动态增强MRI预测乳腺癌新辅助化疗疗效及其与乳腺癌分子亚型的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分动态增强MRI预测乳腺癌新辅助化疗疗效
     目的探讨动态对比增强MRI(DCE-MRI)早期预测乳腺癌新辅助化疗(NAC)疗效的可行性。
     资料与方法收集2011年5月~2014年1月计划在我院行NAC的乳腺癌患者共112例,年龄23~67岁,中位年龄48岁,于化疗前和NAC2周期后行DCE-MRI扫描,分别采用ROIw,ol。法和ROIhs法测量肿瘤三个方位最大径、半定量参数最大上升斜率(MSI)、第二期强化程度(SI2%)、峰值强化程度(SIpeak%)、正性增强积分(PEI)、最大下降斜率(MSD)、达峰时间(TTP)以及R0Iwhole法测量定量参数容量转移常数(Ktrans)、速率常数(Kep)、细胞外血管外间隙容积比(Ve)。按照Miller&Payne分级系统,将肿瘤反应性分为组织学显著反应(MHR)和组织学非显著反应(NMHR)。分别比较MHR组及NMHR组化疗前与NAC2周期后的量化参数,并比较MHR组和NMHR组NAC2周期后各参数的变化值以及基线参数值,正态分布者行两独立(或配对)样本t检验,非正态分布者行两独立样本(或配对资料)的非参数检验,绘制受试者工作曲线(ROC),找到早期预测乳腺癌NAC疗效的最佳参数及其诊断阈值,并比较两种ROI选取方法的预测效能。
     结果最终入组行半定量分析者72例,NMHR组53例,MHR组19例;行定量分析者62例,NMHR组45例,MHR组17例。无论MHR组还是NMHR组,NAC前与化疗2周期后的肿瘤大小均有统计学差异(P<0.001);MHR组NAC前与化疗2周期后的半定量参数及定量参数均有统计学差异(P<0.05);NMHR组除MSD(ROIwhole)、MSD(ROIhs)、TTP(ROIhs)、KepVe外(P值分别为0.615,0.205,0.085,0.118,0.236),其余DCE-MRI参数在NAC前与化疗2周期后的差异均有统计学意义(P<0.05);NAC2周期后肿瘤各径线消退率、半定量参数变化值及定量参数变化值在MHR组和NMHR组间的差异均有统计学意义(P<0.05),即MHR组参数下降较NMHR组明显;而化疗前的各参数在两组间的差异无统计学意义(P>0.05)。ROC分析显示以肿瘤三径线几何均值的变化值(△G)预测NAC疗效的曲线下面积、敏感度、特异度和诊断阈值分别为0.908、84.2%、92.5%和-43.7%,以K。。的变化值预测的曲线下面积、敏感度、特异度和诊断阈值分别为0.890、76.5%、93.3%和-54.8%。比较ROIwhole法和R0Ihs法测得的半定量参数MSI、SI2%、SIpeak%、PEI和MSD变化值预测NAC疗效的ROC曲线下面积,P值分别为0.769、0.588、0.490、0.807和0.793。
     结论DCE-MRI量化参数可于化疗2周期预测乳腺癌NAC的疗效,而化疗前的参数尚不能预测化疗的最终疗效,其中△G、△Kep是较好的预测指标,两种ROI选取方法预测乳腺癌NAC疗效的效能相当。
     第二部分动态增强MRI参数与乳腺癌分子亚型的关系研究
     目的探讨动态对比增强MRI (DCE-MRI)量化参数与乳腺癌不同分子亚型及预后因子的关系。
     资料与方法以第一部分中收集的2011年5月-2014年1月计划在我院行新辅助化疗(NAC)的112例乳腺癌患者为研究对象,行DCE-MRI检查,分别采用ROIwhole法和ROIhs法测量半定量参数最大上升斜率(MSI)、第二期强化程度(SI2%)、峰值强化程度(SIpeak%)、正性增强积分(PEI)、最大下降斜率(MSD)、达峰时间(TTP)以及ROIwhole法测量定量参数容量转移常数(Ktrans)、速率常数(Kep)、细胞外血管外间隙容积比(Ve)。采用SP法检测免疫组化指标ER、PR、HER-2及Ki-67,对HER-2(++)者行免疫荧光原位杂交法(FISH)检测,以此将乳腺癌分为Luminal A、Luminal B、HER-2+和三阴性乳腺癌(TNBC)四个亚型。采用两独立样本t检验或Mann-WhitneyU检验比较ER、PR和HER-2不同表达状态时各参数的差别,行单因素方差分析比较不同分子亚型间的半定量参数,行Mann-Whitney U检验对不同分子亚型间定量参数两两比较,P≤0.05为差异有统计学意义。
     结果最终入组行半定量分析的101例患者,有4例未行FISH检测,Luminal A型15例,Luminal B型56例,HER-2+型12例,TNBC14例。PR+者的MSD高于PR-者(P=0.002,0.016),HER-2+者的MSI高于HER-2-者(P=0.021,0.011),PR-者的SI2%(ROI,,hole)高于PR+者(P=0.031),HER-2-者的TTP(ROIhs)高于HER-2+者(P=0.029),其余半定量参数在不同受体表达状态时的差异无统计学意义(P>0.05)。除MSD(ROI,,hole)外(P=0.045),其余半定量参数在不同分子亚型间的差异无统计学意义,但进一步两两比较,各组间差异均无统计学意义。最终入组行定量分析的82例患者,有3例未行FISH检测,Luminal A型13例,Luminal B型42例,HER-2+型11例,TNBC13例。不同受体表达状态时定量参数的差异无统计学意义(P>0.05)。Lumianl A型和TNBC、LumianlA型和HER-2+型的Ktrans值有统计学差异(P=0.026,0.047),Luminal B型和TNBC的Kep值有统计学差异(P=0.013),其余任何两型间的定量参数值均无统计学差异。
     结论不同PR表达状态时的MSD不同,PR+者高于PR-者,HER-2过表达者的MSI较正常表达者显著性增高;TNBC和HER-2+型的Ktrans值高于Luminal A型,TNBC的K。。值高于Luminal B型,即TNBC和HER-2+型的局部血流灌注较高,Luminal A和Luminal B型则相反,揭示了各分子亚型的不同生物学特性。
     第三部分不同分子亚型对动态增强MRI预测乳腺癌NAC疗效准确性的影响
     目的探讨乳腺癌不同分子亚型对动态对比增强MRI(DCE-MRI)量化参数预测乳腺癌新辅助化疗(NAC)疗效准确性的影响。
     资料与方法收集2011年5月~2014年1月计划在我院行NAC的乳腺癌患者共112例,分别于化疗前和NAC2周期后行DCE-MR T扫描,分别采用R0Iwhole法和R0Ihs法测量肿瘤三个方位最大径、半定量参数最大上升斜率(MSI)、第二期强化程度(SI:%)、峰值强化程度(SIpeak%)、正性增强积分(PEI)、最大下降斜率(MSD)、达峰时间(TTP)以及ROIwhole法测量定量参数容量转移常数(Ktrans)、速率常数(Kep)、细胞外血管外间隙容积比(V。)。按照Miller&Payne分级系统,将肿瘤反应性分为组织学显著反应(MHR)和组织学非显著反应(NMHR)。采用SP法检测免疫组化指标ER.PR.HER-2及Ki-67,对HER-2(++)者行免疫荧光原位杂交法(FISH)检测,以此将乳腺癌分为Luminal A、Luminal B、HER-2+和三阴性乳腺癌(TNBC)四个亚型。行二分类Logi stic回归,从患者年龄、肿瘤形态、化疗方案和分子亚型中筛选出影响病理与影像预测结果一致性的因素;计算DEC-MRI参数预测乳腺癌不同分子亚型NAC疗效的敏感度、特异度、阳性预测值、阴性预测值和准确度。
     结果最终入组69例,MHR组19例,NMIIR组50例;Luminal A型9例,Luminal B型39例,HER2+型8例,TNBC13例。经过筛选,分子分型是影响I)CEMRl预测乳腺癌NAC疗效准确性的因素,对SIpenk%(ROIwhole)、MSD(ROIwhone)及SI:%(ROIts)三个参数的影响较大,比值比分别为2.580、0.437和2.569。定量参数(Ktrans、Kep、Vec)及左右径预测不同分子亚型乳腺癌NAC疗效的准确性均较高;对于肿瘤前后径和MSD(ROIwhole),Lumianl的准确度较高,分别为87.5%和89.6%,高于HER-2+型(75.0%和87.5%)和TNBC(76.9%和61.5%);对于上下径及半定量参数MSI(ROIwhole)、SI2%(ROIwhols)、SIpeak%(ROIwhole)、PEI(ROIwhole)、MSI(ROIhs)、SI2%(R0Ihs)、SIpeak%(ROIh、)、PEI(ROIhs)、MSD(ROIhs),Luminal型乳腺癌预测的准确性较差(分别为68.7%,77.1%,70.8%,62.5%,73.0%,79.2%,64.6%,64.6%,66.7%,72.9%),HER-2+(分别为100.0%,87.5%,87.5%,87.5%,87.5%,100.0%,100.0%,87.5%,87.5%,100.0%)和TNBC的准确性较高(分别为92.3%,100.0%,100.0%,100.0%,100.0%,100.0%,100.0%,100.0%,92.3%,84.6%)。
     结论定量参数和在延迟MRI图像(高分辨率)上测得的肿瘤左右径预测NAC疗效的准确性较高,不受分子亚型影响;通过大多数半定量参数预测TNBC和HER-2+型NAC疗效的准确性较高,Luminal型则较低。
Part I Dynamic contrast-enhanced MRI to predict response for breast cancer patients undergoing neoadjuvant chemotherapy
     Objective To investigate whether dynamic contrast-enhanced MRI (DCE-MRI) could predict final pathologic response in primary breast cancer patients undergoing neoadjuvant chemotherapy (NAC).
     Materials and Methods112patients (age range,23-67years; median age,48years) with primary breast carcinoma and scheduled to receive NAC were recruited from May2011to January2014. DEC-MRI examination was performed before NAC and after2cycles of treatment. The longest diameters of three dimension, the semi-quantitative parameters maximum slope of increase (MSI), signal enhancement ratio at the second phase (SI2%) and the peak (SIpeak%), positive enhancement integral (PEI), maximum slope of decrease (MSD), time to peak (TTP) with ROIwhole and ROIhs, and the quantitative parameters volume transfer constant (Ktrans), rate constant (Kep) and extravascular extracellular space fractional volume (Ve) with ROIWhole were measured. Histological response was categorized as major histological response (MHR) and non-major histological response (NMHR). The baseline parameters and the ones after2cycles of NAC of both MHR and NMHR were compared. Moreover, parameter changes after2cycles of NAC, as well as the baseline parameters were compared between MHR and NMHR. Independent-samples (or paried-sampels) T test was used for the normal distribution and independent-samples (or related-sampels) nonparametric test for the abnormal distribution. Receiver operating characteristic curve (ROC) was used to determine the best predictor and cutoff value and the predictive efficiency of the two ROI methods was compared.
     Results Among the72patients included in the semi-quantitative study,19are grouped into MHR and53are NMHR.17are enrolled in MHR and53are NMHR for quantitative analysis. The longest diameters before NAC and the ones after2cycles of NAC are significantly different in both MHR and NMHR (P<0.001). In MHR, there is significant difference between DCE-MRI parameters of the baseline and the ones after2cycles of NAC (P<0.05). In NMHR, the DEC-MRI parameters are significantly different except
     MSD(ROIWhole), MSD(ROIhs), TTP(ROIhs), Kepand Ve (P value are0.615,0.205,0.085,0.118and0.236, respectively). The changes of the longest diameters and DCE-MRI parameters show significantly different between MHR and NMHR (P<0.05). There is more dramatic decline in MHR than in NMHR. Pretreatment parameters have no significant difference between the two groups (P>0.05). The ROC curve analysis indicates that area under the curve(AUR), sensitivity, specificity, accuracy and the cutoff value are0.908,84.2%,92.5%,-43.7%for the change of geometric mean of the three longest diameters (ΔG), and are0.890.16.5%,93.3%,-54.8%for the change of KeP. AUR of MSI, SI2%, SIPeak%, PEI and MSD changes for predicting NAC between the two ROC methods are compared with P value0.769,0.588,0.490,0.807and0.793, respectively.
     Conclusion DCE-MRI parameters can predict final pathologic response in primary breast cancers after2cycles of NAC. However, the baseline parameters haven't possessed the predictive ability. The changes of G and Kep are the better predictors. The two ROI methods have the comparable predictive efficiency.
     Part Ⅱ Association of of dynamic contrast-enhanced MRI parameters with molecular subtypes of breast carcinoma
     Objective To explore dynamic contrast-enhanced MRI (DCE-MRI) in patients with different subtypes of breast carcinoma, and the association between DCE-MRI parameters and prognostic factors.
     Materials and Methods112patients from part I with primary breast carcinoma and scheduled to receive neoadjuvant chemotherapy (NAC) were recruited between May2011and January2014. DEC-MRI examination was performed before treatment. The semi-quantitative parameters maximum slope of increase (MSI), signal enhancement ratio at the second phase (SI2%) and the peak (SIpeak%), positive enhancement integral (PEI),1maximum slope of decrease (MSD), time to peak (TTP) with ROIwhole and ROIhs, and the quantitative parameters volume transfer constant (Ktrans), rate constant (Kep) and extravascular extracellular space fractional volume (Ve) with ROIwhole were measured. ER, PR, HER-2and Ki-67were obtained by immunohistochemistry (IHC) SP method and those of HER-2(++) were further tested by fluorescence in situ hybridization (FISH) analysis. Then four subtypes of Luminal A, Luminal B, HER-2+and triple-negative breast cancer (TNBC) were established. Independent-samples T test or Mann-Whitney U test was used to compare the DCE-MRI parameters between different receptors status. The semi-quantitative parameters of different subtypes were compared by one way ANOVA and pairwise comparision of the quantitative parameters was performed by Mann-Whitney U test. Results Among the101available cases for semi-quantitative analysis,4are excluded for
     no FISH test.15are Luminal A,56are Luminal B,12are HER-2+, and14are TNBC.
     MSD of PR+is significantly higher than that of PR-(P=0.002,0.016). MSI of HER-2+is significantly higher than that of HER-2-(P=0.021,0.011). SI2%(ROIwhole) of PR-is significantly higher than that of PR+(P=0.031). TTP(ROIhs) of HER-2-is significantly higher than that of HER-2+(P=0.029). The other semi-quantitative parameters have no significant difference between different receptors status (P>0.05). There is no significant difference of the semi-quantitative parameters between different subtypes except MSD(ROIwhole)(P=0.045). However, futher pairwise comparision for MSD(ROIwhole) doesn't showed any significant difference. Among the82patients included in the quantitative study,3are excluded for no FISH test.13are Luminal A,42are Luminal B.11are HER-2+, and13are TNBC. There is no significant difference between different receptors status (P>0.05). Ktrans for Luminal A showes significant difference from TNBC and HER-2+(P=0.026,0.047). Kep between Luminal B and TNBC haven't significant difference (P=0.013). There is no significant difference for any other two subtypes.
     Conclusion MSD of PR+is significantly higher than those of PR-. MSI of HER-2overexpression is significantly higher than the nomal one's. Ktrans for TNBC and HER-2+is significantly higher than Luminal A. Kep for TNBC is significantly higher than Luminal B. On the other hand, TNBC and HER-2+are high perfusion tumors, Luminal A and Luminal B are just the opposite. Every molecular subtype of breast carcinoma reveals unique biological characteristics.
     Part III Dynamic contrast-enhanced MRI predicting response for breast cancer after neoadjuvant chemotherapy in various subtypes
     Objective To evaluate the relevance of breast cancer subtypes for dynamic contrast-enhanced MRI (DCE-MRI) parameters predicting response of breast cancer after neoadjuvant chemotherapy (NAC).
     Materials and Methods112patients with primary breast carcinoma and scheduled to receive NAC were recruited from May2011to January2014. DEC-MRI examination was performed before NAC and after2cycles of treatment. The longest diameters of three dimension, the semi-quantitative parameters maximum slope of increase (MSI), signal enhancement ratio at the second phase (SI2%) and the peak (SIpeak%), positive enhancement integral (PEI), maximum slope of decrease (MSD), time to peak (TTP) with ROIwhoie and ROIhs, and the quantitative parameters volume transfer constant (Ktrans), rate constant (Kep) and extravascular extracellular space fractional volume (Ve) with ROIwhole were measured. Histological response was categorized as major histological response (MHR) and non-major histological response (NMHR). ER. PR, HER-2and Ki-67were obtained by immunohistochemistry (IHC) SP method and those of HER-2(++) were further tested by fluorescence in situ hybridization (FISH) analysis. Then four subtypes of Luminal A, Luminal B, HER-2+and triple-negative breast cancer (TNBC) were established. Factors which affect the consistency between pathology results and imaging evaluation, were screened from age, tumor morphology, chemotherapy regimen and molecular subtype by binary Logistic regression. Sensitivity, specificity, positive predictive value, negative predictive value and accuracy for predicting NAC of different breast cancer subtypes were calculated.
     Results Among the69patients included,19are grouped into MHR and50are NMHR.9are Luminal A,39are Luminal B,8are HER-2+, and13are TNBC. Molecular subtype is filtered as the only factor which affects the consistency, especially for SIpeak%(ROIwhole), MSD(ROIwhole) and SI2%(ROIhs). The odds ratios are2.580,0.437and2.569, respectively. The quantitative parameters (Ktrans, Kep and Ve), as well as laterolateral diameter have comparative accuracy for different subtypes. For anteroposterior diameters and MSD (ROIwhole), Luminal (accuracy:87.5%,89.6%) is more accurate than HER-2+(accuracy:75.0%,87.5%) and TNBC (accuracy:76.9%,61.5%). For craniocaudal diameters and semi-quantitative parameters MSI(ROIWhole), SI2%(ROIwhole), SIpeak%(ROIwhole), PEI(ROIwhole), MSI(ROIhs), SI2%(ROIhs), SIpeak%(ROIhs), PEI(ROIhs),
     MSD(ROIhs), Luminal has the poor accuracy (68.7%,77.1%,70.8%,62.5%,73.0%,79.2%,64.6%,64.6%,66.7%and72.9%, respectively) and HER-2+(accuracy:100.0%,87.5%,87.5%,87.5%,87.5%,100.0%,100.0%,87.5%,87.5%and100.0%, respectively)and TNBC (accuracy:92.3%,100.0%,100.0%,100.0%,100.0%,100.0%,100.0%,100.0%,92.3%and84.6%, respectively) are just the reverse. Conclusion The quantitative parameters, as well as laterolateral diameter obtained on delayed images (high resolution) show considerable accuracy for predicting response of breast cancer after NAC regardless of molecular subtypes. For most of the semi-quantitative parameters, TNBC and HER-2+are more accurate than Luminal breast cancer.
引文
[1]Berry DA, Cronin KA, Plevritis SK, et al. Effect of screening and adjuvant therapy on mortality from breast cancer [J]. N Engl J Med,2005,353(17):1784-1792.
    [2]Charfare H, Limongelli S, Purushotham A. Neoadjuvant chemotherapy in breast cancer [J]. British journal of surgery,2005,92(1):14-23.
    [3]Goldie JH, Coldman AJ. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate [J]. Cancer Treat Rep,1979,63(11-12):1727-1733.
    [4]Fisher B, Brown A, Mamounas E, et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer:findings from National Surgical Adjuvant Breast and Bowel Project B-18 [J]. J Clin Oncol,1997,15(7):2483-2493.
    [5]Chollet P, Charrier S, Brain E, et al. Clinical and pathological response to primary chemotherapy in operable breast cancer [J]. Eur J Cancer,1997,33(6):862-866.
    [6]Park SH, Moon WK, Cho N, et al. Comparison of diffusion-weighted MR imaging and FDG PET/CT to predict pathological complete response to neoadjuvant chemotherapy in patients with breast cancer [J]. Eur Radiol,2012,22(1):18-25.
    [7]Loo CE, Teertstra HJ, Rodenhuis S, et al. Dynamic contrast-enhanced MRI for prediction of breast cancer response to neoadjuvant chemotherapy:initial results [J]. AJR Am J Roentgenol,2008,191(5): 1331-1338.
    [8]Wasser K. Klein SK, Fink C, et al. Evaluation of neoadjuvant chemotherapeutic response of breast cancer using dynamic MRI with high temporal resolution [J]. Eur Radiol,2003,13(1):80-87.
    [9]Hylton NM, Blume JD, Bernreuter WK, et al. Locally advanced breast cancer:MR imaging for prediction of response to neoadjuvant chemotherapy-results from ACRIN 6657/I-SPY TRIAL [J]. Radiology,2012,263(3):663-672.
    [10]Heldahl MG, Bathen TF, Rydland J, et al. Prognostic value of pretreatment dynamic contrast-enhanced MR imaging in breast cancer patients receiving neoadjuvant chemotherapy:overall survival predicted from combined time course and volume analysis [J]. Acta Radiol,2010,51(6): 604-612.
    [11]Kuhl CK, Mielcareck P, Klaschik S, et al. Dynamic breast MR imaging:are signal intensity time course data useful for differential diagnosis of enhancing lesions? [J]. Radiology,1999,211(1): 101-110.
    [12]Pickles MD, Lowry M, Manton DJ, et al. Role of dynamic contrast enhanced MRI in monitoring early response of locally advanced breast cancer to neoadjuvant chemotherapy [J]. Breast Cancer Res Treat,2005,91(1):1-10.
    [13]Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer:standardized quantities and symbols [J]. J Magn Reson Imaging,1999,10(3):223-232.
    [14]Ogston KN, Miller ID, Payne S, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy:prognostic significance and survival [J]. Breast,2003,12(5): 320-327.
    [15]Villringer A, Rosen BR, Belliveau JW, et al. Dynamic imaging with lanthanide chelates in normal brain:contrast due to magnetic susceptibility effects [J]. Magn Reson Med,1988,6(2):164-174.
    [16]Kidd LR, Brock GN, Vancleave TT, et al. Angiogenesis-associated sequence variants relative to breast cancer recurrence and survival [J]. Cancer Causes Control,2010,21(10):1545-1557.
    [17]Rykala J, Przybylowska K, Majsterek I, et al. Angiogenesis markers quantification in breast cancer and their correlation with clinicopathological prognostic variables [J]. Pathol Oncol Res,2011, 17(4):809-817.
    [18]Uzzan B, Nicolas P, Cucherat M, et al. Microvessel density as a prognostic factor in women with breast cancer:a systematic review of the literature and meta-analysis [J]. Cancer Res,2004,64(9): 2941-2955.
    [19]Sourbron S. Technical aspects of MR perfusion [J]. Eur J Radiol,2010,76(3):304-313.
    [20]Chou CP, Wu MT, Chang HT, et al. Monitoring breast cancer response to neoadjuvant systemic chemotherapy using parametric contrast-enhanced MRI:a pilot study [J]. Acad Radiol,2007,14(5): 561-573.
    [21]Kaufmann M, Hortobagyi GN, Goldhirsch A, et al. Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer:an update [J]. J Clin Oncol,2006,24(12):1940-1949.
    [22]Kaufmann M, Von Minckwitz G, Bear HD, et al. Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer:new perspectives 2006 [J]. Ann Oncol,2007,18(12):1927-1934.
    [23]Chollet P, Amat S, Cure H, et al. Prognostic significance of a complete pathological response after induction chemotherapy in operable breast cancer [J]. Br J Cancer,2002,86(7):1041-1046.
    [24]Kong X, Moran MS, Zhang N, et al. Meta-analysis confirms achieving pathological complete response after neoadjuvant chemotherapy predicts favourable prognosis for breast cancer patients [J]. Eur J Cancer,2011,47(14):2084-2090.
    [25]Montagna E, Bagnardi V, Rotmensz N, et al. Pathological complete response after preoperative systemic therapy and outcome:relevance of clinical and biologic baseline features [J]. Breast Cancer Res Treat,2010,124(3):689-699.
    [26]De Bazelaire C, Calmon R, Thomassin I, et al. Accuracy of perfusion MRI with high spatial but low temporal resolution to assess invasive breast cancer response to neoadjuvant chemotherapy:a retrospective study [J/OL]. BMC Cancer,2011,11. Available at:http://www.biomedcentral. com/ 1471-2407/11/361.
    [27]李洁,张晓鹏,曹崑,等.乳腺癌新辅助化疗后血流动力学变化的动态增强MRI研究[J].中国医学影像技术,2007,23(3):397-400.
    [28]Ah-See ML, Makris A, Taylor NJ, et al. Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer [J]. Clin Cancer Res,2008,14(20):6580-6589.
    [29]李瑞敏,顾雅佳,毛健,等.定量动态增强MRI鉴别乳腺良恶性病变的研究[J].中华放射学杂志,2011,45(2):164-169.
    [30]张仁知,周纯武,李静,等.MR增强参数预测乳腺癌新辅助化疗疗效的前瞻性研究[J].放射学实践,2013,28(6):647-650.
    [31]Hylton NM. Vascularity assessment of breast lesions with gadolinium-enhanced MR imaging [J]. Magn Reson Imaging Clin N Am,2001,9(2):321-332.
    [32]Craciunescu OI, Blackwell KL, Jones EL, et al. DCE-MRI parameters have potential to predict response of locally advanced breast cancer patients to neoadjuvant chemotherapy and hyperthermia:a pilot study [J]. Int J Hyperthermia,2009,25(6):405-415.
    [33]Chen JH, Bahri S, Mehta RS, et al. Breast cancer:evaluation of response to neoadjuvant chemotherapy with 3.0-T MR imaging [J]. Radiology,2011,261(3):735-743.
    [34]Tozaki M, Sakamoto M, Oyama Y, et al. Predicting pathological response to neoadjuvant chemotherapy in breast cancer with quantitative 1H MR spectroscopy using the external standard method [J]. J Magn Reson Imaging,2010,31(4):895-902.
    [35]Uematsu T, Kasami M, Yuen S. Neoadjuvant chemotherapy for breast cancer:correlation between the baseline MR imaging findings and responses to therapy [J]. Eur Radiol,2010,20(10): 2315-2322.
    [36]Heldahl MG, Lundgren S, Jensen LR, et al. Monitoring neoadjuvant chemotherapy in breast cancer patients:improved MR assessment at 3 T? [J]. J Magn Reson Imaging,2011,34(3):547-556.
    [37]Lorenzon M, Zuiani C, Londero V, et al. Assessment of breast cancer response to neoadjuvant chemotherapy:is volumetric MRI a reliable tool? [J]. Eur J Radiol,2009,71(1):82-88.
    [38]Marinovich ML, Sardanelli F, Ciatto S, et al. Early prediction of pathologic response to neoadjuvant therapy in breast cancer:systematic review of the accuracy of MRI [J]. Breast,2012, 21(5):669-677.
    [39]Fangberget A, Nilsen LB, Hole KH, et al. Neoadjuvant chemotherapy in breast cancer-response evaluation and prediction of response to treatment using dynamic contrast-enhanced and diffusion-weighted MR imaging [J]. Eur Radiol,2011,21(6):1188-1199.
    [40]Martincich L, Montemurro F, De Rosa G, et al. Monitoring response to primary chemotherapy in breast cancer using dynamic contrast-enhanced magnetic resonance imaging [J]. Breast Cancer Res Treat,2004,83(1):67-76.
    [41]Belli P, Costantini M, Malaspina C, et al. MRI accuracy in residual disease evaluation in breast cancer patients treated with neoadjuvant chemotherapy [J]. Clin Radiol,2006,61(11):946-953.
    [42]Kim HJ, Im YH, Han BK, et al. Accuracy of MRI for estimating residual tumor size after neoadjuvant chemotherapy in locally advanced breast cancer:relation to response patterns on MRI [J]. Acta Oncol,2007,46(7):996-1003.
    [43]Yeh E, Slanetz P, Kopans DB, et al. Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer [J]. AJR Am J Roentgenol,2005,184(3):868-877.
    [44]Denis F, Desbiez-Bourcier AV, Chapiron C, et al. Contrast enhanced magnetic resonance imaging underestimates residual disease following neoadjuvant docetaxel based chemotherapy for breast cancer [J]. Eur J Surg Oncol,2004,30(10):1069-1076.
    [45]Partridge SC, Gibbs JE, Lu Y, et al. Accuracy of MR imaging for revealing residual breast cancer in patients who have undergone neoadjuvant chemotherapy [J]. AJR Am J Roentgenol,2002,179(5): 1193-1199.
    [46]Segara D, Krop IE, Garber JE, et al. Does MRI predict pathologic tumor response in women with breast cancer undergoing preoperative chemotherapy? [J]. J Surg Oncol,2007,96(6):474-480.
    [47]Sharma U, Danishad KK, Seenu V, et al. Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy [J]. NMR Biomed,2009,22(1):104-113.
    [48]Delille JP, Slanetz PJ, Yeh ED, et al. Invasive ductal breast carcinoma response to neoadjuvant chemotherapy:noninvasive monitoring with functional MR imaging pilot study [J]. Radiology,2003, 228(1):63-69.
    [49]Li SP, Taylor NJ, Makris A, et al. Primary human breast adenocarcinoma:imaging and histologic correlates of intrinsic susceptibility-weighted MR imaging before and during chemotherapy [J]. Radiology,2010,257(3):643-652.
    [50]Yu Y, Jiang Q, Miao Y, et al. Quantitative analysis of clinical dynamic contrast-enhanced MR imaging for evaluating treatment response in human breast cancer [J]. Radiology,2010,257(1): 47-55.
    [51]Wu LM, Hu JN, Gu HY, et al. Can diffusion-weighted MR imaging and contrast-enhanced MR imaging precisely evaluate and predict pathological response to neoadjuvant chemotherapy in patients with breast cancer? [J]. Breast Cancer Res Treat,2012,135(1):17-28.
    [52]汤光宇,肖湘生,刘勇,等.乳腺病变动态增强MRI与血管生成的相关性[J].中华放射学杂志.2007,41(11):1205-1208.
    [53]Pickles MD, Manton DJ, Lowry M, et al. Prognostic value of pre-treatment DCE-MRI parameters in predicting disease free and overall survival for breast cancer patients undergoing neoadjuvant chemotherapy [J]. Eur J Radiol,2009,71(3):498-505.
    [54]Vincensini D, Dedieu V, Eliat PA, et al. Magnetic resonance imaging measurements of vascular permeability and extracellular volume fraction of breast tumors by dynamic Gd-DTPA-enhanced relaxometry [J]. Magn Reson Imaging,2007,25(3):293-302.
    [55]Li SP, Makris A, Beresford MJ, et al. Use of dynamic contrast-enhanced MR imaging to predict survival in patients with primary breast cancer undergoing neoadjuvant chemotherapy [J]. Radiology, 2011,260(1):68-78.
    [56]Padhani AR, Hayes C, Assersohn L, et al. Prediction of clinicopathologic response of breast cancer to primary chemotherapy at contrast-enhanced MR imaging:initial clinical results [J]. Radiology,2006,239(2):361-374.
    [57]Li X. Welch EB, Arlinghaus LR, et al. A novel AIF tracking method and comparison of DCE-MRI parameters using individual and population-based AIFs in human breast cancer [J]. Phys Med Biol,2011,56(17):5753-5769.
    [58]Planey CR. Welch EB. Xu L, et al. Temporal sampling requirements for reference region modeling of DCE-MRI data in human breast cancer [J]. J Magn Reson Imaging,2009,30(1): 121-134.
    [59]Abramson RG, Li X, Hoyt TL, et al. Early assessment of breast cancer response to neoadjuvant chemotherapy by semi-quantitative analysis of high-temporal resolution DCE-MRI:preliminary results [J]. Magn Reson Imaging,2013,31(9):1457-1464.
    [60]El Khouli RH, Macura KJ, Kamel IR, et al.3-T dynamic contrast-enhanced MRI of the breast: pharmacokinetic parameters versus conventional kinetic curve analysis [J]. AJR Am J Roentgenol. 2011,197(6):1498-1505.
    [61]汪晓红,彭卫军,信超,等.动态增强MRI监测乳腺癌新辅助化疗疗效的应用价值[J].中华肿瘤杂志,2010,32(7):539-543.
    [62]Lv M, Li B, Li Y, et al. Predictive role of molecular subtypes in response to neoadjuvant chemotherapy in breast cancer patients in Northeast China [J]. Asian Pac J Cancer Prev,2011.12(9): 2411-2417.
    [63]周怡君,英旻,何英剑,等.原发性乳腺癌分子分型与新辅助化疗疗效的相关性分析[J].中华医学杂志,2013,93(22):1711-1715.
    [64]李睿,陈颖.乳腺浸润性导管癌各分子亚型X线表现及临床特征[J].中国医学影像技术,2011,27(3):565-568.
    [65]Matsubayashi R, Matsuo Y, Edakuni G, et al. Breast masses with peripheral rim enhancement on dynamic contrast-enhanced MR images:correlation of MR findings with histologic features and expression of growth factors [J]. Radiology,2000,217(3):841-848.
    [66]Jinguji M, Kajiya Y, Kamimura K, et al. Rim enhancement of breast cancers on contrast-enhanced MR imaging:relationship with prognostic factors [J]. Breast Cancer,2006,13(1): 64-73.
    [67]Lee SH, Cho N, Kim SJ, et al. Correlation between high resolution dynamic MR features and prognostic factors in breast cancer [J]. Korean J Radiol,2008,9(1):10-18.
    [68]Uematsu T, Kasami M, Yuen S. Triple-negative breast cancer:correlation between MR imaging and pathologic findings [J]. Radiology,2009,250(3):638-647.
    [69]Hammond ME, Hayes DF, Wolff AC, et al. American society of clinical oncology/college of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer [J]. J Oncol Pract,2010,6(4):195-197.
    [70]Goldhirsch A, Wood WC, Coates AS, et al. Strategies for subtypes--dealing with the diversity of breast cancer:highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011 [J]. Ann Oncol,2011,22(8):1736-1747.
    [71]Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets [J].Proc Natl Acad Sci U S A,2003,100(14):8418-8423.
    [72]Wiencke JK. Impact of race/ethnicity on molecular pathways in human cancer [J]. Nat Rev Cancer,2004,4(1):79-84.
    [73]连臻强,何洁华,王曦,等.乳腺癌不同分子亚型的临床特点和生存分析[J/OL].中华乳腺病杂志(电子版),2009,3(2):139-146.
    [74]Cheang MC, Chia SK, Voduc D, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer [J]. J Natl Cancer Inst,2009,101(10):736-750.
    [75]Brenton JD, Carey LA, Ahmed AA, et al. Molecular classification and molecular forecasting of breast cancer:ready for clinical application? [J]. J Clin Oncol,2005,23(29):7350-7360.
    [76]Nguyen PL, Taghian AG, Katz MS, et al. Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy [J]. J Clin Oncol,2008,26(14):2373-2378.
    [77]张少华,江泽飞.2011年St.Gallen国际乳腺癌治疗专家共识相关问题解读[J].中国实用外 科杂志,2011,31(10):918-919.
    [78]Wolff AC, Hammond ME, Schwartz JN, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer [J]. Arch Pathol Lab Med,2007,131(1):18-43.
    [79]Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer [J]. N Engl J Med,2005,353(16):1659-1672.
    [80]Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer [J]. N Engl J Med,2005,353(16):1673-1684.
    [81]Viale G, Giobbie-Hurder A, Regan MM, et al. Prognostic and predictive value of centrally reviewed Ki-67 labeling index in postmenopausal women with endocrine-responsive breast cancer: results from Breast International Group Trial 1-98 comparing adjuvant tamoxifen with letrozole [J]. J Clin Oncol,2008,26(34):5569-5575.
    [82]Viale G, Regan MM, Mastropasqua MG, et al. Predictive value of tumor Ki-67 expression in two randomized trials of adjuvant chemoendocrine therapy for node-negative breast cancer [J]. J Natl Cancer Inst,2008,100(3):207-212.
    [83]Dowsett M, Nielsen TO, A'hern R, et al. Assessment of Ki67 in breast cancer:recommendations from the International Ki67 in Breast Cancer working group [J]. J Natl Cancer Inst,2011,103(22): 1656-1664.
    [84]Munch-Petersen HD, Rasmussen BB, Balslev E. Reliability of histological malignancy grade, ER and HER2 status on core needle biopsy vs surgical specimen in breast cancer [J/OL]. APMIS, 2013-12-21.
    [85]Omranipour R, Alipour S, Hadji M, et al. Accuracy of estrogen and progesterone receptor assessment in core needle biopsy specimens of breast cancer [J]. Iran Red Crescent Med J,2013, 15(6):515-518.
    [86]Cheng HT, Huang T, Wang W, et al. Clinicopathological features of breast cancer with different molecular subtypes in Chinese women [J]. J Huazhong Univ Sci Technolog Med Sci,2013,33(1): 117-121.
    [87]Linderholm BK, Hellborg H, Johansson U, et al. Significantly higher levels of vascular endothelial growth factor (VEGF) and shorter survival times for patients with primary operable triple-negative breast cancer [J]. Ann Oncol,2009,20(10):1639-1646.
    [88]Foulkes WD, Brunet JS, Stefansson IM, et al. The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer [J]. Cancer Res,2004,64(3):830-835.
    [89]Koo HR, Cho N, Song IC, et al. Correlation of perfusion parameters on dynamic contrast-enhanced MRI with prognostic factors and subtypes of breast cancers [J]. J Magn Reson Imaging,2012,36(1):145-151.
    [90]Li SP, Padhani AR, Taylor NJ, et al. Vascular characterisation of triple negative breast carcinomas using dynamic MRI [J]. Eur Radiol,2011,21(7):1364-1373.
    [91]Costantini M, Belli P, Distefano D, et al. Magnetic resonance imaging features in triple-negative breast cancer:comparison with luminal and HER2-overexpressing tumors [J]. Clin Breast Cancer, 2012,12(5):331-339.
    [92]Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2 [J]. N Engl J Med,2001,344(11): 783-792.
    [93]Blackwell KL, Dewhirst MW, Liotcheva V, et al. HER-2 gene amplification correlates with higher levels of angiogenesis and lower levels of hypoxia in primary breast tumors [J]. Clin Cancer Res,2004,10(12 Pt 1):4083-4088.
    [94]Fink-Retter A, Gschwantler-Kaulich D, Hudelist G, et al. Differential spatial expression and activation pattern of EGFR and HER2 in human breast cancer [J]. Oncol Rep,2007,18(2):299-304.
    [95]Ali SH, O'donnell AL, Balu D, et al. Estrogen receptor-alpha in the inhibition of cancer growth and angiogenesis [J]. Cancer Res,2000,60(24):7094-7098.
    [96]Tripsianes K, Folkers GE, Zheng C, et al. Analysis of the XPA and ssDNA-binding surfaces on the central domain of human ERCC1 reveals evidence for subfunctionalization [J]. Nucleic Acids Res, 2007,35(17):5789-5798.
    [97]于德新,马祥兴,魏华刚,等.3.0T动态增强MR评价肝细胞癌血管生成及其成熟度的价值[J].临床放射学杂志,2009,28(3):355-359.
    [98]Makkat S, Luypaert R, Stadnik T, et al. Deconvolution-based dynamic contrast-enhanced MR imaging of breast tumors:correlation of tumor blood flow with human epidermal growth factor receptor 2 status and clinicopathologic findings-preliminary results [J]. Radiology,2008,249(2): 471-482.
    [99]Rosen EL, Blackwell KL, Baker JA, et al. Accuracy of MRI in the detection of residual breast cancer after neoadjuvant chemotherapy [J]. AJR Am J Roentgenol,2003,181(5):1275-1282.
    [100]Prati R, Minami CA, Gornbein JA, et al. Accuracy of clinical evaluation of locally advanced breast cancer in patients receiving neoadjuvant chemotherapy [J]. Cancer,2009,115(6):1194-1202.
    [101]Wolmark N, Wang J, Mamounas E, et al. Preoperative chemotherapy in patients with operable breast cancer:nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18 [J]. J Natl Cancer Inst Monogr,2001,30):96-102.
    [102]Chen JH, Baek HM, Nalcioglu O, et al. Estrogen receptor and breast MR imaging features:a correlation study [J]. J Magn Reson Imaging,2008,27(4):825-833.
    [103]Wasser K, Sinn HP, Fink C, et al. Accuracy of tumor size measurement in breast cancer using MRI is influenced by histological regression induced by neoadjuvant chemotherapy [J]. Eur Radiol, 2003.13(6):1213-1223.
    [104]Warren RM, Bobrow LG, Earl HM, et al. Can breast MRI help in the management of women with breast cancer treated by neoadjuvant chemotherapy? [J]. Br J Cancer,2004,90(7):1349-1360.
    [105]Buzdar AU, Ibrahim NK, Francis D, et al. Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy:results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer [J]. J Clin Oncol,2005,23(16):3676-3685.
    [106]Tokunaga E, Oki E, Nishida K, et al. Trastuzumab and breast cancer:developments and current status [J]. Int J Clin Oncol,2006,11(3):199-208.
    [107]Carey LA, Dees EC, Sawyer L, et al. The triple negative paradox:primary tumor chemosensitivity of breast cancer subtypes [J]. Clin Cancer Res,2007,13(8):2329-2334.
    [108]Chen JH, Feig B, Agrawal G, et al. MRI evaluation of pathologically complete response and residual tumors in breast cancer after neoadjuvant chemotherapy [J]. Cancer,2008,112(1):17-26.
    [109]Mcguire KP, Toro-Burguete J, Dang H, et al. MRI staging after neoadjuvant chemotherapy for breast cancer:does tumor biology affect accuracy? [J]. Ann Surg Oncol,2011,18(11):3149-3154.
    [110]Loo CE, Straver ME, Rodenhuis S, et al. Magnetic resonance imaging response monitoring of breast cancer during neoadjuvant chemotherapy:relevance of breast cancer subtype [J]. J Clin Oncol. 2011,29(6):660-666.
    [111]Winer EP, Hudis C, Burstein HJ, et al. American Society of Clinical Oncology technology assessment on the use of aromatase inhibitors as adjuvant therapy for postmenopausal women with hormone receptor-positive breast cancer:status report 2004 [J]. J Clin Oncol,2005,23(3):619-629.
    [112]Bartlett JM, Ellis IO, Dowsett M, et al. Human epidermal growth factor receptor 2 status correlates with lymph node involvement in patients with estrogen receptor (ER) negative, but with grade in those with ER-positive early-stage breast cancer suitable for cytotoxic chemotherapy [J]. J Clin Oncol,2007,25(28):4423-4430.
    [113]周波,谢菲,杨德启.乳腺癌分子亚型预测新辅助化疗疗效的研究[J].中国肿瘤临床.2009,36(4):199-206.
    [114]Carey LA, Perou CM, Livasy CA, et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study [J]. Jama,2006,295(21):2492-2502.
    [115]Ihemelandu CU, Leffall LD, Jr., Dewitty RL, et al. Molecular breast cancer subtypes in premenopausal and postmenopausal African-American women:age-specific prevalence and survival [J]. J Surg Res,2007,143(1):109-118.
    [116]Vincent-Salomon A, Rousseau A, Jouve M, et al. Proliferation markers predictive of the pathological response and disease outcome of patients with breast carcinomas treated by anthracycline-based preoperative chemotherapy [J]. Eur J Cancer,2004,40(10):1502-1508.
    [117]Press MF, Sauter G, Bernstein L, et al. Diagnostic evaluation of HER-2 as a molecular target:an assessment of accuracy and reproducibility of laboratory testing in large, prospective, randomized clinical trials [J]. Clin Cancer Res,2005,11(18):6598-6607.
    [118]Arriola E, Moreno A, Varela M, et al. Predictive value of HER-2 and Topoisomerase Ilalpha in response to primary doxorubicin in breast cancer [J]. Eur J Cancer,2006,42(17):2954-2960.
    [119]Fulford LG, Reis-Filho JS, Ryder K, et al. Basal-like grade III invasive ductal carcinoma of the breast:patterns of metastasis and long-term survival [J]. Breast Cancer Res,2007,9(1):R4.
    [120]Liedtke C, Mazouni C, Hess KR, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer [J]. J Clin Oncol,2008,26(8):1275-1281.
    [121]Linderholm B, Tavelin B, Grankvist K, et al. Vascular endothelial growth factor is of high prognostic value in node-negative breast carcinoma [J]. J Clin Oncol,1998,16(9):3121-3128.
    [122]Collins LC, Martyniak A, Kandel MJ, et al. Basal cytokeratin and epidermal growth factor receptor expression are not predictive of BRCA 1 mutation status in women with triple-negative breast cancers [J]. Am J Surg Pathol,2009,33(7):1093-1097.
    [123]Nielsen TO, Hsu FD, Jensen K, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma [J]. Clin Cancer Res,2004,10(16):5367-5374.
    [124]Viale G, Rotmensz N, Maisonneuve P, et al. Invasive ductal carcinoma of the breast with the "triple-negative" phenotype:prognostic implications of EGFR immunoreactivity [J]. Breast Cancer Res Treat,2009,116(2):317-328.
    [125]Von Minckwitz G, Untch M, Blohmer JU, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes [J]. J Clin Oncol,2012,30(15):1796-1804.
    [126]Hayes C, Padhani AR, Leach MO. Assessing changes in tumour vascular function using dynamic contrast-enhanced magnetic resonance imaging [J]. NMR Biomed,2002,15(2):154-163.
    [127]Hayashi Y, Takei H, Nozu S, et al. Analysis of complete response by MRI following neoadjuvant chemotherapy predicts pathological tumor responses differently for molecular subtypes of breast cancer [J]. Oncol Lett,2013,5(1):83-89.
    [1]Forouzanfar M H, Foreman K J, Delossantos A M, et al. Breast and cervical cancer in 187 countries between 1980 and 2010:a systematic analysis [J]. Lancet,2011,378 (9801):1461-1484.
    [2]Chou C P, Wu M T, Chang H T, et al. Monitoring breast cancer response to neoadjuvant systemic chemotherapy using parametric contrast-enhanced MRI:a pilot study [J]. Acad Radiol,2007,14 (5):561-573.
    [3]Park S H, Moon W K, Cho N, et al. Comparison of diffusion-weighted MR imaging and FDG PET/CT to predict pathological complete response to neoadjuvant chemotherapy in patients with breast cancer [J]. Eur Radiol,2012,22 (1):18-25.
    [4]Kong X, Moran M S, Zhang N, et al. Meta-analysis confirms achieving pathological complete response after neoadjuvant chemotherapy predicts favourable prognosis for breast cancer patients [J]. Eur J Cancer,2011,47 (14):2084-2090.
    [5]Heldahl M G, Bathen T F, Rydland J, et al. Prognostic value of pretreatment dynamic contrast-enhanced MR imaging in breast cancer patients receiving neoadjuvant chemotherapy:overall survival predicted from combined time course and volume analysis [J]. Acta Radiol,2010,51 (6):604-612.
    [6]Hylton N M, Blume J D, Bernreuter W K, et al. Locally Advanced Breast Cancer:MR Imaging for Prediction of Response to Neoadjuvant Chemotherapy-Results from ACRIN 6657/I-SPY TRIAL [J]. Radiology,2012,263 (3):663-672.
    [7]Uzzan B, Nicolas P, Cucherat M, et al. Microvessel density as a prognostic factor in women with breast cancer:a systematic review of the literature and meta-analysis [J]. Cancer Res,2004,64 (9):2941-2955.
    [8]Kidd L R. Brock G N. VanCleave T T, et al. Angiogenesis-associated sequence variants relative to breast cancer recurrence and survival [J]. Cancer Causes Control,2010.21 (10):1545-1557.
    [9]Rykala J, Przybylowska K, Majsterek I, et al. angiogenesis markers quantification in breast cancer and their correlation with clinicopathological prognostic variables [J]. Pathol Onclo Res,2011,17 (4):809-817.
    [10]Kvistad K A, Lundgren S, Fj(?)sne H E, et al. Differentiating benign and malignant breast lesions with T2*-weighted first pass perfusion imaging [J]. Acta Radiol,1999,40 (1):45-51.
    [11]Sourbron S. Technical aspects of MR perfusion [J]. Eur J Radiol,2010,76 (3):304-313.
    [12]胡文娟,张蓓,潘玉林,等.磁共振灌注成像对局部进展期乳腺癌新辅助化疗疗效的评价[J].放射学实践,2011,26(1):25-28.
    [13]de Bazelaire C, Calmon R, Thomassin I, et al. Accuracy of perfusion MRI with high spatial but low temporal resolution to assess invasive breast cancer response to neoadjuvant chemotherapy:a retrospective study [J]. BMC Cancer,2011,11:361.
    [14]Li S P, Taylor N J, Makris A, et al. Primary human breast adenocarcinoma:imaging and histologic correlates of intrinsic susceptibility-weighted MR imaging before and during chemotherapy [J]. Radiology,2010,257 (3):643-652.
    [15]Ah-See ML, Makris A, Taylor N J, et al. Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer [J].Clin Cancer Res,2008,14 (20):6580-6589.
    [16]Li SP, Makris A, Beresford M J, et al. Use of dynamic contrast-enhanced MR imaging to predict survival in patients with primary breast cancer undergoing neoadjuvant chemotherapy [J]. Radiology, 2011,260 (1):68-78.
    [17]Pickles MD, Manton D J, Lowry M, et al. Prognostic value of pre-treatment DCE-MRI parameters in predicting disease free and overall survival for breast cancer patients undergoing neoadjuvant chemotherapy [J]. Eur J Radiol,2009,71 (3):498-505.
    [18]Sharma U, Danishad K K, Seenu V, et al. Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy [J]. NMR Biomed,2009,22(1):104-113.
    [19]Jensen LR, Garzon B, Heldahl M G, et al. Diffusion-weighted and dynamic contrast-enhanced MRI in evaluation of early treatment effects during neoadjuvant chemotherapy in breast cancer patients [J]. J Magn Reson Imaging,2011,34 (5):1099-1109.
    [20]Shin HJ, Baek H M, Ahn J H, et al. Prediction of pathologic response to neoadjuvant chemotherapy in patients with breast cancer using diffusion-weighted imaging and MRS [J]. NMR Biomed,2012, doi:10.1002/nbm.2807.
    [21]Fangberget A, Nilsen L B, Hole K H, et al. Neoadjuvant chemotherapy in breast cancer-response evaluation and prediction of response to treatment using dynamic contrast-enhanced and diffusion-weighted MR imaging [J]. Eur Radiol,2011,21 (6):1188-1199.
    [22]Park SH, Moon W K, Cho N, et al. Diffusion-weighted MR imaging:pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer [J]. Radiology,2010,257 (1):56-63.
    [23]Woodhams R, Kakita S, Hata H, et al. Identification of residual breast carcinoma following neoadjuvant chemotherapy:diffusion-weighted imaging-comparison with contrast-enhanced MR imaging and pathologic findings [J]. Radiology,2010,254 (2):357-366.
    [24]Nilsen L, Fangberget A, Geier O, et al. Diffusion-weighted magnetic resonance imaging for pretreatment prediction and monitoring of treatment response of patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy [J]. Acta Oncol,2010,49 (3):354-360.
    [25]Iacconi C, Giannelli M. Can diffusion-weighted MR imaging be used as a biomarker for predicting response to neoadjuvant chemotherapy in patients with locally advanced breast cancer? [J]. Radiology,2011,259 (1):303-304.
    [26]Huang W, Fisher P R, Dulaimy K, et al. Detection of breast malignancy:diagnostic MR protocol for improved specificity [J]. Radiology,2004,232 (2):585-591.
    [27]Glunde K, Jie C, Bhuj walla Z M. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer [J]. Cancer Res,2004,64 (12):4270-4276.
    [28]Baek HM, Chen J H, Nalcioglu O, et al. Proton MR spectroscopy for monitoring early treatment response of breast cancer to neo-adjuvant chemotherapy [J]. Ann Oncol,2008,19(5):1022-4.
    [29]Tozaki M, Sakamoto M, Oyama Y, et al. Predicting pathological response to neoadjuvant chemotherapy in breast cancer with quantitative 1H MR spectroscopy using the external standard method [J]. J Magn Reson Imaging,2010,31 (4):895-902.
    [30]Meisamy S, Bolan P J, Baker E H, et al. Neoadjuvant chemotherapy of locally advanced breast cancer:predicting response with in vivo (1)H MR spectroscopy-a pilot study at 4 T [J]. Radiology, 2004,233 (2):424-431.
    [31]Baek HM, Chen J H, Nie K, et al. Predicting pathologic response to neoadjuvant chemotherapy in breast cancer by using MR imaging and quantitative 1H MR spectroscopy [J]. Radiology,2009, 251 (3):653-662.
    [32]Cao MD, Giskeodegard G F, Bathen T F, et al. Prognostic value of metabolic response in breast cancer patients receiving neoadjuvant chemotherapy [J]. BMC Cancer,2012,12:39.
    [33]Fan B, Wang X Y, Yang X D, et al. Blood oxygen level-dependent MRI for the monitoring of neoadjuvant chemotherapy in breast carcinoma:initial experience [J]. Magn Reson Imaging,2011,29 (2):153-159.
    [34]von Minckwitz G, Untch M, Blohmer JU, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes [J]. J Clin Oncol,2012,30(15):1796-1804.
    [35]周波,谢菲,杨德启.乳腺癌分子亚型预测新辅助化疗疗效的研究[J].中国肿瘤临床,2009,36(4):199-206.
    [36]周怡君,英旻,何英剑,等.原发性乳腺癌分子分型与新辅助化疗疗效的相关性分析[J].中华医学杂志,2013,93(22):1711-1715.
    [37]Liedtke C, Mazouni C, Hess KR, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer [J]. J Clin Oncol,2008,26(8):1275-1281.
    [38]Loo CE, Straver M E, Rodenhuis S, et al. Magnetic resonance imaging response monitoring of breast cancer during neoadjuvant chemotherapy:relevance of breast cancer subtype [J]. J Clin Oncol, 2011,29(6):660-666.
    [39]McGuire KP, Toro-Burguete J, Dang H, et al. MRI staging after neoadjuvant chemotherapy for breast cancer:does tumor biology affect accuracy? [J]. Ann Surg Oncol,2011,18 (11):3149-3154.
    [40]Kuzucan A, Chen J H, Bahri S, et al. Diagnostic performance of magnetic resonance imaging for assessing tumor response in patients with HER2-negative breast cancer receiving neoadjuvant chemotherapy is associated with molecular biomarker profile [J]. Clin Breast Cancer,2012, 12(2):110-118.