and Actuators A. 2003, 103:359-363
    25 J. J. Yao. RF MEMS from a device perspective. Journal of Micromechanical and Microengineering. 2000, 10:9-38
    26谌贵辉,张万里,彭斌,蒋洪川. MEMS微致动器的研究.微纳电子技术. 2004, 9:32-36
    27 E. K. Chan, R W Dutton. Electrostatic micromechanical actuator with extended range of travel. Journal of Microelectromechanical Systems. 2000, 9(3):321-328
    28 S. Tadokoro, S. Yamagami, M. Ozawa, T. Takamori, K. Oquro. Soft micromanipulation device with multiple degrees of freedom consisting of high polymer gel actuators. Twelfth IEEE International Conference on Micro Electro Mechanical Systems, MEMS '99, 1999, IEEE, Istenbul: 37-42
    29 K. Bandyopadhyay. Smart materials and aerospace structures. Proceedings of SPIE - The International Society for Optical Engineering, 1999, 3903:312-324
    30王宏.微电子机械系统(MEMS)发展研究.微处理机. 2002, 3:4-7
    31 M. Francou, J. S. Danel, L. Peccoud. Deep and fast plasma etching forsilicon micromachining. Sensors and Actuators A. 1995, 46: 17-21
    32 W. Menz, W. Bacher, M. Harmening, A. Michel. The LIGA technique-A novel concept for microstructures and the combination with Si-technologies by injection molding. Micro Electro Mechanical Systems, 1991, MEMS '91, Proceedings 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots', IEEE,1991, Istenbul:67-73
    33孙大涌.先进制造技术.北京:机械工业出版社. 2000, 484
    34 M. Lemkin, B. E. Boser. A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset trim electronics. Journal of Solid-State Circuits. 1999, 34(4):456-468
    35 R. Rajeshuni. Fabrication of diamond microstructures for micro electro mechanical systems (MEMS) by a surface micromachining process. Thin Solid Films. 1999, 340(1-6):1-6
    36 W. A. Clark, R. T. Howe, R. Horowitz. Surface micromachined z-axis vibratory rate gyroscope. Proceedings of Solid-State Sensor and Actuator Workshop. 1996, 6:283-286
    37 M. James, R. T. Bustillo, S. Richard, R. S. Muller. Surface Micromachining for Microelectromechanical Systems. Proceedings of The IEEE, 1998, 86(8):1552-1574
    38袁明权.硅基微机械加工技术.半导体技术. 2001, 26(8):6-10
    39郝一龙,张立宪,李婷,张大成.硅基MEMS技术.机械强度. 2001, 23(4):523-526
    40 J. J. Sniegowski, M. S. Rodgers. Multi-layer enhancement to polysilicon surface-micromachining technology. International Electron Devices Meeting, Technical Digest, Washington, DC, USA , 1997, Istenbul:603-606
    41 W. H. Juan, S. W. Pang. A Novel Etch Diffusion Process for Fabrication High Aspect Ratio Microstructures. The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Transducers'95, 1995, Istenbul:560-563
    42 W. H. Juan, S. W. Pang. High-aspect-ratio Si etching for microsensor fabrication. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 1995, 13(3) : 834-838
    43 G. T. A. Kovacs, N. I. Maluf, K. E. Petersen. Bulk Micromachining of Silicon.Proceedings of The IEEE. 1998, 86(8):1536-1551
    44 S. Lee, S. Park, D. Cho. The Surface/Bulk Micromachining (SBM) Process:A New Method for Fabricating Released MEMS in Single Crystal Silicon. Journal of Microelectromechanical Systems. 1999, 8(4):409-416
    45 E. Masayoshi, H. Yoichi. Silicon Bulk Micromachining. 1St Annual Intemational IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, 2000, Istenbul:7-12
    46欧益宏,周明来,张正明.硅的深槽刻蚀技术研究.微电子学. 2004, 34(1):45-47
    47 S. Tanaka, M. Hara, M. Esashi. Air-Turbine-Driven Micro-Polarization Modulator for Fourier Transform Infrared Spectroscopy. Technical Digest of the 17th Sensor Symposium, 2000, Istenbul:29-32
    48 S. Renard. Industrial MEMS on SOI. Journal of Micromechanics and Microengineering. 2000, 10:245-249.
    49 E. W. Becher, W. Ehrfeld, P. H agmann, A. Maner, D. Muenchmeyer. Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography,galvanoforming and plastic moulding(LIGA process). Microelectronic Engineering. 1986, 4:35-56
    50 J. Hormes, J. G?ttert, K. Lian, Y. Desta, L. Jian. Materials for LiGA and LiGA-based Microsystems. Nuclear Instruments and Methods in Physics Research B. 2003, 119:332-341
    51 W. Ehrfeld, F. Gotz, D. Muncheyer, W. Schelb, D. Schmidt. LIGA Process: sensor construction techniques via X-ray lithography. Solide-State Sensor and Actuator Workshop , Hilton Head, SC, USA, IEEE, 1988, Istenbul:1-4
    52 W. Ehrfeld, H. Lehr. Deep X-ray lithography for the production of three-dimensional microstructures from metals, polymers and ceramic. Radiation Physics and Chemistry. 1995, 45(3):349-365
    53孔祥东,张玉林,宋会英. LIGA工艺的发展及应用.微纳电子技术. 2004, 5:13-18
    54李永海,丁桂甫,毛海平,张永华. LIGA/准LIGA技术微电铸工艺研究进展.电子工艺技术. 2005, 26(1):1-5
    55 J. Mohr, P. Bley, M. Strohrmann, U. Wallrabe. Microactuators fabricated by the LIGA-process. Micromech Microeng. 1992, 2:234-241
    56 H. Guckel, T. R. Christenson, K. J. Skrobis, D. D. Denton, B. Choi, E. G. Lovell, J. W. Lee, S. S. Bajikar, T. W. Chapman. Deep X-ray and UV lithographies for micromechanics. Solide-State Sensor and Actuator Workshop, Hilton Head, SC, USA, IEEE, 1990, Istenbul:118-122
    57 T. R. Ohnstein, J. D. Zook, J. A. Cox, B. D. Speldrich, T. J. Waqener, H. Guckel, T. R. Christenson, E. T. Klein, I. Glasqow. Tunable IR filters using flexible metallic microstructures. Proceedings of Micro Electro Mechanical System(MEMS’95), Amsterdam the Netherlands, IEEE, 1995, Istenbul:170-174
    58 O. Tabata, N. Matsuzuka, T. Yamaji, S. Uemura, K. Yamamoto. 3D fabrication by moving mask deep X-ray lithography with multiple stages. Proceedings of Micro Electro Mechanical System(MEMS’2002). Las Vegas, NV, USA, IEEE, 2002, Istenbul:180-183
    59 R. Ruprecht, T. Benzler, T. Hanemann, K. Müller, J. Konys, V. Piotter, G. Schanz, L. Schmidt, A. Thies, H. W?llmer, J. Haubelt. Various replication techniques for manufacturing three-dimensional metal microstructures. Microsystem Technologies. 1997, 4:28-31
    60 L. Merz, S. Rath, V. Piotter, R. Ruprecht, J. Hausselt. Powder injection molding of metallic and ceramic microparts. Microsystem Technologies. 2004, 10:202-204
    61 M. Auhorn, T. Beck, V. Schulze, D. l?he. Determination of mechanical properties of slip cast, micro powder injection moulded and microcast high aspect ratio microspecimens. Microsystem Technologies. 2004, 10:489-492
    62 G. Fu, N. H. Loh, S. B. Tor, Y. Murakoshi, R. Maeda. Replication of metal microstructures by micro powder injection molding. Materials and Design. 2004, 25(8):729-733
    63 B. Y. Tay, L. Liu, N. H. Loh, S. B. Tor, Y. Murakoshi, R. Maeda. Injection molding of 3D microstructures byμPIM. Microsystem Technologies. 2005, 11: 210-213
    64 A. Rota, T. V. Duong, T. Hartwig. Micro powder metallurgy for the replicative production of metallic microstructures. Microsystem Technologies. 2002, 8:323-325
    65 H. Paul-Henri's, R. Dominiek, V. B. Hendrik. Micro-structuring of Silicon byElectro-discharge Machining(EDM)-part I: theory. Sensors and Actuators, A:Physical. 1997, 60(5):212-218
    66 H. Paul-Henri's, R. Dominiek, V. B. Hendrik. Micro-structuring of Silicon by Electro-discharge Machining(EDM)-partⅡ: Applications Sensors and Actuators, A:Physical. 1997, 61(6):379-386
    67 E. Wolfgang, L. Heinz, M. Frank, W. Andrej. Micro Electro Discharge Machining as a Technology in Micromachining. SPIE. 1996, 2879:332-337
    68王振龙,赵万生,狄士春,迟关心.微细电火花加工技术的研究进展.中国机械工程. 2002, 13(10):894-898
    69 N. Nebashi, K. Wakabayashi, M. Yamada. In Process truing/dressing of grinding wheels by WEDG and EFID. International Journal of Electrical Machining. 1998, (3):59-64
    70东京大学マィクロマシソ研究体.(日本)超技术マィクロマシソ.1993
    71 K. P. Rajurkar, Z. Y. Yu. 3D micro-EDM using CAD/CAM. Annuals of the CIRP. 2000, 49(1):127-130
    72 T. Masuzawa, M. Fujino, K. Kobayashi. Wire Electro-discharge Grinding for Micro-Machining. Annals of the CIRP. 1985, 34(1):431-434
    73 E. Kussul, T. Baidyk, L. Ruiz, A. Caballero, G. Velasco. Development of low-cost microequipment. Proceedings of 2002 International Symposium on Micromechatronics and Human Science, MHS 2002, 2002, Istenbul:125-134
    74 E. Kussul, T. Baidyk, L. Ruiz-Huerta, A. Caballero. Development of micromachine tool prototypes for microfactories. J. Micromech. Microeng.. 2002, 12: 795-812
    75 D. P. Adams, M. J. Vasile, G. L. Benavides. Micromilling of metal alloys with focused ion beam-fabricated tools. Precision Engineering. 2001, 25(2):107-113
    76 W. Gao, R. J. Hocken, J. A. Patten, J. Lovingood, D. A. Lucca. Construction and testing of a nanomachining instrument. Precision Engineering. 2000, 24(4):320-328
    77陈迪,张大成,赵旭. DEM技术研究.微细加工技术. 1998, 4:1-6
    78赵旭,陈迪,张大成.三维微加工新技术——DEM技术研究.高技术通讯. 2000, 5:107-109
    79陈迪,雷蔚,李昌敏,张卫平,郑炳初. DEM技术中微复制工艺研究.微细加工技术. 2000, 1:61-65
    80 Y Saotome , H Iwazaki. Superplastic Extrusion of Microgear Shaft of 10 min Module. Journal of microsystem Technologies. 2000. 4 (6) :126-129
    81单德彬,郭斌,袁林.精密微塑性成形技术的现状和发展趋势.塑性工程学报.2008,15(2):46-53
    82 S. Schaaf, P. Chambre. Flow of Rarefied Gases. Princeton: Princeton University Press, 1961
    83 E. M. K. George, B. Ali.多相复杂系统与多尺度方法课题组译. micro flows——Fundamentals and Simulation.北京:化学工业出版社. 2006:14
    84 J. Poiseuille. Experimental investigations upon the flow of liquids in tubes of very small diameters. Sciences Mathematiques et Physiques. 1846, 9:433-545
    85 M. Knudsen. Die gesetze der molekularstr?mung and der inneren riebungsstr?mung der gase durch rohnen. Annalen der Physik. 1909, 28:75-130
    86 W. Gaede. Die innere reibung der gase. Annalen der Physik. 1913, 41:289
    87 J. Pfahler, C. harley, h. Bau, J. Zemel. Gas and liquid flow in small channels. ASME. 1991, 32:49-59
    88 C. Harley. Compressible gas flows in microchannels and microjets. University of Pennsylvania PHD thesis. 1993:48-78
    89 P. Y. Wu, W. A. Little. Mesurement of friction fcetors for the flow of gases in very fine channels used for microminiature joule-thomson refrigeration. Cryogenics. 1983,23:273-2771
    90 S. B. Choi, R. F. Barrori, R. O. Warrington. Fluid flow and heat transfer in microtubes. ASME DSC.199132:123-1341
    91牧原光宏,仓久仁彦,永山昭.微小管にぉけゐ液体の流ね—Navier-Stokes方程式の适用性に关すゐ考察.精密工学会讠志, 1993,59(3):31-36
    92邬小波,过增元.微细光滑圆管内气体的流动与传热特性研究.工程热物理学报. 1997,18(5):326-3301
    93杜东兴,李志信,过增元.微细光滑管内的气体流动阻力特性.中国科学(E辑). 30(2):173-178
    94李站华,周兴贝,朱善农.非极性小分子有机液体在微管道中的流量特性.力学学报. 2002, 34(3):432-438
    95李勇,江小宁,周兆英.微管道流体的流动特性.中国机械工程. 1994, 5(3):24-25
    96王补宣,彭晓峰,胡抗英. V形微槽内沸腾液体的流动阻力特性.工程热物理学报. 1998,19(3):345-349
    97 T. Gietzelt, O. Jacobl, V. Plotter, R. Ruprecht, J. Hausselt. Development of a micro annular gear pump by micro powder injection molding. Journal of Materials Science. 2004, 39:2113-2119
    98 G. Baumeister, J. Hausselt, S. Roth, R. Ruprecht. Microcasting. In: D L?he J.Haubelt(eds) Spec Ed advanced micro and nanosystems:micro-engineering in metals and ceramics. Wiley-VCH. Weinheim.2005,357-393
    99 G. Baumeister, R. Ruprecht, J. Hausselt. Microcasting of parts made of metal alloys. Microsystem Technologies. 2004, 10(3):261-264
    100 G. Baumeister, R. Ruprecht, J. Hausselt. Replication of LIGA structures using microcasting. Microsystem Technologies. 2004, 10(6-7): 484-488
    101 G. Baumeister, K. Mueller, R. Ruprecht, J. Hausselt. Production of metallic high aspect ratio microstructures by microcasting. Microsystem Technologies. 2002, 8:105-108
    102 G. Baumeister, S. Rath, J. Hausselt. Microcasting of Al bronze and a gold base alloy improved by plaster-bonded investment. Microsystem Technologies. 2006, 12(8):773-777
    103 M. Auhorn, B. Kasanicka, T. Beck, V. Schulze. Mechanical strength and microstructure of Stabilor-G and ZrO2 microspecimens. Microsystem Technologies. 2006, 12:713-716
    104 S. Chung, S. Park, L. Lee, H. Jeong, D. Cho. Replication techniques for a metal microcomponent having real 3D shape by microcasting process. Microsustem Technologies. 2005, 11:424-428
    105汪大林,江中明.牙科合金材料应用研究现状.特种铸造及有色合金. 1998, 3:42-44
    106 S. Rath, G. Baumeister, J. Hausselt. Investments for casting micro parts with base alloys. Microsystem Technologies. 2006, 12(3):258-266
    107 M. Auhorn, T. Beck, V. Schulze, D. l?he. Quasi-static and cyclic testing of specimens with high aspect ratios produced by micro-casting and micro-powder-injection-moulding. Microsystem Technologies. 2002,8:109-112
    108 M. Auhorn, T. Beck, V. Schulze, D. l?he. Determination of mechanical properties of slip cast, micro powder injection moulded and microcast high aspect ratio microspecimens. Microsystem Technologies. 2004,10:489-492
    109 H. J. Lin, W. S. Hwang. Combined Fluid Flow and Heat Transfer Analysis for theFilling of Casting. Transactions of the American Foundrymen's Society: Hartford, Connecticut. 1988, 96: 447-458
    110 R. A. Storhr, C. Wang. Advances in fluid flow, heat transfer, and solidification modeling and applications to actual foundry problems. Proceedings of Modeling of Casting, Welding and Advanced Solidification Processes V. 1991: 725-730.
    111 H. J. Lin, W. S. Hwang. Three-Dimensional Fluid Flow Simulation for Mold Filling. Transactions of the American Foundrymen's Society. 1989, 97(7-11):855-862
    112孙逊,王君卿,杨恩长.液态金属充型与传热数值模拟在球铁铸造工艺设计中的应用.铸造. 1991, 12: 2-6
    113荆涛,柳百成.考虑充型过程对初始温度场影响的缩孔缩松缺陷分析.热加工工艺. 1993, 2:10-12
    114袁浩扬,林汉同.铸造充型流动过程的三维数值模拟.力学与实践. 1996, 5: 24-27
    115孙小波,张春晖,安阁英.基于不规则网格模型的充型及凝固过程数值模似.铸造. 1998, 8: 5-9,37
    116麻向军,侯骏,赵立信.充型过程中自由表面的数值模拟.特种铸造及有色合金. 2001, 4:34-35
    117徐达鸣,安蕴,李鑫.离心力场下铸造充型行为数值模拟.机械工程学报. 2003, 39(3):146-150
    118中国机械工程学会铸造专业学会编.铸造手册卷3—铸造非铁合金.北京:机械工业出版社. 1993: 402-417
    119 C. Q. Liu, P. Conway, D. Z. Li, M. Hendriksen. Analysis of the micro-mechanical properties in aged lead-free, fine pitch flip chip joints. Journal of Electronic Packaging. 2004, 126: 359-366
    120 J. P. Lucas, H. Rhee, F. Guo, K. N. Subramanian. Mechanical properties of intermetallic compounds associated with Pb-free solder joints using nanoindentation. Journal of Electronic Materials. 2003, 32(12): 1375-1383
    121 R. R. Chromik, R. P. Vinci, S. L. Allen, M. R. Notis. Nanoindentation Measurements on Cu-Sn and Ag-Sn Intermetallics Formed in Pb-free Solder Joints. Journal of Materials Research. 2003, 18(9): 2251-2261
    122 T. Chudoba, F. Richter. Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surface and Coatings Technology. 2001,148: 191-198
    123 W. C. Oliver, G. M. Pharr. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. J. Mater. Res.. 1992, 7(6):1564-1583
    124 M. F. Doerner, W. D. Nix. A Method of Interpreting the Data from Depth-Sensing Indentation Instruments. J. Mater. Res..1986, 1(4):601-609
    125 J. B. Pethica, W. C. Oliver. Tip surface interaction in STM and AFM. Phys. Scr.. 1987, 19: 61-68
    126 J. B. Pethica, W. C. Oliver. Mechanical properties of nanometer volumes of material: use of the elastic response of small area indentations. In: Thin Films-Stresses and Mechanical Properties, MRS Symposium Proc., Materials Research Society, 1989, 1(130): 13-23
    127 G. M. Pharr, W. C. Oliver, F. R. Brotzen. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res.. 1992, 7: 613~617
    128吴沛宜,马元编著.变质量系统热力学及其应用.北京:高等教育出版社.1983:93
    129李庆春.铸件形成理论基础.北京:机械工业出版社. 1980: 35
    130杨闯. Ti基合金精铸成形充型流动规律的研究.哈尔滨工业大学硕士学位论文.2005:51
    131 M. C. Flemings. Solidification Process. Metallurgical Industry Press, 1987, 50-120
    132陈豫增,杨根仓,王猛,周尧和.深过冷Ni80.3B19.7合金的再辉和非规则共晶的形成.材料研究学报. 2005, 19(4):382-388
    133傅恒志,郭景杰,刘林等编著.先进材料定向凝固.北京:科学出版社.2008:331
    134王家炘,黄积荣,林建生编.金属的凝固及其控制.北京:机械工业出版社. 1983: 84
    135 E. O. Hall. The deformation and ageing of mild steel: III Discussion of results. Proc. Phys. Soc. B. 1951,64:747-753
    136 N. J. Petch. The cleavage strength of polycrystals. Petch. J. Iron and Steel Institute. 1953,174:25-28
    137卢柯,卢磊.金属纳米材料力学性能的研究进展.金属学报. 2000, 36(8):785~789
    138孙秀魁,从洪涛,徐坚等.纳米晶Al的制备及拉伸性能(Ⅰ).材料研究学报. 1998, 12(6):645~650
    139张泰华.微/纳米力学测试技术及其应用.北京:机械工业出版社, 2005
    140 A. G. Atkins, A. Silverio, D. Tabor. Indentation Hardness and The Creep of Solids. J. Inst. Met.. 1966, 94(11): 369-378
    141陈吉,汪伟,卢磊,卢柯.纳米压痕法测量Cu的室温蠕变速率敏感指数.金属学报. 2001, 37(11):1179-1183
    142王凤江,钱乙余,马鑫.纳米压痕法测量Sn-Ag-Cu无铅钎料BGA焊点的力学性能参数.金属学报. 2005, 41(7):775-779
    143王飞,徐可为.晶粒尺寸与保载载荷对Cu膜纳米压入蠕变性能的影响.金属学报. 2004, 40(10):1032-1036