音叉振动式微机械陀螺结构动态性能解析与健壮性设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于微电子机械加工技术(MEMT, Micro-Electro-Mechanical Technology)的不断进步,微电子机械系统(MEMS)技术正在向实用化的方向发展。其中,微机械结构动态性能的健壮性问题就是MEMS实用化的一个关键问题之一。本论文以一种体微机械加工技术制备的音叉振动式微机械陀螺(以下简称为微结构或微陀螺)为研究对象,从微机械陀螺结构的动态性能健壮性问题出发,为了解决健壮性设计中微机械陀螺结构动态性能解析的高精度和计算时间的问题、提高其系统性能的稳定性,提出了基于子结构方法的微结构动态性能解析方法、灵敏度分析方法,基于Taguchi三次设计对微机械陀螺结构进行了健壮性设计方法的研究:
     1.在对微结构的基本工作原理和微结构的动态性能解析方法进行分析的基础上,为了解决微结构性能解析的高精度和计算时间的问题,提出了基于子结构方法的微结构动态性能解析方法。以一种音叉振动式微机械陀螺为研究对象,分析了微陀螺的动力学模型、空气阻尼特性以及弹性梁的设计;在微结构动态性能分析中,采用了动态子结构方法,建立了表征大自由度、复杂性的微结构解析方法。
     2.利用基于子结构的动态性能解析方法,分析微结构驱动和检测质量块的振动模态、幅频特性和瞬态特性,确定合理的驱动和检测质量块的振动模态,实现面向微结构最终输出性能的动力学特性与检测特性的分析。为提高微陀螺的动态性能,分析了不同的微陀螺弹性梁结构,进行了微陀螺弹性电容计算,对微陀螺的动态特性进行了解析,模拟并比较了微陀螺不同质量分布对微陀螺性能的影响。
     3.实现多物理场工作环境的表征和复杂动态性能的仿真,研究各种物理场单独效应以及多物理场耦合效应对微结构性能评价因子影响的灵敏度分析方法。为有效地进行微结构的动态优化设计与修改,基于子结构方法的微结构动态性能解析法和动态灵敏度分析理论,分析了微陀螺的几何尺寸和工作温度对其结构动态性能的影响。根据灵敏度分析计算结果,用正交试验优化方法进行了微陀螺的动态优化设计。
     4.为解决微结构加工工艺中的不确定因素造成产品性能的不稳定性问题,在分析微加工工艺引起的微陀螺性能变异的基础上,提出了基于Taguchi三次设计的微结构健壮性设计方法。考虑加工误差和工作温度变化的条件下,利用Taguchi的三次设计方法同结构参数仿真试验的动态子结构方法相结合,进行了微陀螺的健壮性设计。通过健壮性设计,获得工作温度变化和关键结构参数组合扰动下,系统性能指标变异最小的设计方案。对于由微结构的微小尺度效应带来的加工误差的不确定性和性能变异的难检测性等复杂问题,通过简单的健壮性设计修正其关键结构参数,实现极小化性能变异,提高性能稳定性,达到控制产品质量和性能的目的。
     5.为验证微结构动态性能解析理论以及理论分析结果的正确性,对音叉振动式微机械陀螺进行了实验研究,首先测量了微陀螺驱动模态和检测模态的频率特性,然后为验证微陀螺的工作环境对性能的影响,测量了工作温度在-40~85℃范围内变化情况下,微陀螺的性能变化特性。实验结果表明,理论分析结果与实验测试结果的趋势完全相同,基于子结构方法对微结构进行动态性能数值模拟与解析,能满足微陀螺设计与解析需要,并能找出性能最佳的结构设计值。
     通过对音叉振动式微机械陀螺结构动态性能解析与健壮性设计的研究,在微加工工艺误差和工作温度的变化情况下,减小了微机械陀螺结构动态性能的变异,提高了其系统性能的稳定性。本论文提出的研究内容不仅对微机械陀螺的研究有效,而且对其它微结构和复杂系统结构的动力特性研究都有重要应用价值。
At present, with ceaseless improvement of micro-electro-mechanical technology (MEMT), development of the technology of the micro-electro-mechanical system (MEMS) tends to be directed forward its application in industrial branches.
     Especially, design and analysis of microstructure are one of the key technical projects. The demands of not only complexity and environmental applicability of MEMS, but also those of the measuring accuracy, the responding velocity and stability of microsensors are higher and higher.
     Therefore, the research on the analysis of the dynamic performance based on the substructuring method has a great significance in the improvement of MEMS technology and is necessary to its further development.
     This paper aims to improve the stability of the dynamic performance from the viewpoint of the demand of the special performance of microstructure.
     For this, a silicon bulk micromachined tuning fork vibratory gyroscope has been taken as the research object of this paper, and the method for analysis of the dynamic performance of the microstructure has been described in detail.
     Based on understanding the basic principle of the microstructure and several methods for analysis of the dynamic performance of the microstructure, this paper has suggested the introduction of the analysis method for dynamic performance of microstructure based on substructure method into the research for resolving some problems encountered in the analysis of the performances of microstructures, e.g. improvement of the accuracy and shortening of the calculating time.
     This paper has also discussed the analyses of the dynamic mechanical model of the micromachined gyroscope, air damp characteristic and the design of the elastic bar; especially, the dynamic substructure method has been applied to analysis for the dynamic performance of the microstructure and the analysis method for the microstructures with great degrees of freedom and complexity has been realized.
     2. In this paper, the vibration modes for the driving and measuring block of the microstructure, frequency response and real time characteristics have been analyzed by using analysis method for dynamic performance of the substructure.
     The reasonable vibration modes for the driving and measuring masses have been found and the analyses of the dynamic mechanical characteristics and the measuring properties for the last output performances of the microstructures have been realized.
     In order to improve the dynamic performances of micromachined gyroscopes, their different elastic-bar structures have been analyzed and the detection capacitance of the micromachined gyroscope has been calculated; the analysis of the dynamic characteristics of the microgyroscope has been carried out; the influence of different mass distributions of the microgyroscope to its performances has been simulated and compared with one another.
     3. In this paper, the characterization of working environments for multi-physical fields the simulations of the complex dynamic performances have been realized; the analysis method for sensitivity has been studied, which is necessary to evaluate how the single effect and the synergetic effect of the multi-physical fields influence the factors estimating the performances of the microstructure
     In order to effectively perform the dynamic optimum design and modification of the microstructure, the influence of the geometrical dimensions and the working temperature to its dynamic performances has been analyzed by the analysis method for the dynamic performances of the microstructure based on the substructure method.
     Based on the results of the sensitivity calculation, the methodology of the orthogonal experiment optimization has been used to carry out the dynamic optimum design of micromachined gyroscope.
     4. In order to solve the instability of the performances of products caused by some uncertain factors in the processing techniques, the robust design method for the microstructure based on Taguchi three-stage design has been suggested based on the analysis on the variation of the performance of the micromachined gyroscope caused by processing techniques.
     Considering the processing errors and the temperature change, Taguchi design method has been used in combination with the dynamic substructure method in the simulation test of the structural parameter to perform the robust design of the micromachined gyroscope.
     Through the robust design, the optimum design scheme able to realize the minimization of the variance of the system performance under the synergistic influences of temperature variation and key structural parameters ahs been proposed.
     The microscale dimensions of microstructures can cause uncertain processing errors and difficulties of their performance variations.
     In this paper, the well-known robust design method has been introduced into determining the key structural parameters in order to ensure the minimum variation of the performance and to improve the stability of the performance from the viewpoint of controlling the qualities and the performances of products.
     5. In order to characterizing the analysis theory of the dynamic performance of the microstructure and to ensure the accuracy of the theoretical analysis, the experimental research ahs been performed on the tuning fork vibratory micromachined gyroscope; First of all, the frequency responses of the driving and measuring modes of the micromachined gyroscope have been measured; Second, the performance variation of the microgyroscope has been measured in the working temperature range -40℃to 85℃to demonstrate the influence of the working environment of the microgyroscope to its performance.
     The experiment results have shown that the results of theoretical analysis and measurement are found to be quite consistent with each other and that the numerical simulation and analysis for the dynamic performance of the microgyroscope based on the substructure method can satisfy the demands of the design and the analysis of the microgyroscope and also allow us to find out the optimum parameter values for designs of structure and performance.
引文
[1] J. W. JUDY, Micro electromechanical systems (MEMS): fabrication, design and applications, Smart Materials and Structures, 2001, 10: 1115-1134
    [2] Bryzek J, Impact of MEMS technology on society, Sensor and Actuators A,1996,56:1-9
    [3] Romanowicz B. F., Bart S. F., Gilbert J. R., Integrated CAD tools for top-down design of MEMS/MOMES systems, Proceeding of SPIE-The International Society for Optical Engineering, 1999 (3680): 171-178
    [4] 高世桥, 曲大成, 微机电系统(MEMS)技术的研究与应用, 科技导报, 2004, 4: 17-21
    [5] 李立斌, 郎素萍, 谢丽丽, 微机电系统与微机械学, 机械设计, 2004, 20(4): 6-8
    [6] 俞瑛, 硅微机械惯性传感器技术及其应用, 集成电路通讯, 2005, 23(1): 1-4
    [7] 王琪民编著, 微型机械导论, 中国科技大学出版社, 2003 年 3 月
    [8] 茅盘松, 王修伦, 吴绍夫, 硅微型振动陀螺的设计, 传感器技术, 1995,5: 29-32
    [9] 林爱民, 牛蒙年, 解健芳, 杨根庆, 双框架微机械陀螺制备关键技术, 功能材料与器件学报, 1999,3:13?-18
    [10] 李新刚, 袁建平, 微机械陀螺的发展现状, 力学进展, 2003, 33(3): 289-301
    [11] B. Boxenhorn, P. Greiff. A vibratory micromechanical gyroscope. Paper 88-4177-CP, AIAA Guidance and Control Conf, Minneapolis, MN, USA, Aug. 15-17. 1988, 1033-1040
    [12] J. Bernstein, S. Cho, A. T. King, A. Kourepenis, P. Maciel, and M. Weinberg, A micromachined comb-drive tuning fork rate gyroscope, Proc. IEEE Micro Electro Mechanical Systems Workshop (MEMS’93), Fort Lauderdale, FL, Feb. 1993, 143-148
    [13] M. Weinberg, J. Bernstein, S. Cho, A. T. King, A. Kourepenis, P. Ward, and J. Sohn, A micromachined comb-drive tuning fork gyroscope for commercial applications, Proc. Sensor Expo, Cleveland, OH, 1994, 187-193
    [14] M. Hashimoto, C. Cabuz, K.Minami, M.Esashi, Silicon resonant angular rate sensor using electromagnetic excitation and capacitive detection, Micromech.Microeng.,1995,219-225
    [15] F.Paoletti, M.A.Gretillat,N.F.Rooij, A silicon micromachined vibrating gyroscope with piezoresistive detection and electromagnetic excitation, Proc.IEEE, Micro Electro Mechanical Systems Workshop,San Diego,CA,1996,162-167
    [16] M.Lutz,W.Golderer, J.Gerstenmeier, J.Marek, et al, A precision yaw rate sensor in silicon micromachining, Conf.Solid-State Sensors and Actuators,Chicago,IL,June 1997,847-850
    [17] Hiroshi Kawai, Ken-Ichi Atsuchi, Masaya Tamura, Kuniki Ohwada, High-resolution microgyroscope using vibratory motion adjustment technology, Sensors and Actuators A, 2001(90): 153-159
    [18] T. Juneau, A. P. Pisano, J. H. Smith, Dual axis operation of a micromachined rate gyroscope, in Tech. Dig. 9th Int. Conf. Solid-State Sensors and Actuators, Chicago, IL, June 1997, 883–886.
    [19] Y. Mochida, M. Tamura, K. Ohwada, A micromachined vibrating rate gyroscope with independent beams for the drive and detection modes, Sensors and Actuators A, 2000(80): 170-178
    [20] M. W. Putty, K. Najafi, A micromachined vibrating ring gyroscope, Proc.Digest, Solid-State Sensors and Actuators Workshop, Hilton Head Island,SC,June1994,213-220
    [21] R. Calvet, W. J Li, I. Charkaborty, R. Bartman, W. J. Kaiser, Silicon bulk micromachined vibratory gyroscope, in Tech. Dig. Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 1996, 288–293
    [22] T. K. Tang, R. C. Gutierrez, C. B. Stell, et al, A packaged silicon MEMS vibratory gyroscope for microspacecraft, in Proc. IEEE Micro Electro Mechanical Systems Workshop, Japan, 1997, 500–505
    [23] Bin Xiong, Lufeng Che, Yuelin Wang, A novel bulk micromachined gyroscope with slots structure working at atmosphere. Sensors and Actuators, 2003(107): 137-145
    [24] 熊斌, 栅结构微机械振动式陀螺, 中国科学院上海微系统与信息技术研究所, 博士论文, 2001
    [25] 熊斌, 黄小振, 王跃林等, 一种新型微机械陀螺的研究, 高技术通讯, 2001(9): 38-41
    [26] 熊斌, 车录锋, 王跃林, 栅结构微机械陀螺运动特性的研究, 机械强度, 2001, 23(4):527-530
    [27] 熊斌, 车录锋, 王跃林, 一种栅型结构微机械陀螺的研究, 中国机械工程, 2003, 14(3):184-187
    [28] 陈垚, 微机械陀螺的材料及器件设计研究, 中国科学院上海微系统与信息技术研究所, 博士论文, 2000
    [29] 陈永, 焦继伟, 王惠泉等, 大气下工作的微机械陀螺的设计及其噪声特性, 半导体学报, 2005, 26(1): 148-151
    [30] 陈永, 焦继伟, 熊斌等, 一种基于滑膜阻尼效应的新型微机械陀螺, 中国机械工程, 2004, 15(2): 103-106
    [31] 陈永, 基于滑膜阻尼效应的音叉式微机械陀螺研究, 中国科学院上海微系统与信息技术研究所, 博士论文, 2004.7
    [32] 陈雪荫, 宋朝晖, 李欣昕等, 一高灵敏度硅微机械陀螺的设计与制造, 传感器技术, 2004(23): 82-85
    [33] X. Li, M. Bao, H. Yang, S. Shen, A micromachined piezoresitive angular rate sensor with a composite beam structure, Sensors and Actuators A, 1999 (72): 217-223
    [34] Heng Yang, Minhang Bao, Hao Yin, Shaoqun Shen, A novel bulk micromachined gyroscope based on a rectangular beam-mass structure, Sensors and Actuators A, 2002(96): 145-151
    [35] 杨恒, 矩形梁微机械陀螺与相关微机械动力学研究, 复旦大学, 博士论文, 2000
    [36] 陈志勇, 高钟毓, 张嵘, 振动轮式微机械陀螺频率配置和气压选择, 中国惯性技术学报, 2001(9): 53-56
    [37] 韩竞科, 王东红, 陈伟平等, 梁式硅微机械陀螺结构的研究, 遥测遥控, 2001(11): 43-47
    [38] 马薇, 李世玮, 虞吉林, 一种新颖的四梁式压电薄膜微型陀螺, 中国科学技术大学学报, 2000(30): 401-405
    [39] N.Yazdi, F.Ayazi, and K.Najafi,“Micromachined inertial sensors,” Prec. of the IEEE, 1998, 86(8): 1640-1659
    [40] Elwenspoek M., Henri Jansen, Silicon Micromachining, Cambridge: Cambridge University Press, 1999
    [41] Kourepenis A, Connelly J, Sitomer J, Low cost MEMS inertial measurement unit, ION NTM 2004, Jan 26-28, 2004, San Diego, California, USA
    [42] 李荣冰, 刘建业, 曾庆化, 华冰, 基于MEMS技术的微型惯性导航系统的发展现状, 中国惯性技术学报, 2004, 12(6): 88-94
    [43] 禹奇才, 张亚芳, 刘锋主编, 工程力学(理论力学部分), 华南理工大学出版社, 2002年 8 月第 1 版
    [44] 刘延柱, 杨海兴, 朱本华编著, 理论力学(第二版), 2001 年 7 月第 2 版
    [45] Minhang Bao, Micro mechanical tranducers- pressure sensors, accelerometers and gyroscopes, ELSEVIER, 2000
    [46] L.D.Landau, E.M.Lifshitz, Fluid Mechanics, Second Edition, New York: Pegamon, 1989.
    [47] Young-Ho Cho, Albert P. Pisano, Roger T. Howe, Viscous damping model for laterally oscillating microstructures, J. MEMS, 1994, 3(2): 81-86
    [48] Sadek,K, Moussa.W. Application of Adaptive Multilevel Substructuring Technique to Model CMOS Micromachined Thermistor Gas Sensor, Part (II): Effect of Manufacturing Uncertainties in The Reliability of MEMS. Proceedings of the International Conference on MEMS, NANO and Smart Systems (ICMENS’03), 2003,7: 390-395
    [49] Gary Keith Fedder, Simulation of Microelectromechanical Systems, Ph.D dissertation, University of California, Berkeley, 1994.
    [50] 姜涛,考虑加工误差的微机械陀螺随机性能分析及健壮性设计,上海交通大学,博士论文,2006
    [51] 刘鸿文主编, 材料力学(第三版)下册, 高等教育出版社, 1992 年 9 月第 3 版
    [52] R.courant, Variational methods for the solution of problems of equibrium and vibrations, Bull.Am.Math.Soc., 1943 ,49:1-23
    [53] J.H.Argyris, Energy theorem and structural analysis. London: Butterworth’s, 1960
    [54] M.J.Turner, R.W.clough, H.C.Martin, L.C.Toop, Stiffness and deflection analysis of complex structures, J.Aeronaut.Sci., 1956, 23
    [55] R.W.Clough, The finit element method in plane stress analysis,In:proc.2nd confefence on Electronic Computation, Pittsburg: ASCE,Pa.,Sept. 8-9,1960
    [56] 车录锋, MEMS 器件的设计、模拟与测试, 中国科学院微系统与信息技术研究所,博士论文,2001
    [57] 车录锋,熊斌,王跃林, 振子框架式微机械陀螺的有限元模拟,机械强度, 2001,4:481-483
    [58] 霍明学 , 陈伟平 , 等 , 体硅微机械陀螺的设计与模拟 , 哈尔滨工业大学学报 , 2005,37(9):1196-1199
    [59] 李文军,赵小林,蔡炳初等, 一种新型微机械硅弹簧的设计与制作, 微细加工技术, 2001,4:70-73
    [60] Sudipta Basak, Arvind Raman, Suresh V.Garinella, Dynamic Response Optimization of Piezoelectrically Excited Thin Resonant Beams,ASME Journal of Vibration and Acoustics, 2005,127:18-27
    [61] 高静 , 颜华 , 刘春婷 , 电容层析成像系统的有限元分析 , 沈阳工业大学学报 , 2003,6:506-508
    [62] 车录锋,熊斌,王跃林, 振子框架式微机械陀螺的优化设计及电学模拟,航空学报,2002,3:211-214
    [63] 林烨,莫锦秋, 新型双级解耦合微机械陀螺设计与仿真,计算机仿真,2005,4:20-22
    [64] Said Emre Alper, Tayfun Akin, Symmetrical and decoupled nickel microgyroscope on insulating substrate, Sensore and Actuators A., 2004 ,115:336-350
    [65] Sungus Park, Roberto Horowitz, New Adaptive Mode of Operation for MEMS Gyroscopes. ASME Journal of Vibration and Acoustics, 2004, 126: 800-810
    [66] J.Bernstein, S.Cho, A.T.King, A Micromachined comb–drive Tuning Fork Rate Gyroscope,IEEE, 1993,143-148
    [67] Said Emre Alper, Tayfun Akin, A Single-Crystal Silicon Symmetrical and decoupled MEMS Gyroscope on an Insulating Substrate. IEEE Journal of microelectromechanical systems, 2005 ,14(4):707-717
    [68] 蒋军彪,冯培德,徐建东, 振动式微机械陀螺动力学方程、振动模态及其灵敏度分析,中国惯性技术学报,2000,3:48-52
    [69] A.C.J.Luo, Fei-Yue Wang, Nonlinear Dynamics of a Micro-Electro-Mechanical System with Time-Varying Capacitors. ASME Journal of Vibration and Acoustics,2004,126(1):77-83
    [70] S.Rajendran, K.M.Liew, Design and Simulation of an angulator-rate vibrating microgyroscope. Sensors and Actuators A, 2004,116:241-256
    [71] Cenk Acar, Andrei M.Shkel. An Approach for Increasing Drive-Mode Bandwidth of MEMS Vibratory Gyroscopes, IEEE Journal of microelectromechanical systems, 2005,14(3):520-528
    [72] Peter Y.Kwok, Marc S.Weinberg, S.Breuer, Fluid Effects in vibrating Micromachined Structures, IEEE Journal of microelectromechanical systems, 2005 ,14(4):770-781
    [73] 李文望, 微机械振动陀螺隔离耦合的结构设计,华侨大学学报,2001,4:380-384
    [74] 李伟剑,苑伟政, 梳状硅基微陀螺的“Top-down”集成设计及耦合场分析,压电与声光,2001,197-200
    [75] Cenk Acar, Andrei M.Shkel, Nonresonant Micromachind Gyroscopes With Structural Mode-Decoupling. IEEE Sensors Journal, 2003,3(4): 497-506
    [76] 吴校生,陈文元,张卫平, 磁悬浮转子微陀螺及其悬浮力与稳定性的分析,传感器技术,2003,12:12-14
    [77] 陈建军,王小兵, 随机参数智能板结构的动态特性分析,西安电子科技大学学报,2004,5:661-665
    [78] Han Jeong Sam, Kwak Byung Man, Robust optimal design of a vibratory microgyroscope considering fabrication errors. Micromech Microeng, 2001,11:662-671
    [79] 李景湧编著, 有限元法, 北京邮电大学出版社, 1999,2,第 1 版
    [80] 王勖成, 邵敏编著, 有限单元法基本原理和数值方法, 清华大学出版社, 1997,3,第 2 版
    [81] 赵丽滨, 王寿梅, 结构动力分析中时间积分方法进展, 力学与实践, 2001,2:10-15
    [82] Pezeshk S, Camp C.V, An explicit time integration technique for dynamic analyses, Int J for Numerical Methods in Engineering, 1995, 38:2265-2281
    [83] Owren B, Simonsen H.H, Alternative integration methods for problems in structural dynamics, Computer Methods in Applied Mechanics and Engineering,1995, 122 (1-2) : 1-10
    [84] Sha DS, Chen XQ, Tamma KK, Virtual-pulse time integral methodology, A new approach for computational dynamics. Part 1 & 2. Theory for nonlinear structural dynamics. Finite Elements in Analysis and Design, 1995,20:179-204
    [85] Wang SM, Shenoi RA, Zhao LB, A new time integration method in structural dynamics using Taylor series, Proc. Instn. Engrs. Part C, 1998 ,212: 567-575
    [86] 钟万勰, 结构动力方程的精细积分法, 大连理工大学学报, 1994,2:131-136
    [87] WX Zhong, FW Williams, A precise time step integration method, J. Meth. Engrg. Sci. Proc. Inst. Meth. Eng. Part C, 1994 ,208: 427-430
    [88] 赵丽滨, 张建宇, 王寿梅, 精细积分方法的稳定性和精度分析, 航空学报, 2000,5: 569-572
    [89] 张洪武, 关于动力分析精细积分算法精度的讨论, 力学学报, 2001,6:847-852
    [90] 王文亮,杜作润, 结构振动与动态子结构方法,复旦大学出版社,1985
    [91] K.J.巴特,E.L.威尔逊著,林公豫等译, 有限元分析中的数值方法, 科学出版社,1985
    [92] 王永岩,有限元法基础与 SAP5 程序应用, 煤炭工业出版社,1995
    [93] 张汝清,殷学纲,董明, 计算结构动力学,重庆大学出版社,1987
    [94] L.米罗维奇著,陈幼明,沈守正译, 结构动力学计算方法,国防工业出版社,1987
    [95] 林家浩,曲乃泗,孙焕纯, 计算结构动力学,高等教育出版社,1989
    [96] 砺堂,结构系统动力特性分析, 北京航空航天大学出版社,1989
    [97] 殷学纲,陈淮,蹇开林, 结构振动分析的子结构方法,中国铁道出版社,1991
    [98] W.C.Hurty, Vibration of structure systems by component mode synthesis, Jour.Engr.Math, Div.,ASCE, 1960,86:51-59
    [99] W.C.Hurty, Dynamic analysis of structural system using component modes, AIAA J., 1965,3(4):678-685
    [100] G.M.L.Glad Well, Brauch mode analysis of vibrating systems, J.Sound and Vibration, 1964, 1:41-59
    [101] R.R.Craig, M.C.C.Bampton, Coupling of substructures for dynamic analysis, AIAA J., 1968,6(7): 1313 -1319
    [102] S.Rubin, Improved component-mode representation for structural dynamic analysis, AIAA J., 13(8):995-1006
    [103] S.N.Hou, Review of model synthesis techniques and a new approach, Shock and Vibration Bulletin, 1969,40(4):25-30
    [104] R.M.Hintz, Analytical methods in component model synthesis, AIAA J., 1975,13(8):1007-1016
    [105] 柏生,BCDSP 双协调动态子结构程序原理和使用说明, 杭州计算机软件研究所,1986
    [106] 王永岩,柏生, 在 SAP5 程序中引入移轴技术实现对刚体模态的计算, 辽宁省力学学会,东北工学院出版社,1991
    [107] 楼梦麟 , 赵永利 , 坝基动力相互作用有限元分析的子结构方法 , 振动工程学报,1994,2:161-166
    [108] 薛卫东,郑银玲, 有限元分析的子结构消去法, 机械科学与技术,1996,11:887-902
    [109] 刘宁,刘光廷, 水管冷却效应的有限元子结构模拟技术,水利学报,1997,12:43-49
    [110] 于德介,吕东, 弹性连杆机构灵敏度分析的子结构方法,中国机械工程,1998,5:63-65
    [111] 张灶法,朱壮瑞,孙凌玉等, 白车身动态灵敏度应力分析的等效子结构方法, 东南大学学报(自然科学版),2001,3(2):39-41
    [112] 丁谓平,陈花玲, 基于对称有限元模型的车辆乘坐室声振耦合分析的子结构方法, 噪声与振动控制,2001,2:2-7
    [113]袁政强,钟树生,用面向对象的方法实现有限元的子结构法,重庆大学学报,2001,5:35-37
    [114] 周海亭,陈莲, 子结构方法在 ANSYS 软件中的应用, 噪声与振动控制, 2001,8(4):16-18
    [115] 常辉兰 , 贾晓红 , 李林红等 , 星载探测器单体结构的计算机仿真分析 , 机械设计,2002,9:36-39
    [116] 王真,赵章焰, 子结构技术在门座起重机门架结构有限元分析中的应用,武汉理工大学学报,2002,10: 678-680
    [117] 王常峰,欧阳永金,朱东生等, V 形支撑局部结构三维实体有限元分析, 兰州铁道学院学报(自然科学版),2002,6:20-29
    [118] 陈艳秋,李琳,范钦珊等, 改进的直接分支模态综合法, 清华大学学报(自然科学版),2003,5:669-672
    [119] 荀兵, 子结构法在有限元线性静力分析中的应用, 矿山机械,2003,2:47-49
    [120] 马少坤,于淼,崔皓东, 子结构分析的基本原理和 ANSYS 软件的子结构分析方法, 广西大学学报(自然科学版),武汉理工大学学报,2004,6:150-153
    [121]杜平安,刘清友,特殊型式梁的子结构建模方法,电子科枝大学学报,2000,29(5):512-514
    [122]刘广军,王安麟,姜涛,焦继伟,张正福,基于子结构模型的音叉振动式微机械陀螺的检测电容解析方法,机械工程学报(已录用)
    [123]倪振华,模态加速度法的实质及其与模态综合的关系,西安交通大学学报,1993,27(1):57-62
    [124] Chabloz M, Jiao J, Yoshida Y, et al, A Method to Evade Microloading Effect in Deep Reactive Ion Eching for Anodically Bonded Glass-Silicon Structures. In: 2000 IEEE MicroElectroMechanical Systems Workshop, Miyazaki, Japan. 2000: 283~287
    [125] MORALES C, Dynamic Analysis of Frames by a Rayleigh-Ritz Based Substructure Synthesis Method. Engineering Structures, 2000,22 (12): 1 632~1 640
    [126] Fox R., Kapoor M., Rate of Change of Eigenvalues and Eigenvectors, AIAA Journal, 1968,6(12): 2426-2429
    [127] Zienkiewicz O. C , Campbell J. S, Shape Optimization and Sequential Linear Programming. Optimum Structural Design ,Theory and Applications , R. H. Gallagher, O. C. Zienkiewicz , eds. , Wiley , London , 1973 : 109 —126
    [128] Ramakrishnan C. V , Francavilla A, Structural Shape Optimization Using Penalty Functions, J. Struct . Mech. , 1974,3 : 403 —422
    [129] Wang S.Y, Sun Y, Gallagher R.H, Sensitivity Analysis in Shape Optimization ofContinuum Structures, Comp. And Struct . , 1985 ,20 : 855 —867
    [130] Kleiber M , Antunez H , Hien T.D , Kowalczyk P, Parameter Sensitivity in Nonlinear Mechanics, Wiley , New York ,1997
    [131] Pandey P.C , Bakshi P, Analytical Response Sensitivity using Hybrid Finite Elements. Comp. and Struct . , 1999 ,70 :525 —534
    [132] Pederson P , Cheng G, Rasmussen J . On Accuracy Problems of Semi-analytical Sensitivity Analysis , Mechanics of Structures and Machines,1989 ,17(3) : 373 —384
    [133] Cheng G, Gu Y, Zhou Y. Accuracy of Semi-analytical Sensitivity Analysis, Finite Elements in Analysis and Design,1989 ,6 : 113 —128
    [134] Cheng G, Gu Y, Wang X. Improvement of Semi-analytical Sensitivity Analysis and MCADS, In : Eschenhaur HA ,Mattheck C , Olhoff N , editors, Engineering Optimization in Design processes. Berlin : Springer , 1991 : 211 —223
    [135] Cheng G, Olhoff N. Rigid Body Motion Test in Semi-analytical Sensitivity Analysis , Comp. and Struct . , 1993 ,46(3) : 515 —527
    [136] Olhoff N , Rasmussen J , Lund E. A Method of Exact Numerical Differentiation for Errs Elimination in Finite Element Based Semi-analytical Shape Sensitivity Analysis, Mechanics of Structures and Machines , 1993 ,21(1) : 1 —66
    [137] Bakshi P , Pandey P C, Analytical Response Sensitivity using Hybrid Finite Elements, Comp. and Struct . , 2000 ,70 :281 —297
    [138] Arora J.S ,Govil A.K, Design Sensitivity Analysis with Substructuring. ASCE Journal of Engineering Mechanics ,1977 ,103 :537 —548
    [139] Haug E.J ,Arora J.S, Applied Optimal Design ,John Wiley and Sons ,Inc. ,New York ,Ch. 4 ,1979
    [140] Huang T.C, Huang X.L, Fixed-interface Substructural Modal Perturbation Method, International Journal of Analytical and Experimental Modal Analysis,1988 ,3 (1) : 6-11
    [141] Joo Ho Heo, Ehmann K.F, A Method for Substructural Sensitivity Synthesis, Journal of Vibration and Acoustics ,1991 ,113 :201—208
    [142] Nelson R.B, Simplified Calculation of Eigenvectors Derivatives ,AIAA Journal, 1976, 14 (9):1201-1205
    [143] 于德介, 弹性连杆机构灵敏度分析方法与应用, 北京:航空工业出版社,1999
    [144] 张美艳,王丽炜,陈力奋, 非亏损对称系统的子结构灵敏度综合方法, 振动与冲击,2004,23(1):65-69
    [145] 何重辉,陈瑞琪,结构动态特征灵敏度方法及在倍捻锭子上的应用,中国纺织大学学报,1999,25(1):45-49
    [146] Netzer E, Porat I, A novel vibratory device for angular rate measurement, J. Dyn. Sys.,Meas. Cont. 1995,117:585–591
    [147] C C Painter, A M Shkel, Structural and thermal modeling of a z-axis rate integrating gyroscope, J. Micromech. Microeng. 2003,13:229–237
    [148] Remtema T, Lin L, Active frequency tuning for microresonators by localized thermal stressing effects, Solid-State Sens. and Act. Work. (Hilton Head Island, SC) (Cleveland, OH: Transducers Res. Found), 2000: 363–366
    [149] Lin L, Howe R T, Pisano A P, Microelectromechanical filters for signal processing, J. Micro. Sys. 1998,7 :286–294
    [150] 张祖明, 质量工程的进展:可靠性和健壮性, 北京印刷学院学报, 1995, 2: 1-10
    [151] 朱学军, 基于 Pareto 多目标进化计算的健壮性设计方法及应用研究, 上海交通大学博士论文, 1999
    [152] 朱学军, 王安麟, 黄洪钟, 基于健壮性的机械设计方法, 机械科学与技术, 2000, 19(2): 230-233
    [153] 巫宗萍, 健壮设计及其在机械设计中的应用, 机械设计与制造, 2003,5: 133-136
    [154] Taguchi G. System of experimental design. IEEE J. 1987, 33: 1106-1113
    [155] Der H. W., Mao S. C., Use of Taguchi method to develop a robust design for the magnesium alloy die casting process, Material Science and Engineering A, 2004, 379: 366-371
    [156] K. L. Tsui, An overview of Taguchi method and newly developed statistical methods for robust design, IIE Trans, 1992, 24: 44-57
    [157] Kunjur K., A multi-criteria based robust design approach, from Internet.
    [158] Chen W., Allen J. K., Tsui K.L., Mistree F., A procedure for robust design: minimizing variations caused by noise factors and control factors, Journal of Mechanical Design, 1996, 118: 478-485
    [159] Chen W., Allen J. K., Mistree F., System configuration: concurrent subsystem embodiment and system synthesis, Journal of Mechanical Design, 1996, 118: 165-170
    [160] Wilde D. J., Monotonicity analysis of taguchi’s robust circuit design problem, Journal of Mechanical Design, 1992, 114: 616-619
    [161] Michelena N. F., Agogino A. M., Formal solution of n-type robust parameter design problems with stochastic noise factors, Journal of Mechnaical Design, 1994, 116: 501-507
    [162] Parkinson A., Robust mechanical design using engineering models, Journal of Mechanical Design, 1995, 117: 48-54
    [163] Parkinson A., Sorensen C., Pourhassan N., A general approach for robust optimal design, Journal of Mechanical Design, 1993, 115: 74-80
    [164] Lee K. H., Park G. J., Robust optimization considering tolerances of design variables,Computers and Structures, 2001, 79: 77-86
    [165] E. Sandgren, T. M. Cameron, Robust design optimization of structures through consideration of variation, Computers and Structures, 2002, 80: 1605-1613
    [166] 王安麟, 朱学军, 张惠侨, Pareto 多目标遗传算法及其在机械健壮设计中的应用, 机械设计与研究, 2000, 1: 10-12
    [167] B. Forouraghi, A genetic algorithm for multiobjective robust design, Applied Intelligence, 2002, 12: 151-161
    [168] 刘春涛, 林志航, 基于分位数型设计准则的模糊健壮设计新方法, 机械工程学报, 2005, 41(7): 6-11
    [169] 张氢, 卢耀祖, 基于设计健壮性的汽车衡秤台结构优化设计, 机械设计, 2003, 20(11) : 7-9
    [170] Emch G, Parkinson A. Robust optimal design for worst-case tolerances. Journal of Mechanical Design, 1994, 116: 1019-1025
    [171] 滕启, 王秀叶, 健壮设计及方法评介, 锻压机械, 2000, 1: 5-7
    [172] C. Zang, M. I. Friswell, J. E. Mottershead. A review of robust optimal design and its application in dynamics, Computers and Structures, 2005, 83: 315-326
    [173] Ioannis Doltsinis, Zhan Kang, Robust design of structures using optimization methods, Comput. Methods Appl. Mech. Engrg., 2004, 193: 2221-2237
    [174] F. T. K. Au, Y. S. Cheng, L. G. Tham, G. W. Zeng, Robust design of structures using convex models, Computers and Structures, 2003, 81: 2611-2619
    [175] M. Papadrakakis, N. D. Lagaros, V. Plevris, Design optimization of steel structures considering uncertaintyes, Engineering Structures, 2005, 27: 1408-1418
    [176] 金光振, 严爱军, 基于健壮性原理的板坯横移车改造设计, 武钢技术, 2004, 42(4): 9-11
    [177] M. Sunar, S. J. Hyder, B.S. Yilbas, Robust design of piezoelectric actuators for structural control, Comput. Methods Appl. Mech. Engrg., 2001, 190: 6257-6270
    [178] S. Chen, J. Yang, J. Mou, Y. Lu, Quality based design approach for a single crystal silicon microactuator using DOE technique and response surface model, Microsystem Technologies,2002, 8(2-3): 182-187
    [179] 潘尔顺, 徐小芸, 基于有限元法与田口法的 V 形件冲压仿真参数稳健设计,上海交通大学学报, 2005,39(7): 49-53
    [180] 杨涛, 何叶, 魏东梅等, 微机电器件的稳健设计, 工程设计学报, 2004, 11(3): 124-127
    [181] Liu Rong, Brad Paden, Kimberly Turner, MEMS resonators that are robust to process-induced feature width variations, Journal of Microelectromechanical Systems, 2002, 11(5): 505-511
    [182] 杨华, 孙蓓蓓, 李普等, 考虑微加工误差的微机械谐振器/滤波器结构鲁棒设计, 振动与冲击, 2005, 24(1): 33-36
    [183] 李普, 杨华, 方玉明, 电信系统中的硅微机械滤波器结构鲁棒设计, 机械工程学报, 2005, 41(5): 132-136
    [184] J. S. Han, B. M. Kwak, Robust optimal design of a vibratory microgyroscope considering fabrication errors, Journal Micromechanics and Microengineering, 2001, 11: 662-671
    [185] J. S. Han, B. M. Kwak, Robust optimization using a gradient index: MEMS applications, Struct. Multidisc. Optim., 2004, 27(6): 469-478
    [186] 袁明权, 硅基微机械加工技术, 半导体技术, 2001, 26(8): 5-10
    [187] 童志义, MEMS 加工技术及其工艺设备, 电子工业专用设备, 2004 年 1 期, 5-11
    [188] K. Ohwada, Y. Mochida, H. Kawai, Micromachined silicon gyroscope, Murata Manufacturing Co., Ltd, Yokohama, Japan
    [189] Clark W. A., Howe R. T., Horowits R. Surface micromachined Z-axis vibratory rate gyroscope. Technical Digest. Solid-State Sensor and Actuator Workshop. Hilton Head Island, SC, USA, 1996, 283-287
    [190] 张永华, 丁桂甫, 彭军等, LIGA 相关技术及应用, 传感器技术, 2003 年 3 期, 60-64
    [191] 李永海, 丁桂甫,毛海平等, LIGA/准 LIGA 技术微电铸工艺研究进展, 2005, 26(1): 1-5
    [192] Chantal G, Khan Malek. SU-8 resist for low-cost X-ray patterning of high-resolution MEMS. Microelectronics Journal. 2002, 33(1-2): 101-105
    [193] F. Laermer and A. Schilp of Robert Bosch GmbH, "Method of Anisotropically Etching Silicon", US-Patent No. 5501893