ε-聚赖氨酸抑制致病菌分子机理及对肠道菌群多样性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ε-聚赖氨酸(ε-PL)是天然存在的一类聚氨基酸,具有对细菌、酵母菌、霉菌的广谱抗性,且安全无毒、水溶性好、热稳定性高。作为逐渐被推广使用的食品防腐剂,其抗菌的分子机制尚未清晰阐明。
     本论文通过微生物培养,原子力显微镜(AFM)和透射电子显微镜(TEM)观察,抑制消减杂交文库筛选,实时定量PCR和基因敲除等技术,并根据不同技术选取适合的研究对象,对ε-PL抑制典型致病菌(食源性、医源性)的现象和分子机制进行了深入的研究。最后采用PCR-DGGE技术,评估了口服ε-PL对小鼠肠道微生态菌群的影响。
     论文分为六个章节。第一章对食品防腐剂,尤其是天然防腐剂的分布、性质、特性进行了描述,重点对天然微生物抗菌剂ε-PL的理化性质、抗菌活性及机制,应用范围和发展方向进行了系统的阐述。
     在第二章中,以Escherichia coli O157:H7为模式微生物,系统探讨了ε-PL对致病菌的抑菌活性和分子机制。结果发现ε-PL拮抗E. coli0157:H7的活性随温度的升高(4℃、25℃和37℃)和处理时间的延长(0-15h)递增;在pH5-7环境中抑菌活性没有显著变化,在pH大于8时活性降低。AFM和TEM观察结果表明,-PL能破坏细胞膜的结构,形成膜穿孔,使胞质呈不均匀分布,细胞内容物泄漏。ε-PL能诱导细菌内活性氧的产生,且其浓度随着ε-PL浓度的增加而升高。RT-qPCR检测结果表明,ε-PL能对细菌产生氧胁迫,损伤细菌DNA,并抑制E.coli0157:H7的侵染毒力。
     为进一步研究ε-PL的抑菌分子机理,探讨其对致病菌的基因调控影响,在第三章中以常见感染且难以抑杀的条件致病菌-白色念珠菌(Candida albicans ATCC14053)为研究对象,采用SSH技术对ε-PL抑菌前后的差异基因进行了筛选。RT-qPCR验证结果显示,在ε-PL亚致死浓度胁迫下,C. albicans有10个发生差异表达的基因,表明ε-PL能通过降低糖酵解和脂类代谢相关基因的表达,抑制C. albicans的糖代谢并导致C. albicans中脂类代谢的紊乱。蛋白质合成相关基因GCN1?精氨酸tRNA合成酶及泛素蛋白连接酶Asi3的上调表达则表明,ε-PL的抑菌活性能破坏细胞结构,并促进C. albicans蛋白的降解。
     通过基因敲除造成基因缺失是进一步验证ε-PL抑菌分子机制的有效方法。肠炎沙门氏菌是污染食品的主要食源性致病菌,其双组分信号转导系统以特定的方式调控沙门氏菌的毒力,抵抗抗菌肽的抑菌作用。基于沙门氏菌的基因敲除系统有方法成熟,且操作简单的优势,在第四章中,通过敲除S. enteritidis中抵抗抗菌肽的调控系统PhoP-PhoQ和RcsFCDB中的关键基因PhoP和rcsF,比较了ε-PL对S. enteritidis野生株和基因敲除株的相关基因表达影响的差异,探讨其抑制S. enteritidis的分子机制。结果显示S. enteritidisΔphoP对ε-PL的敏感性显著增加,且PhoP-PhoQ所调控的下游基因的表达显著下降,而S. enteritidisΔrcsF在ε-PL中的生长速率较之野生株没有显著差异,表明PhoP-PhoQ调控系统在S. enteritidis抵抗ε-PL的过程中起到关键性的作用,而RcsFCDB调控系统则不能被£-PL激活。
     ε-PL作为食品防腐剂,是否会对机体肠道微生态菌群平衡造成影响,未见报道。在第五章中,采用PCR-DGGE和RT-qPCR相结合的方法,分析了灌胃ε-PL两周过程中小鼠粪便中菌群结构和数量的变化。结果显示,乳杆菌属菌群多样性有所增加。乳杆菌属、拟杆菌属和肠杆菌属的菌体数量所占比例无显著性变化,提示ε-PL小会影响小鼠肠道菌群的平衡,具有一定的食用安全性。
ε-Poly-l-lysine (ε-PL), a natural homo-poly-amino acid, is characterized as being edible, water soluble, biodegradable, stable and low toxic, and widely used as an antibacterial agent for its broad antimicrobial activity against bacteria, yeasts, molds and others. Despite of wide using in food, the mechanism of ε-PL against pathogens at the molecular level has not been elucidated.
     In this study, microbial cultivation, atomic force microscopy (AFM), transmission electron microscopy (TEM), real-time quantitative polymerase chain reaction (RT-qPCR), suppression subtractive hybridization (SSH) and gene knockout technology was used to investigate the antibacterial activity of ε-PL against typical foodborne and nosocomial pathogens, in order to understand the antimicrobial mechanism in molecular level. In addition, the effect of ε-PL on the fecal microbiota of mice was analyzed by using denaturing gradient gel electrophoresis (DGGE) and RT-qPCR analysis.
     The whole research work is described in six chapters. In Chapter1, the type, character and antimicrobial range of food preservatives (especial from natural sources) were described. As a kind of natural food preservative, the physical and chemical characters, antimicrobial activity and mechanism, and the application range as well development tendency of ε-PL were reviewed.
     In Chapter2, E. coli O157:H7(CMCC44828) was chosen as a model to investigate the antimicrobial activity and mechanism of ε-PL against pathogens. The results indicated that the antibacterial effect of ε-PL increased with rise of temperature (4℃,25℃and37℃) and prolonging of the treatment time. The inhibition effect of ε-PL was stable in the range of pH5-7, but decreased in alkaline environments (when pH up to8).
     Verification of the destructive effect of ε-PL on cell structure and membrane integrity was performed by AFM and TEM. The surface of treated bacteria was rough and had an uneven shape. The cell membrane of cells exposed to ε-PL showed collapsed, lysed and rough membranes, a cavitated cell shape, and non-integral membranes. Results showed a positive correlation between ROS levels and ε-PL concentration in cells. RT-qPCR results in this work showed that ε-PL induced the up-regulation of bacterial oxidative stress response, elicited the SOS response, and reduced the transcription of virulence genes.
     In order to analyze the effects of ε-PL at molecular level and examine its effect on gene expression, C. albicans, a frequent mucosal infection and hardly handling pathogen was studied as another model of pathogen in Chapter3. Suppression subtractive hybridization (SSH) was used to identify differentially expressed genes from in responses to ε-PL. A total of10subtracted clones sharing high homologies with known genes of C. albicans were isolated under the sublethal concentrations of ε-PL. RT-qPCR was used to validate these results, which suggested that ε-PL might inhibit carbohydrates metabolic and lead to lipid metabolism disorders of C. albicans through reduced expression of glycolysis and lipid metabolism associated genes. Increased expression of arginyl tRNA synthetase ARGS, translational activator GCN1and ubiquitin protein ligase Asi3suggested the cell structures of C. albicans were destroyed during ε-PL exposure, even enhancing protein degradation.
     Gene absence by gene knockout technology is an effective method to verify the antibacterial mechanism of ε-PL. Salmonellae are the major foodborne pathogens in contaminated food, which uses two-component regulatory systems to regulate virulence and respond to cationic antimicrobial peptide resistance. In Chapter4, to understand the inhibition effect of ε-PL on S. enleritidis in regulatory systems(phoP and rcsF), gene of PhoP-PhoQ and RcsFCDB was knocked out. The results showed antibacterial activity of ε-PL againsted ΔphoP mutant significantly increased. The expression level of downstream genes regulated by PhoP-PhoQ increased. However, the growth rate of ΔrcsF mutant did not change when compared with the wild strain, indicating that PhoP-PhoQ but not RcsFCDB plays an important role in S. enteritidis facing the challenge of ε-PL
     ε-PL is an antimicrobial peptide used in many countries as a safe and natural antibacterial food preservative. However, no studies were conducted to investigate its effect on microbial diversity in the intestine. In Chapter5, the effect of ε-PL's administration for two weeks on mice fecal microbiota was analyzed by using DGGE and RT-qPCR. Results indicated that ε-PL significantly increased the microbiota composition of Lactobacillus species. No significant variation was demonstrated in the proportion of Lactobacillus, Bacteroides, and Enterobacteriaceae when compared with the initial microbiota. The results showed that ε-PL may not significantly affect the stabilization of microbial population in the gastrointestinal tract.
引文
[1]牟冠文;李光浩,食品防腐剂的概况及其检测方法[J].食品与发酵工业2006,32(10),103-1071.
    [2]石立三;吴清平;吴慧清,et a1.,我国食品防腐剂应用状况及未来发展趋势[J].食品研究与开发2008,29(3),157-161.
    [3]Kashani H H; Nikzad H; Mobaseri S, et al., Synergism Effect of Nisin Peptide in Reducing Chemical Preservatives in Food Industry [J]. Life Science Journal 2012,9 (1).
    [4]曾庆孝,食品加工与保藏原理[M].化学工业出版社:2007.
    [5]罗傲霜;淳泽;罗傲雪,et a1.,食品防腐剂的概况与发展[J].中国食品添加剂2005,4,55-58.
    [6]Pereira E A; Petruci J F; Cardoso A A, Determination of Nitrite and Nitrate in Brazilian Meats Using High Shear Homogenization [J]. Food Analytical Methods 2012,5 (4),637-642.
    [7]Keshavarz M H; Gharagheizi F; Shokrolahi A, et al., Accurate prediction of the toxicity of benzoic acid compounds in mice via oral without using any computer codes [J]. Journal of Hazardous Materials 2012.
    [8]Ibrahim H R; Matsuzaki T; Aoki T, Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function [J]. FEBS Letters 2001,506 (1),27-32.
    [9]Cegielska-Radziejewska R; Lesnierowski G; Kijowski J, Properties and application of egg white lysozyme and its modified preparations-a review [J]. Polish Journal of Food and Nutrition Sciences 2008,58 (1),5-10.
    [10]Johansen C; Gill T; Gram L, Antibacterial effect of protamine assayed by impedimetry [J]. Journal of Applied Microbiology 1995,78 (3),297-303.
    [11]Tsai G-J; Wu Z-Y; Su W-H, Antibacterial activity of a chitooligosaccharide mixture prepared by cellulase digestion of shrimp chitosan and its application to milk preservation [J]. Journal of Food Protection 2000,63 (6),747-752.
    [12]Harish Prashanth K; Tharanathan R, Chitin/chitosan:modifications and their unlimited application potential-an overview [J]. Trends in Food Science & Technology 2007,18 (3), 117-131.
    [13]Dorman H; Deans S, Antimicrobial agents from plants:antibacterial activity of plant volatile oils [J]. Journal of Applied Microbiology 2000,88 (2),308-316.
    [14]Arora D S; Kaur J, Antimicrobial activity of spices [J]. International Journal of Antimicrobial Agents 1999,12 (3),257-262.
    [15]Shan B; Cai Y-Z; Brooks J D, et al., The in vitro antibacterial activity of dietary spice and medicinal herb extracts [J]. International Journal of Food Microbiology 2007,117 (1), 112-119.
    [16]Coopoosamy R; Magwa M, Traditional use, antibacterial activity and antifungal activity of crude extract of Aloe excelsa [J]. African Journal of Biotechnology 2007,6 (20).
    [17]Zhang J; Gong J; Ding Y, et al., Antibacterial activity of water-phase extracts from bamboo shavings against food spoilage microorganisms [J]. African Journal of Biotechnology 2010,9 (45),7710-7717.
    [18]Huang X; Xie W-j; Gong Z-z, Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba [J]. FEBS letters 2000,478 (1),123-126.
    [19]Messens W; De Vuyst L, Inhibitory substances produced by Lactobacilli isolated from sourdoughs-a review [J]. International Journal of Food Microbiology 2002,72 (1),31-43.
    [20]Delves-Broughton J; Thomas L V; Doan C H, et al., Q Natamycin [J]. Antimicrobials in Food 2010,145,275.
    [21]Oppermann-Sanio F; Steinbuchel A, Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production [J]. Naturwissenschaften 2002,89 (1), 11-22.
    [22]Sela M; Katchalski E, Biological properties of poly-a-amino acids [J]. Adv. Protein Chem 1959,14,391-478.
    [23]Shen W C; Ryser H, Conjugation of poly-L-lysine to albumin and horseradish peroxidase:a novel method of enhancing the cellular uptake of proteins [J]. Proceedings of the National Academy of Sciences 1978,75 (4),1872.
    [24]Shima S; Sakai H, Polylysine produced by Streptomyces [J]. Agricultural and Biological Chemistry 1977,41 (9),1807-1809.
    [25]Shima S; Sakai H, Poly-L-Lysine Produced by Streptomyces. Part III. Chemical Studies [J]. Agricultural and Biological Chemistry 1981,45 (11),2503-2508.
    [26]Hiraki J; Hatakeyama M; Morita H, et al., Improved ε-poly-L-lysine production of an S-(2-aminoethyl)-L-cysteine resistant mutant of Streptomyces albulus [J]. Seibutsu Kogaku Kaishi 1998,76,487-493.
    [27]Nishikawa M; Ogawa K, Distribution of Microbes Producing Antimicrobial ε--Poly-L-Lysine Polymers in Soil Microflora Determined by a Novel Method [J]. Applied and Environmental Microbiology 2002,68 (7),3575.
    [28]Hiraki J, c-Polylysine, its development and utilization [J]. Fine chem 2000,29 (1),18-25.
    [29]Saimura M; Ikezaki A; Takahara M, et al., Structures of e-polyiysine produced by several actinomycetes and their classification on the basis of productivity of e-polylysine [J]. Annu Meet Soc Biosci Biotechnol Biochem Jpn 2002,54.
    [30]Lee H; Oyama K; Hiraki J, et al., Microbial production and conformation of poly (e-L-lysine) [J]. Chem Express 1991,6,683-686.
    [31]Fukushi H; Oyama K; Hatakeyama M, et al., HPLC fractionation of oligo (ε-L-lysine)mers and their 1H NMR characteristics [J]. Chem 1993,8,745-748.
    [32]Maeda S; Kunimoto K K; Sasaki C, et al., Characterization of microbial poly ([epsilon]-1-lysine) by FT-IR, Raman and solid state 13C NMR spectroscopies [J]. Journal of Molecular Structure 2003,655(1),149-155.
    [33]Zauner W; Ogris M; Wagner E, Polylysine-based transfection systems utilizing receptor-mediated delivery [J]. Advanced Drug Delivery Reviews 1998,30 (1-3),97-113.
    [34]Calabresi P; Chabner B A; Troy F, Chemotherapy of neoplastic diseases:introduction. In: Hardman, J.G., Limbird, L.E., Gilman, A.G. (Eds.), The Pharmacological Basis of Therapeutics,10th ed. [J]. Journal of Biological Chemistry 2001,254 (14),6262.
    [35]Troy F, Chemistry and biosynthesis of the poly (-D-glutamyl) capsule in Bacillus licheniformis. I. Properties of the membrane-mediated biosynthetic reaction [J]. The Journal of Biological Chemistry 1973,248 (1),305.
    [36]Kawai T; Kubota T; Hiraki J, et al., Biosynthesis of [epsilon]-poly-l-lysine in a cell-free system of Streptomyces albulus [J]. Biochemical and Biophysical Research Communications 2003,311 (3),635-640.
    [37]Shima S; Oshima S; Sakai H, Biosynthesis ε-poly-1-lysine by washed mycelium of Streptomyces albulus No.346. [J]. Nippon Nogeikagaku Kaishi 1983,57,221-226.
    [38]Takagi H; Hoshino Y; Nakamori S, et al., Isolation and sequence analysis of plasmid pNO33 in the ε-poly--lysine-producing actinomycete Streptomyces albulus IFO 14147 [J]. Journal of Bioscience and Bioengineering 2000,89 (1),94-96.
    [39]Shima S; Sakai H, Poly-L-lysine produced by Streptomyces,2:Taxonomy and fermentation studies [J]. Agricultural and Biological Chemistry 1981,45.
    [40]Kahar P; Iwata T; Hiraki J, et al., Enhancement of-polylysine production by Streptomyces albulus strain 410 using pH control [J]. Journal of Bioscience and Bioengineering 2001,91 (2),190-194.
    [41]Vaara M; Vaara T, Polycations as outer membrane-disorganizing agents [J]. Antimicrobial Agents and Chemotherapy 1983,24 (1),114.
    [42]Shima S; Matsuoka H; Iwamoto T, et al., Antimicrobial action of epsilon -poly-L-lysine [J]. J Antibiot (Tokyo) 1984,37(11),1449-55.
    [43]Kushwaha D; Mathur K; Baiasubramanian D, Poly (ε-L-lysine):Synthesis and conformation [J]. Biopolymers 1980,19 (2),219-229.
    [44]Hiraki J, Basic and applied studies on ε-poiylysine [J]. J Antibaci Antifungal Agents 1995,23, 349-354.
    [45]Neda K; Sakurai T; Stakahashi M, et al., Two-generation reproduction study with teratology test of ε-poly-L-lysine by dietary administration in rats [J]. Jpn Pharmacol Ther 1999,27, 1139-1159.
    [46]Hiraki J; Ichikawa T; Ninomiya S, et al., Use of ADME studies to confirm the safety of epsilon-polylysine as a preservative in food [J]. Regulatory Toxicology and Pharmacology 2003,37 (2),328-40.
    [47]Nishikori J, Bacteriostatic and bactericidal compositions and method for utilization thereof. WO Patent WO/2000/011,956:2000.
    [48]Otsuka N; Kuwahara Y; Manabe M, Effect of a ε-poly-lysine on preservation of boiled noodles [J]. Nippon Shokuhin Kogyo Gakkai-Shi 1992,39 (4),344-347.
    [49]Ho Y T; Ishizaki S; Tanaka M, Improving emulsifying activity of-polylysine by conjugation with dextran through the Maillard reaction [J]. Food chemistry 2000,68 (4),449-455.
    [50]Hill J O; Melansonand E L; Wyatt H, Dietary fat intake and regulation of energy balance: implication for obesity [J].Journal of Nutrition.2000,130 284-288.
    [51]Kido Y; Hiramoto S; Murao M, et al., Epsilon-polylysine inhibits pancreatic lipase activity and suppresses postprandial hypertriacylglyceridemia in rats [J]. The Journal of nutrition 2003, 133(6),1887.
    [52]Bogdanov Jr A; Martin C; Bogdanova A, et al., An adduct of cis-diamminedichloroplatinum (Ⅱ) and poly (ethylene glycol) poly (L-lysine)-succinate:synthesis and cytotoxic properties [J]. Bioconjugate chemistry 1996,7(1),144-149.
    [53]Kito M; Takimoto R; Onji Y, et al., Purification and characterization of an ε-poly-L-lysine-degrading enzyme from the ε-poly-L-lysine-tolerant Chryseobacterium sp.OJ7. [J]. Journal of Bioscience and Bioengineering 2003,96,92-94.
    [54]Greenberg H B; Pollard R B; Lutwick L I, et al., Effect of human leukocyte interferon on hepatitis B virus infection in patients with chronic active hepatitis [J]. New England Journal of Medicine 1976,295(10),517-522.
    [55]Merigan T C; Rand K H; Pollard R B, et al., Human leukocyte interferon for the treatment of herpes zoster in patients with cancer [J]. New England Journal of Medicine 1978,298 (18), 981-987.
    [56]Shen W C; RYSER H J P, Poly (L-lysine) and poly (D-lysine) conjugates of methotrexate: different inhibitory effect on drug resistant cells [J]. Molecular pharmacology 1979,16 (2), 614.
    [57]Friedmann T; Roblin R, Gene therapy for human genetic disease? [J]. Science 1972,175 (4025),949.
    [58]Mulligan R C, The basic science of gene therapy [J]. Science 1993,260 (5110),926.
    [59]Hanania E G; Kavanagh J; Hortobagyi G, et al., Recent advances in the application of gene therapy to human disease [J]. The American journal of medicine 1995,99 (5),537-552.
    [60]Gilboa E; Eglitis M A; Kantoff P W, et al., Transfer and expression of cloned genes using retrovial vectors [J]. BioTechniques 1986,4 (6),504-512.
    [61]Rosenfeld M A; Siegfried W; Yoshimura K, et al., Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo [J]. Science 1991,252 (5004),431.
    [62]Kabanov A; Kabanov V, DNA complexes with polycations for the delivery of genetic material into cells [J]. Bioconjugate chemistry 1995,6 (1),7-20.
    [63]Temin H M, Safety considerations in somatic gene therapy of human disease with retrovirus vectors [J]. Human Gene Therapy 1990,1 (2),111-123.
    [64]Chiou H C; Tangco M V; Kormis K, et al., Enhanced resistance to nuclease degradation of nucleic acids complexed to asialoglycoprotein-polylysine carriers [J]. Nucleic acids research 1994,22(24),5439.
    [65]Dorudi S; Northover J; Vile R, Gene transfer therapy in cancer [J]. British journal of surgery 1993,80(5),566-572.
    [66]Ledley F D, Nonviral gene therapy:the promise of genes as pharmaceutical products [J]. Human Gene Therapy 1995,6 (9),1129-1144.
    [67]Wolfert M A; Schacht E H; Toncheva V, et al., Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block co-polymers [J]. Human Gene Therapy 1996,7(17),2123-2133.
    [68]Choi J S; Joo D K; Kim C H, et al., Synthesis of a barbell-like triblock copolymer, poly (1-lysine) dendrimer-block-poly (ethylene glycol)-block-poly (1-lysine) dendrimer, and its self-assembly with plasmid DNA [J]. Journal of the American Chemical Society 2000,122 (3), 474-480.
    [69]Choi Y H; Liu F; Park J S, et al., Lactose-poly (ethylene glycol)-grafted poly-L-lysine as hepatoma cell-targeted gene carrier [J]. Bioconjugate Chemistry 1998,9 (6),708-718.
    [70]Hirayama C; Sakata M; Nakamura M, et al., Preparation of poly (-lysine) adsorbents and application to selective removal of lipopolysaccharides [J]. Journal of Chromatography B: Biomedical Sciences and Applications 1999,721 (2),187-195.
    [71]Sakata M; Todokoro M; Hirayama C, Removal of endotoxin from protein solution using poly (ε-lysine)-immobilized cellulose beads [J]. American Biotechnology Laboratory 2002,20 (1), 36-38.
    [72]Okada N; Miyamoto H; Yoshioka T, et al., Immunological studies of SK2 hybridoma cells microencapsulated with alginate-poly (L) lysine-alginate (APA) membrane following allogeneic transplantation [J]. Biochemical and Biophysical Research Communications 1997, 230 (3),524-527.
    [73]Machuluf M; Boorjian S; Caffaratti J, et al., Therapeutic delivery of testosterone using microencapsulated leydig cells [J]. Journal of Urology 1999,161,311.
    [74]Machuluf M; Orsola A; Atala A, Controlled release of therapeutic agents:slow delivery and cell encapsulation [J]. World Journal of Urology 2000,18(1),80-83.
    [75]Kunioka M; Choi H J, Properties of biodegradable hydrogels prepared by y irradiation of microbial poly (ε-lysine) aqueous solutions [J]. Journal of Applied Polymer Science 1995, 58(4),801-806.
    [76]Choi H J; Yang R; Kunioka M, Synthesis and characterization of pH-sensitive and biodegradable iiyurogeis prepared by y irradiation using microbial poly (γ-glutamic acid) and poly (ε-lysine) [J]. Journal of Applied Polymer Science 1995,58 (4),807-814.
    [77]Fujita A, Water-swellable polymer gel and process for preparing the same. US Patent App. 20,010/018,464:2001.
    [78]Yoshida T; Nagasawa T, ε-Poly-L-lysine:microbial production, biodegradation and application potential [J]. Applied Microbiology and Biotechnology 2003,62 (1),21-26.
    [79]Ostuni E; Yan L; Whitesides G M, The interaction of proteins and cells with self-assembled monolayers of alkanethiolates on gold and silver [J]. Colloids and Surfaces B:Biointerfaces I999,15(1),3-30.
    [80]Wallace E; Walton A; Bathia G, et al., Photoisomeization and aggregation behavior of DNA/polylysine/azobenzene (DR80) dye ultrathin film:substrate for optobioelectronics applications [J]. Polymer Prints 2000,41,1016-1017.
    [81]Shih I L; Shen M H; Van Y T, Microbial synthesis of poly(epsilon-lysine) and its various applications [J]. Bioresource Technology 2006,97 (9),1148-1159.
    [82]Najjar M B; Kashtanov D; Chikindas M, ε-Poly-l-lysine and nisin A act synergistically against Gram-positive food-borne pathogens Bacillus cereus and Listeria monocytogenes [J]. Letters in Applied Microbiology 2007,45 (1),13-18.
    [83]Geornaras I; Yoon Y; Belk K E, et al., Antimicrobial activity of epsilon-polylysine against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in various food extracts [J]. Food Microbiology 2007,72 (8), M330-334.
    [84]Yoshida T; Yoshida T, e-Poly-L-lysine:microbial production, biodegradation and application potential [J]. Applied Microbiology and Biotechnology 2003,62 (1),21-26.
    [85]Hiraki J; Ichikawa T; Ninomiya S, et al., Use of ADME studies to confirm the safety of epsilon-polylysine as a preservative in food [J]. Regulatory Toxicology and Pharmacology 2003,37 (2),328-340.
    [86]Shima S; Matsuoka H; Iwamoto T, et al., Antimicrobial action of epsilon-poly-L-lysine [J]. Journal of Antibiotics 1984,37(11),1449-1455.
    [87]Xie Y; He Y; Irwin P L, et al., Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni [J]. Applied and environmental microbiology 2011,77 (7),2325-2331.
    [88]Frank T; Mbecko J R; Misatou P, et al., Emergence of quinolone resistance among extended-spectrum beta-lactamase-producing Enterobacteriaceae in the Central African Republic:genetic characterization [J]. BMC Research Notes 2011,4,309.
    [89]Michan C; Manchado M; Dorado G, et al., In vivo transcription of the Escherichia coli oxyR regulon as a function of growth phase and in response to oxidative stress [J]. Journal of Bacteriology 1999,181 (9),2759-64.
    [90]Carruthers M D; Bellaire B H; Minion F C, Exploring the response of Escherichia coli O157: H7 EDL933 within Acanthamoeba castellanii by genome-wide transcriptional profiling [J]. FEMS Microbiology Letters 2010,312 (1),15-23.
    [91]Kim J H; Kim J C; Choo Y A, et al., Detection of cytolethal distending toxin and othervirulence characteristics of enteropathogenic Escherichia coli isolates from diarrheal patients in Republic of Korea [J]. Journal of Microbiology and Biotechnology 2009,19 (5), 525-529.
    [92]Kanthawong S; Bolscher J G; Veerman E C, et al., Antimicrobial and antibiofilm activity of LL-37 and its truncated variants against Burkholderia pseudomallei [J]. International Journal of Antimicrobial Agents 2012,39 (1),39-44.
    [93]Townes C L; Michailidis G; Hall J, The interaction of the antimicrobial peptide cLEAP-2 and the bacterial membrane [J]. Biochemical and Biophysical Research Communications 2009, 387(3),500-503.
    [94]Zhang J; Wu X; Zhang S Q, Antifungal mechanism of antibacterial peptide, ABP-CM4, from Bombyx mori against Aspergillus niger [J]. Biotechnology Letters 2008,30 (12),2157-63.
    [95]DelCarlo M; Loeser R F, Chondrocyte cell death mediated by reactive oxygen species-dependent activation of PKC-betal [J]. American Journal of Physiology Cell Physiology 2006,290 (3), C802-C811.
    [96]Smimova G V; Samoylova Z Y; Muzyka N G, et al., Influence of polyphenols on Escherichia coli resistance to oxidative stress [J]. Free Radical Biology and Medicine 2009,46 (6), 759-68.
    [97]Batinic-Haberle I; Rajic Z; Benov L, A combination of two antioxidants (an SOD mimic and ascorbate) produces a pro-oxidative effect forcing Escherichia coli to adapt via induction of oxyR regulon [J]. Anti-cancer Agents in Medicinal Chemistry 2011,11 (4),329-40.
    [98]Shimoni Y; Altuvia S; Margalit H, et al.. Stochastic analysis of the SOS response in Escherichia coli [J]. PLoS One 2009,4 (5), e5363.
    [99]Adikesavan A K; Katsonis P; Marciano D C, et al., Separation of recombination and SOS response in Escherichia coli RecA suggests LexA interaction sites [J]. PLoS Genet 2011,7 (9), e1002244.
    [100]Salehi T Z; Tonelli A; Mazza A, et al., Genetic Characterization of Escherichia coli 0157: H7 Strains Isolated from the One-Humped Camel (Camelus dromedarius) by Using Microarray DN A Technology [J]. Molecular Biotechnology 2011,1-6.
    [101]Gou N; Onnis-Hayden A; Gu A Z, Mechanistic toxicity assessment of nanomaterials by whole-cell-array stress genes expression analysis [J]. Environmental Science & Technology 2010,44(15), pp 5964-5970.
    [102]Daugherty A; Powers K M; Standley M S, et al., Mycobacterium smegmatis RoxY Is a Repressor of oxyS and Contributes to Resistance to Oxidative Stress and Bactericidal Ubiquitin-Derived Peptides [J]. Journal of Bacteriology 2011,193 (24),6824-6833.
    [103]Bader M W; Navarre W W; Shiau W, et al., Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides [J]. Molecular Microbiology 2003,50(1),219-230.
    [104]Su L Y; Willner D L; Segall A M, An antimicrobial peptide that targets DNA repair intermediates in vitro inhibits Salmonella growth within murine macrophages [J]. Antimicrobial Agents and Chemotherapy 2010,54(5),1888-1899.
    [105]Wagener J; Weindl G; de Groot P W J, et al., Glycosylation of Candida albicans Cell Wall Proteins Is Critical for Induction of Innate Immune Responses and Apoptosis of Epithelial Cells [J]. PLoS One 2012,7(11), e50518.
    [106]Ruiz-Herrera J; Victoria Elorza M; Valentin E, et al., Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity [J]. FEMS yeast research 2005,6 (1),14-29.
    [107]Chaffin W L J, Candida albicans cell wall proteins [J]. Microbiology and Molecular Biology Reviews 2008,72 (3),495-544.
    [108]Khodavandi A; Alizadeh F; Harmal N S, et al., Expression analysis of SIR2 and SAPsl-4 gene expression in Candida albicans treated with allicin compared to fluconazole [J]. Tropical Biomedicine 2011,28 (3),589-598.
    [109]Vandeputte P; Pradervand S; lscher F, et al., Identification and functional characterization of Real, a transcription factor involved in both antifungal susceptibility and host response in Candida albicans [J]. Eukaryotic Cell 2012,11 (7),916-931.
    [110]Kim K.-J; Sung W S; Suh B K, et al., Antifungal activity and mode of action of silver nano-particles on Candida albicans [J]. Biometals 2009,22 (2),235-242.
    [111]Tobudic S; Kratzer C; Lassnigg A, et al., In vitro activity of antifungal combinations against Candida albicans biofilms [J]. Journal of Antimicrobial Chemotherapy 2010,65 (2), 271-274.
    [112]Tsai P W; Yang C Y; Chang H T, et al., Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates [J]. PLoS One 2011,6 (3), e17755.
    [113]Khodavandi A; Harmal N S; Alizadeh F, et al., Comparison between allicin and fluconazole in Candida albicans biofilm inhibition and in suppression of HWP1 gene expression [J]. Phytomedicine 2011,19 (1),56-63.
    [114]Rebrikov D V, Identification of differential genes by suppression subtractive hybridization: V. PCR-based DNA dot blot [J]. Cold Spring Harbor Protocols 2008,2008 (7), pdb. prot4859.
    [115]Yang Z; Peng Z; Yang H, et al., Suppression subtractive hybridization identified differentially expressed genes in pistil mutations in wheat [J]. Plant Molecular Biology Reporter 2011,29 (2),431-439.
    [116]Zhang X; Ge Y; Zhao S, et al., Immunisation with the glycolytic enzyme enolase confers effective protection against Candida albicans infection in mice [J]. Vaccine 2011,29 (33), 5526-5533.
    [117]Jong A Y; Chen S H M; Stins M F, et al., Binding of Candida albicans enolase to plasmin (ogen) results in enhanced invasion of human brain microvascular endothelial cells [J]. Journal of Medical Microbiology 2003,52 (8),615-622.
    [118]Shen Q W; Warrie J; Underwood K R, et al., Early post-mortem AMP-activated protein kinase (AMPK) activation leads to phosphofructokinase-2 and-1 (PFK-2 and PFK-1) phosphorylation and the development of pale, soft, and exudative (PSE) conditions in porcine longissimus muscle [J]. Journal of Agricultural and Food Chemistry 2006,54 (15), 5583-5589.
    [119]Schmidt P; Walker J; Selway L, et al., Proteomic analysis of the pH response in the fungal pathogen Candida glabrata[J]. Proteomics 2008,8 (3),534-544.
    [120]Ebanks R O; Chisholm K; McKinnon S, et al., Proteomic analysis of Candida albicans yeast and hyphal cell wall and associated proteins [J]. Proteomics 2006,6 (7),2147-2156.
    [121]Cabez6n V; Llama-Palacios A; Nombela C, et al., Analysis of Candida albicans plasma membrane proteome [J]. Proteomics 2009,9 (20),4770-4786.
    [122]Ozcan S; Johnston M, Function and regulation of yeast hexose transporters [J]. Microbiology and Molecular Biology Reviews 1999,63 (3),554-569.
    [123]Yoshida A; Wei D; Nomura W, et al., Reduction of Glucose Uptake through Inhibition of Hexose Transporters and Enhancement of Their Endocytosis by Methylglyoxal in Saccharomyces cerevisiae [J]. Journal of Biological Chemistry 2012,287 (1),701-711.
    [124]Yu K O; Kim S W; Han S O, Engineering of glycerol utilization pathway for ethanol production by Saccharomyces cerevisiae [J]. Bioresource Technology 2010,101 (11), 4157-4161.
    [125]Schuller H J; Fortsch B; Rautenstrauss B, et al.. Differential proteolytic sensitivity of yeast fatty acid synthetase subunits alpha and beta contributing to a balanced ratio of both fatty acid synthetase components [J]. European Journal of Biochemistry 1992,203 (3),607-14.
    [126]Tamano K; Bruno K S; Karagiosis S A, et al., Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes [J]. Applied Microbiology and Biotechnology 2012,1-13.
    [127]Vizeacoumar F J; Torres-Guzman J C; Bouard D, et al., Pex30p, Pex31p, and Pex32p form a family of peroxisomal integral membrane proteins regulating peroxisome size and number in Saccharomyces cerevisiae [J]. Molecular Biology of the Cell 2004,15 (2),665-677.
    [128]Schuter A; Fourcade S; Ripp R, et al., The evolutionary origin of peroxisomes:an ER-peroxisome connection [J]. Molecular Biology and Evolution 2006,23 (4),838-845.
    [129]Zhou X L; Ruan Z R; Huang Q, et al., Translational fidelity maintenance preventing Ser mis-incorporation at Thr codon in protein from eukaryote [J]. Nucleic Acids Research 2013, 41 (1),302-314.
    [130]Tripathi G; Wiltshire C; Macaskill S, et al., Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans [J]. The EMBO Journal 2002,21 (20), 5448-5456.
    [131]Forsberg H; Gilstring C F; Zargari A, et al., The role of the yeast plasma membrane SPS nutrient sensor in the metabolic response to extracellular amino acids [J]. Molecular Microbiology 2008,42 (1),215-228.
    [132]Zargari A; Boban M; Heessen S, et al., Inner nuclear membrane proteins Asil, Asi2, and Asi3 function in concert to maintain the latent properties of transcription factors Stpl and Stp2 [J]. Journal of Biological Chemistry 2007,282 (1),594-605.
    [133]Forsberg H; Ljungdahl P O, Sensors of extracellular nutrients in Saccharomyces cerevisiae [J]. Current genetics 2001,40 (2),91-109.
    [134]Harris M; Mora-Montes H M; Gow N A R, et al., Loss of mannosylphosphate from Candida albicans cell wall proteins results in enhanced resistance to the inhibitory effect of acationic antimicrobial peptide via reduced peptide binding to the cell surface [J]. Microbiology 2009, 155(4),1058-1070.
    [i 35]ivliiier S I; Kukral A M; Mekalanos J J, A two-component regulalory system (phoP phoQ) controls Salmonella typhimurium virulence [J]. Proceedings of the National Academy of Sciences 1989,86 (13),5054-5058.
    [136]Navarre W W; Halsey T A; Walthers D, et al., Co- regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ [J]. Molecular microbiology 2005,56 (2),492-508.
    [137]Farris C; Sanowar S; Bader M W, et al., Antimicrobial peptides activate the Rcs regulon through the outer membrane lipoprotein RcsF [J]. Journal of Bacteriology 2010,192 (19), 4894.4903.
    [138]Bayoumi M A; Griffiths M W, In vitro inhibition of expression of virulence genes responsible for colonization and systemic spread of enteric pathogens using Bifidobacterium bifidum secreted molecules [J]. International Journal of Food Microbiology 2012.
    [139]Dorschner R A; Lopez-Garcia B; Peschel A, et al., The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides [J]. The FASEB Journal 2006,20 (1),35-42.
    [140]Hobrard M; Viala J P; Mdresse S, et al., Redundant hydrogen peroxide scavengers contribute to Salmonella virulence and oxidative stress resistance [J]. Journal of Bacteriology 2009,191 (14),4605-4614.
    [141]Nunez-Hernandez C; Tierrez A; Ortega A D, et at., Genome Expression Analysis of Nonproliferating Intracellular Salmonella enterica Serovar Typhimurium Unravels an Acid pH-Dependent PhoP-PhoQ Response Essential for Dormancy [J]. Infection and Immunity 2013,81(1),154-165.
    [142]Gunn J S, The Salmonella PmrAB regulon:lipopolysaccharide modifications, antimicrobial peptide resistance and more [J]. Trends in Microbiology 2008,16 (6),284-290.
    [143]Richards S M; Strandberg K L; Conroy M, et al., Cationic antimicrobial peptides serve as activation signals for the Salmonella Typhimurium PhoPQ and PmrAB regulons in vitro and in vivo [J]. Frontiers in Cellular and Infection Microbiology 2012,2.
    [144]Dolan K T; Duguid E M; He C, Crystal structures of SlyA protein, a master virulence regulator of Salmonella, in free and DNA-bound states [J]. Journal of Biological Chemistry 2011,286 (25),22178-22185.
    [145]Charles R C; Harris J B; Chase M R, et al., Comparative proteomic analysis of the PhoP regulon in Salmonella enterica serovar Typhi versus Typhimurium [J]. PLoS One 2009,4 (9), e6994.
    [146]Hiraki J; Ichikawa T; Ninomiya S-i, et al., Use of ADME studies to confirm the safety of e-polylysine as a preservative in food [J]. Regulatory Toxicology and Pharmacology 2003,37 (2),328-340.
    [147]Friswell M K; Gika H; Stratford I J, et al., Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice [J]. PLoS One 2010,5(1), e8584.
    [148]Riboulet-Bisson E; Sturme M H J; Jeffery I B, et al., Effect of Lactobacillus salivarius bacteriocin Abp 118 on the mouse and pig intestinal microbiota [J]. PLoS One 2012,7 (2), e31113.
    [149]Chen T; Yuan J; Feng X, et al., Effects of enrofloxacin on the human intestinal microbiota in vitro [J]. International journal of antimicrobial agents 2011,37(6),567-571.
    [150]De Filippo C; Cavalieri D; Di Paola M, et al., Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa [J]. Proceedings of the National Academy of Sciences 2010,107(33),14691-14696.
    [151]Zwielehner J; Liszt K; Handschur M, et al., Combined PCR-DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, bifidobacteria and Clostridium cluster IV in institutionalized elderly [J]. Experimental gerontology 2009,44 (6),440-446.
    [152]Stringer A M; Gibson R J; Logan R M, et al., Chemotherapy-induced diarrhea is associated with changes in the luminal environment in the DA rat [J]. Experimental Biology and Medicine 2007,232 (1),96-106.
    [153]van Staden D A; Brand A M; Endo A, et al., Nisin F, intraperitoneally injected, may have a stabilizing effect on the bacterial population in the gastro-intestinal tract, as determined in a preliminary study with mice as model [J]. Letters in Applied Microbiology 2011,53 (2), 198-201.
    [154]Ariefdjohan M W; Savaiano D A; Nakatsu C H, Comparison of DNA extraction kits for PCR-DGGE analysis of human intestinal microbial communities from fecal specimens [J]. Nutrition Journal 2010,9 (1),23.
    [155]Liu C; Yang J; Wu G, et al., Estimation of dominant microbial population sizes in the anaerobic granular sludge of a full-scale UASB treating streptomycin wastewater by PCR-DGGE [J]. World Journal of Microbiology and Biotechnology 2010,26 (2),375-379.
    [156]Schenk M; Raffellini S; Guerrero S, et al., Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae by UV-C light:Study of cell injury by flow cytometry [J]. LWT-Food Science and Technology 2011,44 (1),191-198.
    [157]Matsuda K; Tsuji H; AsaharaT, et al., Establishment of an analytical system for the human fecal microbiota, based on reverse transcription-quantitative PCR targeting of multicopy rRNA molecules [J]. Applied and Environmental Microbiology 2009,75 (7),1961-1969.
    [158]Joossens M; Huys G; Cnockaert M, et al., Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives [J]. Gut 2011,60 (5),631-637.
    [159]Ohland C L; MacNaughton W K, Probiotic bacteria and intestinal epithelial barrier function [J]. American Journal of Physiology-Gastrointestinal and Liver Physiology 2010,298 (6), G807-G819.
    [160]Sierra S; Lara-Villoslada F; Sempere L, et al., Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults [J]. Anaerobe 2010,16(3),195-200.
    [161]Woodmansey E J, Intestinal bacteria and ageing [J]. J Appl Microbiol 2007,102 (5), 1178-86.
    [162]Romero M; Avendano-Herrera R; Magarinos B, et al., Acylhomoserine lactone production and degradation by the fish pathogen Tenacibaculum marilimum, a member of the Cytophaga-Flavobacterium-Bacteroides (CFB) group [J]. FEMS Microbiology Letters 2010, 304(2),131-139.
    [163]Nell S; Suerbaum S; Josenhans C, The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models [J]. Nature Reviews Microbiology 2010,8 (8),564-577.
    [164]Cani P; Neyrinck A; Fava F, et al., Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia [J]. Diabetologia 2007,50 (11),2374-2383.
    [165]Ouwehand A C, Antiallergic effects of probiotics [J]. The Journal of nutrition 2007,137 (3), 794S-797S.
    [166]Sun P; Wang J; Jiang Y, Effects of Enterococcus faecium (SF68) on immune function in mice [J]. Food Chemistry 2010,123 (1),63-68.
    [167]Huang Y; Li Y; Huang Q, et al., Effect of orally administered Enterococcus faecium EF1 on intestinal cytokines and chemokines production of sucking piglets [J]. Pak Vet J 2012,32, 81-84.
    [168]Brouwer M S M; Warburton P J; Roberts A P, et al., Genetic organisation, mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced strains of Clostridium difficile [J]. PLoS One 2011,6 (8), e23014.
    [169]Abigail H D; April K R; Clifford C S, Super toxins from a super bug:structure and function of Clostridium difficile toxins [J]. Biochemical Journal 2011,436 (3),517-526.