10KA新型稀土电解槽电场和流场的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是在总结前人研究经验的基础上,通过对稀土电解槽槽型结构的理解,并借鉴钠电解槽的槽型结构,同时参考张小联等人的著作《低电流密度电解金属钕的研究》等,设计出一种新型全埋仿钠式稀土电解槽,并对其进行了极距变化和高度变化的模拟研究。
     稀土电解槽中存在着复杂的物理场,而电场是研究其他物理场的基础,温度场、流场是决定稀土电解槽的生产效率和能耗。怎样设计合理的电场、流场、温度场决定着稀土电解槽设计的合理性,因此,电场、流场、温度场的研究就显得非常重要。本文首次利用ANSYS软件模拟研究了新型仿钠式稀土电解槽,并具体对阳极极距变化、阴极极距变化、阴极高度变化和阳极厚度变化等进行了电场模拟。对电场模拟出来的结果,用槽压和电场力两个方面去分析并确定出在不同参数变化时的最佳值。同时也首次利用FLUENT软件对新型仿钠式稀土电解槽中的阳极极距变化系列、阴极极距变化系列、阴极高度变化系列和阳极厚度变化系列进行了流场模拟。对流场模拟出来的结果,用气泡的流动和电解质的流动及涡旋的产生去分析并确定出在不同参数的最佳值。通过电场和流场的仿真模拟,确定出了阳极极距的最佳值为0.09m,阴极极距的最佳值为0.085m,阴极高度的最佳值为0.573m,阳极厚度的最佳值为0.07m。
     本课题作为探索性和基础性的研究课题,其意义并不仅仅在于理论上的探索,更在于对稀土电解槽新槽型的改进和创新,以此为实际生产提供理论依据。
As far as the future of rare earth metallurgical industry, the conserving energy and consumption reduction is the primary problem to be solved. But, for the present rare earth electrolysis cell, the heat loss of electrolyte is greatly. Thereupon, to probe a new groove structure of rare earth electrolysis cell, with the aim of adapting the massive industrial production, it seems to be particularly necessity. And the article, on the basis of summarizing the former experience, by means of the understanding of the groove structure of rare earth electrolytic cell, draw on the experience of the groove structure of natrium electrolytic cell, and consult the works of Zhang Xiao-lian et al: Neodymium Electrolysis in Low Current Densities, and then design a new groove of the all buried imitation from natrium electrolytic cell to carry on the simulation of the distance between the anode and the cathode, and the high.
     There is the complex physical field in rare earth electrolysis cell, while the electric field is the foundation of other physical fields, and temperature field and flow field are important factors to decide the production efficiency and energy consumption.. How to plan the reasonable electric field, flow field and temperature field determine the rationality concerning the design of electrolyzer. Therefore, the study of electric field, flow field and temperature field is very significant. This paper make full use of simulation software-ANSYS to simulate the electric field as to the new rare earth electrolytic cell of imitation from natrium electrolytic cell for the first time, and simulates the distance of between the anode and the cathode(the chief respect of anode), the distance of between the cathode and the anode (the chief respect of cathode), the high of the cathode and the thickness of the anode. The analysis and the determination is the basis of the voltage of electrolyzer and electric field force, and identify the optimum value from simulation under the variation of different parameters. And, at the same time, it fully utilize the simulation software-FLUENT to simulate the flow field as to the new rare earth electrolytic cell of imitation from natrium electrolytic cell for the first time, and simulate the distance of between the anode and the cathode(the chief respect of anode), the distance of between the cathode and the anode(the chief respect of cathode), the high of the cathode and the thickness of the anode. By means of the simulation of the electric field and the flow field, it is certain that the optimum value of the distance(the chief respect of anode) is 0.09m, the distance( the chief respect of cathode) is 0.085m, the high of the cathode is 0.573m, and the thickness of the anode is 0.07m.
     Taking the topic for exploratory and basic subject, its significance lies in not only the theoretical exploration but also the improvement and innovation to the new groove structure of rare earth electrolysis cell, and provide the theoretical foundation for actual production.
引文
[1]孙启祯.稀土的发现[J].金属世界,1999,3:21.
    [2] Longmei Wang, Qin Lin, Jingwen Ji, et al. New study concerning Development of application of rare earth metals in steels[J]. Journal of Alloys and Compounds, 2006, 408-412(9):384-386.
    [3] Long-Mei Wang, Qin Lin, Li-jie Yue, et al. Study of application of rare earth elements in advanced low alloy stells[J]. Journal of Alloys and Compounds, 2008, 451(1-2,28):534-537.
    [4]刘丽静.稀土及其应用的重要性[J].内蒙古石油化工,2004,30(3):36-37.
    [5]刘静安,温育智.稀土在有色金属工业中的开发与应用[J].四川有色金属,2002,4:7-12.
    [6]林河成.国内稀土金属的生产、应用及市场[J].稀土,2003,24(1):75-77.
    [7]盛达.稀土冶金工业的发展及展望[J].兵器材料科学与工程,1990,2:8-16.
    [8]石富.钕电解的能耗及优化设计研究[J].中国稀土学报,2007,25(增刊):37-39.
    [9]万正瑞.金属钕的生产[J].江西有色金属,1991,5(3):142-143,147.
    [10] N.Krishnamurthy, C.K.Gupta. Rare earth metals and alloys by electrolytic methods[J]. Mineral Pricessing and Extractive Metallurgy Review, 2001, 22: 477-507.
    [11]徐光宪.稀土(中册)[M].北京:冶金工业出版社,1995:97-98.
    [12]《稀土》编写组编著.稀土(下册)[北京] .金工业出版社,1978.
    [13]张志宏,梁行方,琚建勇等.我国氟盐体系氧化钕电解制备金属钕技术现状及进展[J].有色冶炼,2001,2:23-25.
    [14]石富.稀土冶金[M].内蒙:内蒙古大学出版社,1994:149-164.
    [15]石富.稀土电解槽的研究现状及发展趋势[J].中国稀土学报,2007,25(增刊):70-76.
    [16]包头稀土研究院.稀土电解槽[P].中国专利:98104785.81998,02,20.
    [17]张长鑫,张新编.稀土冶金原理与工艺[M].北京:冶金工业出版社,1997:323-327.
    [18]罗海岩,陆继东,吴君棋等.铝电解槽三维电热场计算分析[J].轻金属,2002,9:42-46.
    [19]李景江,邱竹贤.铝电解槽阴极电场的计算机仿真[J].东北工学院学报,1989,10(6):591-596.
    [20]梅炽,汤洪庆,孟柏庭等.铝电解槽电、热解析数学模型及数值仿真试验[J].中南大学学报(自然科学版),1986,6:29-37.
    [21]曾水平,刘业翔,菜琪风等.铝电解槽中三维电流分布的数值模拟[J].有色金属,1996,48(3):88-92.
    [22]刘中兴,石红梅,贺友多等.可调极距式稀土电解槽电场的计算机模拟[J].包头钢铁学院学报,2003,22(1):29-31,35.
    [23]刘中兴,伍永福,张宏光等.稀土熔盐电解槽电场的仿真模拟[J].有色金属(冶炼部分),2008,1:34-37.
    [24]刘忠杰,刘中兴,贺友多.稀土氧化物电解槽电场的计算机模拟[J].包头钢铁学院学报,2001,20(2):137-140.
    [25]任永红,汪进宝,贺友多等.稀土电解槽的电场计算与槽电压分析[J] .包头钢铁学院学报,2003,22(4):313-317.
    [26] Russo.V.L, Kotin.N.N, Frolova.V.D, et al. Electric and Thermal Fields of an Electrolyzer for the Synthesis of Rare Earth Metals[J]. Tsvetnye Metally(in Russian), 1975, 6:55-59.
    [27]陈景仁.流体力学及传热学[M].北京:国防工业出版社,1984.
    [28]贺友多.传输理论和计算[M].北京:冶金工业出版社,1999.
    [29]刘忠杰,刘中兴,贺友多等.稀土氧化物电解槽流场的研究[J].中国稀土学报,2003,21(增刊):175-177.
    [30]刘中兴,齐素慈.3KA钕电解槽流场的数值模拟[J].稀有金属材料与工程,2007,36(2):194-196.
    [31]伍永福,刘中兴,李姝婷等.稀土熔盐电解槽内多相流动数值模拟[J].过程工程学报,2009,9(增刊):410-414.
    [32] Y.Ren, X.Kong, L.Xie. Simulation of flow field of molten salt in neodymium metal Electr-olytic cell using vortex-flow function method[J] .Journal of Rare Earths,2004,22,SUPPL.
    [33]夏小霞.铝电解槽内电解质流场的数值模拟研究[D].中南大学硕士学位论文,2005.
    [34]刘中兴,尹小东,石红梅等.3KA钕电解槽磁场的研究[J].包头钢铁学院学报,2002,2:133-137.
    [35]石红梅,胡定军,王莉等.可调极距式稀土电解槽内磁场分布的研究[J].有色金属(冶炼部分),2005,6:29-31.
    [36]李国华,李德祥,邱竹贤.铝电解槽磁场研究方法[J].轻金属,1992,12:31-33.
    [37]沈贤春.铝电解槽磁场和磁流体问题的研究[J].轻金属,2000,9:42-46.
    [38]周正明,周乃君,姜昌伟.铝电解槽电、磁、流场数值计算方法的进展[J].湖南有色金属,2003,19(6):23-26.
    [39]周正明,周乃君,姜昌伟.铝电解槽电、磁、流场数值计算方法的进展[J].甘肃冶金,2003,25(4):1-5.
    [40]黄俊,吴建康,姚世焕.铝电解槽磁流体流动的数值计算[J].有色冶炼,2002,6:25-26,83.
    [41]陈世玉,孙敏.电磁场第四类边界值问题的数值计算方法[J].华中工学院学报,1987,15(6):81-84.
    [42]张小联,胡珊玲,邓左民等.稀土电解槽温度场有限元应用模拟研究[J].赣南师范学院学报,2007,3:68-70.
    [43]邓左民,张小联,王俊.稀土电解槽温度场的数值分析[J].江西有色金属,2004,1:26-27,34.
    [44]刘中兴,米兰,王春慧等.10KA氧化钕电解槽热平衡计算[J].内蒙古科技大学学报,2008,1:87-89,98.
    [45]尹小东,刘中兴,曹运涛.稀土熔盐电解槽的热平衡计算[J].包头钢铁学院学报,2002,1:19-22.
    [46] K.J.Fraser, D Billing hurst, K.L.Chen,et al. Some Applications of Mathermatical Modelling of Electric Current Distributions in Hall Heroult Cells[J]. Light Metals, 1989:219-226.
    [47]刘立良,孙金明,赵智平等.氟化物体系熔盐电解制取钕存在问题及改进建议[J].化工生产与技术,2008,5(1):59-61.
    [48]红枫.中国稀土工业的发展和对策建议[J].世界有色金属,1999,7:29-34.
    [49]毕松梅,徐利华.中国稀土产业及其冶金技术的发展现状[J].中国材料科技与设备,2007,1:8-11,16.
    [50] Huang, Y.et al. 99/01703 Mold for manufacture of energy-saving prebaked anodes for 60KA aluminum electrolyzer[J]. Youse Jinshu Yelian Bufen, 1997, 1:32-34.
    [51] Webb C, Que F, Senior P R. Dynamic simulation of gas-liquid dispersion behavior in a 2-D bubble column using a graphics minisupercomputer[J]. Chemical. Engineerin Science, 1992, 47(13-14):3305~3321
    [52] Ishii M. Thermo-fluid dynamic theory of two-phase flow[J] . Eyrolles Pub, Paris, 1975, 22.
    [53] Chapman S, Cowling T G. The Mathematical Theory of Non-Uniform Cases[M] . England, Cambridge University Press, 1990
    [54] Drew D A, Lahey R T. In Particulate Two-Phase Flow[J]. Butterworth-Heinemann, Boston, 1993,509~566.
    [55]包佳琨.鼓泡反应器瞬态性能的数值模拟研究[D].天津大学硕士学位论文,2004.
    [56]贺友多.传输理论和计算[M].北京:冶金工业出版社,1999.
    [57] Launder B E, Spaldign D B. The numerical computation of turbulent flows[J]. Applied Mechanics and Engineering, 1974, 3(2):269-289.
    [58] Olmos E, Gentric C. Numeraical simulation of multiphase flow in bubble column reactors.Influence of bubble coalescence and break-up[J]. Chemical Engineering Science, 2001, 56(21-22):6359-6365.
    [59]潘宏禄,史可天,马汉东.DNS/LES方法在剪切湍流模拟中的应用[J].空气动力学学报,2009,27(4):444-450.
    [60]张兆顺,崔桂香,许春晓.走在湍流[J].力学与实践,2002,24(1):1-8,17.
    [61] Xu Jing-Lei, Ma Hui-Yang. Supersonic Turbulent Boundary Layer:DNS and RANS[J]. Chinese Physics Letters, 2007, 3.
    [62] P Chou, R Chou. 50 Years of Turbulence Research in China[J]. Annual Review of Fluid Mechanics, 1995, 27:1-16.
    [63]彭涛,钱若军.大涡模拟(LES)理论研究述评[A];庆祝刘锡良教授八十华诞暨第八届全国现代结构工程学术研讨会论文集[C];2008.
    [64]马福喜,李志伟.大涡模拟水环境中污染物团的运动规律[J].水利水报,2002,9:55-59.
    [65]河野照哉,宅间董.电场数值计算法[M].北京:高等教育出版社,1985.
    [66] M.M.维丘科夫等著.铝镁电冶金学[M].邱竹贤,李席孟,王家庆译.沈阳:辽宁教育出版社,1989:128-146.
    [67] ?有色金属提取冶金手册?编辑委员会.有色金属提取冶金手册[M].北京:冶金工业出版社,1992.
    [68]冯慈璋.电磁场(第二版)[M].北京:高等教育出版社,1983.
    [69] J.舍克里(美).冶金中的流体流动现象[M].彭一川等译.北京:冶金工业出版社,1985.
    [70]石春慧.10KA底部阳极稀土熔盐电解槽槽型设计[J].内蒙古科技大学硕士学位论文,2008.
    [71]伍永福,刘中兴,任永峰等.四阳极高效节能制钠电解槽电场的仿真模拟[J].内蒙古科技大学学报,2008,27(1):90-93.
    [72]张小联,邓左民,胡珊玲.低电流密度电解金属钕研究[J].赣南师范学院学报,2006,3:66-68.
    [73] A.Kaneko, Y.Yamamoto, C.Okada. Electrochemistry of rare earth fluoride molten salts[J]. Journal of Alloys and Compounds, 1993, 193(1):44-46.
    [74]白福易,温树荣.盐法制钠新技术[J].内蒙古石油化工,1997,23(2):8-13.
    [75]白福易.熔盐电解制钠工艺[J].海湖盐与化工,1996,25(1):22-24,27.
    [76]张宏光.熔盐电解槽内多项流动的分析[D].内蒙古科技大学硕士学位论文,2007.
    [77]米兰.稀土电解槽电场及流场的模拟研究[J].内蒙古科技大学硕士学位论文,2008.
    [78]孙跃明.电流密度和电荷体密度的关系[J].锦州师范学院学报,2000,21(3):19-20.
    [79] F.D.Richardson. Physical Chemistry of Melts in Metallurgy[J]. Academic Press, New York, 1974, 2.
    [80](苏)捷里马尔斯基,(苏)马尔科夫著.熔盐电化学理论基础[M].沈时英,胡高华编译.北京:中国工业出版社,1965:48-56.
    [81]徐君莉,石忠宁,高炳亮等.铝电解金属阳极上的气泡析出行为[J].中国有色金属学报,2004,14(2):298-301.
    [82]连桂森.多相流动基础[M].浙江:浙江大学出版社,1989.
    [83](苏联)Ю.K.捷利马尔斯基,Б.Ф马尔科夫著.熔盐电化学[M].彭瑞伍译.上海:上海科学技术出版社,1964:238-244.
    [84] A.Solheim, S.T.Johansen, S.Rolseth, et al. Gas driven flow in Hall-Heroult cells[J]. Light metals, 1989, 245-252.
    [85]沈贤春,张爱玲.铝电解槽物理场特性参数及其测量技术[J].轻金属,1997,12:25-29.
    [86]毛在砂.颗粒群研究:多项流多尺度数值模拟的基础[J].过程工程学报,2008,8(4):645-659.
    [87] T.Milon. The virtual mass of a closed torus in axisymmetric motion[J]. Journal of Engineering Mathematics, 1979,13(1):1-6.
    [88]龚晓波,顾兆林,林高平等.水煤浆气化炉激冷流程中气液两相负浮力流动的数值模拟[J].化工学报,2003,54(7):930-935.
    [89]时钧,汪家鼎,余国琮等.化学工程手册(第二版上卷)[M].北京:化学工业出版社,1996:187-191.
    [90]田立楠.纯气体、混合气体及液体粘度的计算[J].化肥设计,1997,35(6):9-13.