岩溶及土洞地球物理探测的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工程建设和矿山开采中,由于地下水开采量不断的增加,岩溶塌陷灾害日趋突出。塌陷灾害中,有岩溶引起的,有地下水冲刷引起的,也有采矿及排水引起的。无论何种情况,他们都是因地下被“掏空”后形成空洞,最后因顶板失稳而塌陷,导致地质灾害的发生。因此,如何利用物探方法发现尚未形成塌陷之前的溶腔或洞体的发育程度、空间规模,是本论文研究的主要目的。由于物探方法都具有其条件性、局限性、多解性。因此,合理地选择和运用一种或几种探测岩溶及土洞的物探方法,并对这些方法开展研究和评价,是本论文研究的主要内容。在对国内外的物探方法研究现状进行了详细归纳的基础上,分别对探地雷达(GPR)、钻孔电磁波法、电阻率法、浅层地震反射法、映像法和瑞雷面波法应用于洞室或空区勘探进行了分析,试图从理论上找出各自的优劣之处。
     论文分析研究了岩溶及土洞的地质形成机理、岩溶塌陷的发育特征及形成机理,对岩溶塌陷和土洞的发育进行了分析,总结了岩溶及土洞孕育阶段和稳定阶段的地球物理特征,并列举了各种情况下的电性异常、波阻抗异常、介电常数异常的物探典型剖面。详细论述了电性差异方法中的高密度电阻率法的理论、勘察原理和装置;介电常数差异方法中的探地雷达法和钻孔电磁波法的基本原理和实际运用案例;波阻抗差异方法中的浅层地震反射法、映像法和瑞雷面波法的一般勘察原理和应用范围。经过分析和对比,最后对岩溶及土洞探测的方法进行了综合评述及遴选,确定了岩溶和土洞探测的最佳方法组合。本文还从岩溶和土洞的探测任务出发,制定了通常情况下要求达到的地质任务和技术要求,简要论述了物探方法的选择原则和物探工作布置原则,对开展高密度电法和高密度地震映像法要求的物探仪器及参数设定、一般技术规范作了要求,对物探资料处理及解释方法做了详细设计方面的论述。论文分别选取了两个典型工程案例进行分析:湘潭白石古莲城的工勘基础选型和湖南凤凰新大桥桥址地球物理勘察。验证了理论分析结果的合理和有效性。
In engineering construction and mine mining, because dewatering from underground unceasing increase, the karst collapse disaster is day by day prominent. In the collapse disaster, some of was caused by groundwater, karst scour cause, the other was caused by mining and drainage. Whatever the case, they were all for underground by "tunneling", and finally formed after empty, and then because of roof instability collapses, causing the geological disaster happening. So, how to use geophysical techniques found that has not been formed before the collapse of cavity or Dong Ti development degree, space scale, is the main purpose of this research. Because of geophysical techniques have its conditional, limitations, redudced, a reasonable choice and use one or several detecting karst and soil caves geophysical exploration methods and the methods of research and evaluation, is the main content of this paper. Based on detailed summary and analysis of geophysical exploration methods researches in domestic and abroad including respectively the GPR (GPR), borehole wave method, resistivity method, shallow earthquake reflection method, imaging method and rayleigh wave method, try to find out their respective merits theoretically applied in cavities or mined-out area,.
     The author analyzed geological forming mechanism of karst and soil caves, the development of karst collapse features and forming mechanism, karst collapse and the development of soil caves. Summarizes the karst and soil hole embryonic stage and stable stage of geophysical characteristics, and listed under various conditions electrical differences abnormal, wave impedance abnormal, dielectric constant abnormal geophysical typical profile. A detailed discussion on the electrical method of the high density resistivity method of theory and its principle, installation; Dielectric constant difference method of GPR method and borehole wave method of the basic principle and practical use of case; Wave impedance differences method of shallow seismic reflection method and imaging method and Rayleigh wave method of general survey principle and application scope. Through analysis and comparison, finally to karst and soil caves detection methods are summarized and selection, determine the karst and soil caves the best combination method to detect. This paper also from karst and soil caves detection task departure, the normally requirements to geological tasks and technical requirements of geophysical techniques are formulated, briefly introduced the selection principle and geophysical prospecting work arrangement principle, carry out high-density electrical method and high density seismic imaging method requirements of the geophysical instruments and parameter setting, general specification of the requirements, geophysical data processing and interpretation methods to do a detailed design points. Papers were selected for two typical project cases were analyzed:GuLian city work xiangtan baishi survey base selection and hunan fenghuang new bridge are very geophysical survey. Theoretical analysis is verified the results of reasonable and effective.
引文
[1]刘传正,地质灾害调查指南[M],北京:地质出版社,2000.
    [2]王兴泰,工程与环境物探新方法新技术[M], 北京:地质出版社,1996.
    [3]李大心,地球物理方法综合应用与解释[M], 武汉:中国地质大学出版社,2003.
    [4]崔霖沛,吴其斌,环境地球物理方法及其应用—环境污染、灾害及地球物理场环境效应的监测与治理[M], 北京:地质出版社,1997.
    [5]单娜琳,程志平,等,工程地震勘探[M],北京:冶金工业出版社,2006.
    [6]杨成林,瑞雷波勘探[M], 北京:地质出版社,1993.
    [7]王振东,浅层地震勘探应用技术[M], 北京:地质出版社,1988.
    [8]王治华,仇恒永,等,地震映像法及其应用[J], 物探与化探,2008,32(6):696.
    [9]杨天春,王齐仁,等,两种计算瑞利波理论频散曲线的传递法模拟对比[J],物探与化探,2008,32(4):424.
    [10]岳崇旺,王祝文,徐加益,电磁波层析技术在工程地质中的应用[J],物探与化探,2008,32(2):214.
    [11]刘浩杰,白明洲,探地雷达在城市地铁工程中的应用[J],物探与化探,2006,30(3):280.
    [12]孙秀容,刑小男,等,适用于浅层工程地震勘探的高能宽频机械冲击震源[J], 地质勘察与设备,2008,3(2):280.
    [13]王书增,谭春,等,面波法在堤坝隐患勘查中的应用[J], 地球物理学进展,2005,20(1):262.
    [14]饶其荣,李学文,用于探测孔旁溶洞的管波探测法[J], 地质与勘探,2004(10):130.
    [15]刘四新,佟文琪,电磁波测井的现状和发展趋势[J],地球物理学进展,2004,19(2):235.
    [16]赵永贵,工程地球物理检测疑难问题研究进展[J], 地球物理学进展,2003,18(3):368.
    [17]祁生文,孙进忠,冯伟,多道瞬态瑞利波勘探及其工程应用[J], 中国工程地球物理检测技术,2001:14.
    [18]戴塔根,刘悟辉,马国秋,环境地质学[M], 长沙:中南大学出版社,2000.
    [19]姚姚,地球物理反演基本理论与应用方法[M], 武汉:中国地质大学 出版社,2002.
    [20]葛双成,邵长云,岩溶勘察中的探地雷达技术及应用[J], 地球物理学进展,2005,20(2):476.
    [21]曾昭发,刘四新,刘少华,环境与工程地球物理的新进展[J], 地球物理学进展,2004,19(3):486.
    [22]方大为,等,白石·古莲城住宅小区C、D、E、F、H栋地下溶洞及土洞地球物理勘探设计,湖南省煤田地质局物探测量队,2008.8
    [23]贺检桥,等,白石·古莲城(夏荷里组团)工程物探工作报告,湖南省煤田地质局物探测量队,2008.9
    [24]廖滔,等,白石·古莲城(夏荷里组团)岩土工程勘察报告,湘潭市勘测设计院,2008.5.
    [25]贺检桥,等,凤凰大桥初步设计地球物理勘察报告,湖南省煤田地质局物探测量队,2010.1.
    [26]R, J、Henderson, Urban Geophysics—A Review, Exploration Geophys ics(1992)23,531—542.
    [28]仇恒永,王治华,王书增,夏学礼,浅层SH反射波法和多道瞬态面波法进行联合工程勘察的讨论[J], 物探与化探,2008,32(4):451.
    [29]荣立新,浅层地震勘探在奥运公园探测溶洞的应用研究[J], 地质与勘探,2004(10):136.
    [30]杨秋访,陈钢新,刘俊洪,电测深法在广东英德监狱土洞勘查中的应用[J],地质与勘探,2004(10):142.
    [31]钟清,杨辟元,孟小红,孟庆敏,解海军,浅谈瑞雷面波工程勘探的装置问题[J], 地质与勘探,2004(10):207.
    [32]刘建勋,极浅层高分辨率地震反射技术[J],地质与勘探,2004(10):215.
    [33]曾昭发,田钢,丁凯,宽带探地雷达系统研究及在工程检测中的应用[J],地球物理学进展,2003,18(3):455.
    [34]肖宽杯,刘浩, 孙宇,向昌阳,地震CT勘探在昆石公路隧道病害诊断中的应用[J], 地球物理学进展,2003,18(3):472.
    [35]董浩斌,王传雷,高密度电法和瞬变电磁法几个问题探讨[J], 中国工程地球物理检测技术,2001:210.
    [36]林昀,朱正国,利用瞬态瑞利波法检测铁路岩溶路基注浆效果[J], 中国工程地球物理检测技术,2001:227.
    [37]赵峰,谢明魁,三高测量技术探测岩溶[J], 中国工程地球物理检测技 术,2001:242.
    [38]袁明德,工程地震勘探技术的进展[J],地球物理学进展,2004,19(4):847.
    [39]王齐仁,地下地质灾害地球物理探测研究进展[J], 地球物理学进展,2004,19(3):497.
    [40]朱德斌,邓世坤,覃建波,探地雷达探测潜在喀斯特地面塌陷区的可行性研究[J], 工程勘察,2005,5:65.
    [41]建设部综合勘察研究设计院等,岩土工程勘察规范(GB50021-2001),中国建筑工业出版社,2009.10
    [42]Benson.A.k., Applications of ground penetrating radar in assessing some geological hazards:examples of groundwater contamination, fault, cavities, Journal of Applied Geophysics, Vol.33, No.1-3, pp.177~193,1995.
    [43]Blaha P. and Knejzlik J., Geoacoustic measurement on high artificial slops. Landslides—7th International Conference and Field Workshop on Landslides, pp.137~142,1993.
    [44]Bodansky D. et al., Indoor Radon and Its Hazards. University of Washington Press,1987.
    [45]Bolivar J. P. et al., Fluxes and distribution of natural radio nuclides in the production and use of fertilizers. Applied Radiation and Isotopes, Vol.46, No6/7, pp.717~718,1995.
    [46]Briz-Kishore B. H., Drought remedial measures through resistively invest igations in a typical crystalline region. Environmental Geology and Wate r Sciences, Vol.20, No.2, pp.79~83,1992.
    [47]Casten U. et al., Induced gravity anomalies and rock burst risk in coal mines:a case history. Geophysical Prospecting, Vol.41, No.1, pp.1~13,1993.
    [48]Cui L.-P., Radiometric methods in regional radon hazard mapping. Nuclear Geophysics, Vol.4, No.3, pp.353~364,1990.
    [49]Cui L.-P., Regional study of the radon hazard. Expanded Abstracts,61st Annual International SEG Meeting, pp.545~548,1991.
    [50]Daily W. and Ramirez A., Electrical resistance tomography during in-situ trichloroethylene remediation at the Savannah River site, Journal of Applied Geophysics, Vol.33, No.4, pp.239-249,1995.
    [51]Daniels J. J. et al., Site studies of ground penetrating radar for monitoring petroleum product contaminants. Proceedings of the symposium on the Application of Geophysics to Engineering and Environmental Problems, pp. 597~609,1992.
    [52]Dobeski T. L. and Larson D. M.,Seismic detection of abandoned coal mine working.28th US Symposium on rock Mechanics, pp.59~63,1987.
    [53]Gibson P. J., Lyle P. et al., Environmental applications of magnetometer profiling. Environmental Geology, Vol.27, No.2, pp.178~183,1996.
    [54]Huang M. et al., Monitoring soil contaminations using a contact less conductivity probe. Geophysical Prospecting, Vol.43, No.6, pp.759~778, 1995.
    [55]Kobr M. et al., Geophysical survey as a basis for regeneration of waste dump Halide 10, Zwickau, Saxony. Journal of Applied Geophysics, Vol.31, No. 1-4, pp.107~116,1994.
    [56]Lepper C.M.,Using geophysical methods to characterize environmental effects of abandoned mining and milling operations. Environmental Issues and Waste Management in Energy and Mineral Production, pp.813~821,1992.
    [57]Phillips J. D. and Fitter man D. V., Environmental geophysics. Reviews of Geophysics, Supplement, pp.185~193,1995.
    [58]Rodriguez R., Mapping karst solution features by the integrated geophysical method. Karst Geohazards, pp.443~449,1995.
    [59]Steeples D. W. and Nyquist J. E., What environmental geophysics can do. Geotimes, Vol.40, No.5, pp.15~17,1995.
    [60]Van G. P., Park S. K. et al., Use of resistivity monitoring systems to detect leaks form storage ponds. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, pp.629~646,1992.
    [61]Walker P., Airboron geophysical radon hazard mapping. Expanded Abstracts, 63rd Annual International SEG Meeting, pp.465-467,1993.