含植物明渠水沙运动规律试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含植物河流是自然生态的重要组成部分。由于影响因素众多,水沙运动规律相对复杂,含植物河流水沙运动特性是河流泥沙动力学中的难点问题之一。本文在资料收集的基础上,对含植物水流问题的国内外研究现状进行系统的总结,并采用三种仿真柔性植物进行了含植物明渠水沙运动规律的室内水槽试验;首先分不同区域(植物带上游、植物带和植物带下游)研究了无草、淹没型、非淹没型柔性植物水流阻力特性规律,继而对含不同植物明渠水动力运动特性进行深入探讨;最后对含不同植物明渠泥沙运动进行详细分析。全文主要研究以下三个方面的问题:
     1.含植物明渠水流阻力特性研究
     利用水槽试验研究了无草、淹没型、非淹没型柔性植物水流阻力特性的变化规律,分析了含植物明渠沿程水面比降和阻力系数的变化特性。得到各植物阻力系数变化与尼库拉兹曲线基本相似,紊流范围内同样可划分为紊流光滑区、紊流过渡区、紊流粗糙区;统计各植物经不同水流冲击倒伏后的冠顶高度,分析了植物粗糙度、水流雷诺数和阻力系数之间的关系,并对各植物的水流阻力系数分区进行回归分析,得到各植物水流阻力的分区经验表达式,该方法能较好地应用于含植物明渠水流阻力系数的推求。
     2.含植物明渠水动力特性试验研究
     利用水槽试验研究了含不同植物明渠水动力特性,试验结果表明,对于淹没植物,在植物的冠顶上方一定区域水流流速变化与无草情况下基本相似,但非淹没植物的水流纵向流速在水深方向呈“S”型分布,并呈明显的分层现象;水流紊动强度随植物形态、沿程分布和距边壁位置变化而表现出不同特性;-(uv+uv)/u2*是表征水流变化的重要因子,有植物情况下,其与植物形态和沿程分布等因素密切相关,并随植物形态和空间分布而发生不同规律的调整。
     3.含植物明渠泥沙运动规律研究
     利用水槽试验研究了含不同植物明渠泥沙运动规律,试验结果表明:泥沙级配存在明显的分层现象,呈现“上细下粗”的基本变化规律,同种植物对细颗粒泥沙的空间分布影响较小,对中、粗颗粒泥沙的影响较大。含植物明渠较无植物明渠,床沙非均匀性减小,其中淹没型莎草减小幅度最大;对含植物明渠中水流的动量扩散系数、泥沙扩散系数和二者比值β进行较详细研究,得到了三者随植物形态和空间分布的变化特征,具体为:动量扩散系数在垂向总体呈抛物线分布,随相对水深增加先增大后减小,泥沙扩散系数总体随相对水深的增加而逐渐减少,β值变化范围为0.14-10.0,多数β值明显大于1,分析认为,试验采用轻质模型沙,有利于泥沙扩散,泥沙扩散系数较大所致。
River with vegetation is an essential part of natural ecology. The characteristic of water flow and sediment transport in rivers with vegetation is a difficult issue among river dynamics problems. The research status of flow with vegetation is systematically summarized, and indoor flume tests on water and sediment transport in open channel flow with vegetation are conducted by using three artificial flexible plants (plant with no grass, submerged flexible plant, and non-submerged flexible plant). The research is divided into three aspects:
     1. Characteristics of flow resistance in open channel flow with different plants.
     Variation regularity of the flow resistance of the three plants are researched through flume tests, and the variations of one-way water surface slope and drag coefficient of open channel with the three plants are analyzed. It's found that the variation of drag coefficient of each plant is similar with Nikuradse curve in general. Turbulent flow range c can be divided into turbulent smooth zone, turbulent transition rough zone, and turbulent drag rough zone. The crown heights of plants beat down by water impact are counted and the relationship between flow resistance coefficient and roughness for each plant is obtained accordingly. Regression analysis on the relationship verified that the method can be applied to deduce the resistance coefficient of open channel flow with plants.
     2. Hydrodynamic properties of open channel flow with different plants.
     Flume test results reveal that the flow velocity variation in a certain area above the crown top of submerged plant is similar with that of plant with no grass. The longitudinal velocity for non-submerged plant distributes in "S" shape along the depth direction with clear stratification. Turbulence intensity exhibits different characteristics with the variation of plant morphology, one-way distribution and distance to the side wall.-(uv+uv)/u2*is the important factor characterizing flow variation. It is closely associated with plant morphology and one-way distribution in the presence of plants. Moreover, it regularly adjust along with the changes of plant morphology and one-way distribution.
     3. Regularity of sediment transport in open channel flow with different plants.
     Flume test result shows that the vertical distribution of sediment concentration gradient is in positive correlation with flow turbulence intensity, and the relationship between the two is fitted. The particle size of sediment decreases upwards, presenting an obvious stratification. The impact of the same plant on the vertical distribution of fine sediment is smaller than that on coarse sediment. Plants have a stronger effect of blocking coarse sediment in open channel but have little effect of blocking fine sediment, which is similar with the variation of sediment concentration in the downstream river after the operation of the Three Gorges Project. Momentum diffusion coefficient, sediment diffusion coefficient, and β(the ratio of the former to the latter) change in vertical direction. They are all functions of spatial location (regions and relative water depth) and vary with the changes of spatial location. In general, momentum diffusion coefficient distributes in parabolic shape in vertical direction, and increases before decreases with the increase of relative water depth. Sediment diffusion coefficient gradually reduces with the increase of relative water depth in the presence of different plants. The value of β ranges from0.14to10.0, most of which is significantly larger than1. This is because lightweight model sand used in the experiment is beneficial to sediment diffusion and the sediment diffusion coefficient is large.
引文
[1]吴持恭.水力学[M].北京:高等教育出版社,2007.
    [2]钱宁,万兆惠著.泥沙运动力学[M].北京:科学出版社,1986.
    [3]吴福生.柔性植物阻流特性研究[J].水利学报,2007(10),283-287.
    [4]闫静.含植物明渠水流阻力及紊流特性的实验研究[D].南京:河海大学,2008.
    [5]M.Fathi-Moghadam, M.Kashefipour, N.Ebrahimi, and S. Emamgholizadeh. Physical and numerical modeling of submerged vegetation roughness in rivers and flood plains[J] Journal of hydrologic engineering,2011,16:858-864.
    [6]Hsieh T. Resistance of Cylinder Piers in Open-channel Flow[J]. Hydraul Div,1964,90 (HY1): 161-173.
    [7]Li R M, Shen H W.Effect of Tall Vegetation on Flow and sediment[J].Hydraul Div,1973,99(5); 793-814.
    [8]佘伟伟,李艳红,喻国良.含淹没植物的水流阻力实验研究[J].水利水电技术,2010,41(3):24-28.
    [9]曾玉红,槐文信,张健等.非淹没刚性植被流动阻力研究[J].水利学报,2011(7):843-847.
    [10]Reew O, Plamer V J. Flow of Water in Channels Protected by Vegetative Lining[M]. Washington. D.C. Tech. Bull.967.U.S. Dept of Agriculture Soil Conversation Service,1949.
    [11]Fu-Chun Wu, Hsieh Wen Shen, Member, ASCE, and Yi-Ju Chou. Variation of roughness coefficients for unsubmerged and submerged vegetation [J]. Journal of hydraulic engineering, 1999,125:934-942.
    [12]顾峰峰,倪汉根.芦苇密度与阻力的关系[J].水动力学研究与进展,2006,21(5):627-631.
    [13]胡旭跃.植物粗糙度对明渠水流阻力影响的试验研究[J].水科学进展,2008,19(3):374-376.[14]Wang Pei-fang,Wang Chao.Hydraulic resistance of submerged vegetation related to effective height[J].Journal of Hydrodynamics.2010,22(2):265-273.
    [15]L. Noarayanan, K. Murali, V. Sundar. Manning's 'n' co-efficient for flexible emergent vegetation in tandem configuration[J]. Journal of Hydro-environment Research,2012,6:51-62.
    [16]王晓燕.植被刚度对水流阻力特性[D].南京:河海大学,2007.
    [17]Naot D, Nezu I, Nakagawa H. Hydrodynamic behavior of partially vegetated open channels [J].Journal of Hydraulic Engineering,1996,122(11):625-633.
    [18]Naot D, Nezu I, Nakagawa H, Ustable Pattern in partly Vegetated Channels[J].Hydr Engrg,ASCE,1996,122(11);671-673.
    [19]武周虎,张娜.河滩人工湿地对河流洪水位影响的数值模拟[J].长江流域资源与环 境,2007,16(1):7-10.
    [20]WANG Pei-fang, WANG Chao. Numerical model for flow through submerged vegetation regions in a shallow lake[J].Science Direct,2011,23(2):170-178.
    [21]Fathi-Maghadam M, Kouwen N. Nonrigid, Nonsubmerged, vegetative Roughness on Floodplains[J] Journal Hydrual.Engng.1997,123 (1):51-57.
    [22]Wilson C. A. M. E., Horritt M. S. Measuring the flow resistance of submerged grass[J].Hydrol. Process.2002(16),2589-2598.
    [23]Davide Poggi, Claudia Krug, and Gabriel G. Katul.Hydraulic resistance of submerged rigid vegetation derived from first-order closure models[J].Water Resources Research,2009(45), W10442.
    [24]Shucksmith J. D., Boxall J. B., I. Guymer.Bulk Flow Resistance in Vegetated Channels:Analysis of Momentum Balance Approaches Based on Data Obtained in Aging Live Vegetation[J] Journal of Hydraulic Engineering,2011(137):1624-1635.
    [25]Mary-Halis L.Alkis, David E. Werth. Comparing Techniques to Estimate Roughness Due to Vegetation[C]. Critical Transitions in Water and Environmental Resources Management, World Water Congress,2004.
    [26]Petryk, S. and G Bosmajian Ⅲ. Analysis of Flow Through Vegetation[J]. Hyd. Div. Proc, Amer. Soc. Civil Engrs.1975,101(7):307-322.
    [27]韩璐.柔性植被河道水流特性试验研究[D]南京:河海大学,2006.
    [28]赵明登,槐文信,李泰儒.明渠均匀流的摩阻流速及流速分布[J].武汉大学学报(工学版),2010,43,(5):554-557.
    [29]Kedegan G H. Laws of turbulent flow in open channels[J]. Journal of Research of the National Burrau of Standard,1938,21:707-741.
    [30]Prandtl L.流体力学概论[M].北京:科学出版社,1981.
    [31]Nezu I,Rodi W.Open channel flow measurements with a Laser Doppler Anemometer [J].Hydraulic Engineering,ASCE,1986,112 (5):335-355.
    [32]Cardoso, A.H., Graf, W.H. and Gust, G. Uniform Flow in A smooth Open Channel[J] Journal of Hydraulic Research,1989,27(5):603-615.
    [33]董曾南,丁元.光滑壁面明渠均匀紊流水力特性[J].中国科学A辑,1989(11):1208-1218.
    [34]Steffler, P.M., Rajaratnam,N. and Peterson, A.W.LDA Measurements In OPen Channel[J].Journal of Hydraulic Engineering,1985,111(1):119-129.
    [35]刘春晶,李丹勋,王兴奎.明渠均匀流的摩阻流速及流速分布[J].武汉大学学报(工学版),2010,43,(5):554-557.
    [36]Coleman, N. L.Velocity Profiles with Suspended Sediment[J]. Journal of Hydraulic Research, 1981(19):211-229.
    [37]Zippe, H. J.,and Graf, W. H.Turbulent Boundary-Layer Flow over Permeable and Non-Permeable Rough Surfaces[J]. Journal of Hydraulic Resources,1983(21):51-65.
    [38]Coles, D. The Law of the Wake in the Turbulent Boundary Layer[J].Journal of Fluid Mechanics,1956(1):191-226.
    [39]倪晋仁,惠遇甲.悬移质浓度垂线分布的各种理论及其间关系[J].水利水运科学研究,1988,(1):83-97.
    [40]Graf, W.H.Hydraulics of sediment Transport[M].McGraw-Hill Book Company,1971:172-181.
    [41]Rouse,H.Modern conceptions of the Mechanics of Turbulence[J].Trans. ASCE,1937(102):23-35.
    [42]Vanoni, V.A.Transport of Suspended Sediment by Water [J].Trans. ASCE.III,1946,67-102.
    [43]Ismail, H.M.Turbulent Transfer Mechanism and Suspended Sediment in Closed Channel[J].Trans.ASCE,1952(117):409-446.
    [44]Bechteler, W.and Vetter, M.Comparision of Suspended Sediment Transport Models with Measurement[C].第二次河流泥沙国际学术研讨会论文集,1983.
    [45]Lane E.w., Kalinske, A.A., Engineering Calculations of suspended sediment[J].Trans. AGU, 1941,(22)3:603-607.
    [46]谢鉴衡.河流泥沙工程学[M].武汉:武汉水利电力学院,1981.
    [47]Laursen.用修正的普朗特混合长度理论导出的含沙量分布公式[C].第一次河流泥沙国际学术讨论会论文集第1卷,1980年.
    [48]S.Tanaka and S. Sugimoto.On the Distribution of Suspended Sediment in Experiment Flume Flow-Memoirs of the Faculty of Engineering[D]. Japan:Kobe University,1958.
    [49]Tadoki Itakura and Tsutomu Kishi.Open Channel Flow with Suspended sediments[J]. Journal of the Hydraulics Division,1980,106(8):1325-1343.
    [50]Hunt,J.N. The turbulent Transport of Suspended Sediment in Open Channels [J]. Proc.Roy.Soc.Lond.A,1954,224(1158):322-335.
    [51]张小峰,陈志轩.关于悬移质含沙量沿垂线分布的几个问题[J].水利学报,1990(10):41-48.
    [52]张红武.挟沙水流流速的垂线分布公式[J].泥沙研究,1995.6(2):1-10.
    [53]曹志先,张效先,习和忠.基于湍流猝发的明渠流悬沙浓度分布[J].水利学报,1997(2):52-57.
    [54]倪晋仁,梁林.水沙流中的泥沙悬浮[J].泥沙研究,2002,1:7-19.
    [55]Knapp,R.T. Energy-Balance in Stream-Flows Carrying Suspended Load, Transactions[J].American Geophysical Union, Papers Hydrology,1938:501-505.
    [56]Bagnoid,R.A. Auto-suspension of Transported Sediment,Turbidity Currents[J].Proceedings of the Royal Socety,1962,265:315-319.
    [58]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1953.
    [59]华东水利学院等四校合编.河流动力学[M].北京:人民交通出版社,1981.
    [60]H.A.米哈依洛娃.紊流中悬沙分布的试验研究[C].河床演变论文集,1965.
    [61]Velikanov, M. A..Alluvial Process[M]. Moscow:St ate Publishing House for Physical and Mat hemat ical Literatur e,1958.
    [62]Bakmeteff, B. A., and Allan, W. The mechanism of energy in fluid friction[J].Trans. ASCE, 1946,111:1043-1102.
    [63]蔡树棠.相似理论和泥沙的垂直分布[J].应用数学和力学,1982,3(5):23-28.
    [64]周培源.涡量脉动的相似性结构与湍流理论[J].力学学报,1959,(3),284-297.
    [65]朱鹏程,蔡树棠.明渠水流垂线流速分布与含沙量分布的关系[J].中国科学技术大学报,1981,11,(3):68-76.
    [66]Matalas, N. C. Introduction to random walk and its application to open channel flow[J].in Stochastic Hydraulics, ed.Chiu, C. L.,1970,56-65.
    [67]Yalin, M.S.输沙力学[M].北京:科学出版社,1983.
    [68]Li R.M, Shen H.W.Solid Particles Settlement in Open Channel Flow[J].Jour. of the Hydr.Div, Proceedings of the ASCE,1975,101(7),:917-931.
    [69]Bechteler W, and Farber. K. Sensitive Analysis of A Stochastic Model For Solid Particle Settlement [C]. Proceedings of the Third International Symposium On Stochastic Hydraulics, August 5-7, 1980, Tokyo, Japan.
    [70]Bayazit, M., Stochostic.Methods For Motion of Suspended Grains[C].Fifteen Congress of the International Association for Hydraulic Research,1973.
    [71]费勒.W.概率论及其应用[M].北京:科学出版社,1979.
    [72]李炳田.污水两相流动特性分析[D].重庆:重庆大学,2005.
    [73]倪晋仁,王光谦.论悬移质浓度垂线分布的两种类型及其产生的原因[J].水利学报,1987(7):60-68.
    [74]王光谦.固液两相流与颗粒流的运动理论及实验研究[D].北京:清华大学,1989.
    [75]戴继岚.管道中具有推移层的两相流动[D].北京:清华大学,1985.
    [76]Bouvard M, Petkovic S.Vertical dispersion of spherical heavy particles in turbulent open channel flow[J]. J.Hydr. Res.,1985,23:5-19.
    [77]夏建新,吉祖稳.湍流中泥沙垂线分布的力学解释[J].水利学报,2003,(1):45-50.
    [78]王兴奎,邵学军,李丹勋.河流动力学基础[M].北京:中国水利水电出版社,2002.
    [79]唐洪武;闫静,吕升奇.河流管理中含植物水流问题研究进展[J].水科学进展,2007,18(5):785-792.
    [80]Kouwen N,Unny T E, Hill H M.Flow retardance in vegetated channels [J] Journal of the Irrigation and Drainage Division,1969,95(IR2):329-342.
    [81]Stephan U, Gutknecht D.Hydraulic resistance of submerged flexible vegetation [J] Journal of Hydrology,2002,269:27-43.
    [82]Gouflay M R.iscussion of Flow resistance in vegetated channels'by Kouwen N et al[J] Journal of the Irrigation and Drainage Division,1970,96(IR3):351-357.
    [83]Ei-Hakim O,Salama M M.Velocity distribution inside and above branched flexible roughness [J].Journal of the Irrigation and Drainage Engineering,1992,118(6):914-927.
    [84]Carollo F G, Ferro V,Termini D.Flow velocity measurements in vegetated channels[J].Journal of Hydraulic Engineering,2002,128(7):664-673.
    [85]Ikeda S,Kanazawa M.Three-dimensional organized vortices above flexible water plants[J] Journal of Hydraulic Engineering,1996,122(11):634-640.
    [86]Lopez F.Garcia M H.Mean.flow and turbulence structure of open-channel flow through non-emergent vegetation[J].Journal of Hydraulic Engineering,2001,127(5):392-402.
    [87]Nepf H M, Vivoni E R. Flow structure in depth-limited,vegetated flow[J] Journal of Geophysical Research,2000,105(C 12):28547-28557.
    [88]Su X H,Li C W,Chen B H.Large eddy simulation of surface turbulent flow in open channel with submerged vegetation[C].Advances in Hydraulics and Water Engineering:Proceedings of the 13th IAHR-APD Congress,Singapore World Scientific,2002.
    [89]Wilson C A M E,Stoesser T,Bates P D,et al. Open channel flow through diferent forms of submerged flexible vegetation[J]. Journal of Hydraulic Engineering,2003,129(11):847-853.
    [90]王忖,王超.含挺水植物和沉水植物水流紊动特性[J].水科学进展,2011,21(6):816-822.
    [91]李艳红,李栋,范静磊.含淹没植物河流水流紊动强度最大值及其影响因素[J].水科学进展,2007,18(5):706-710.
    [92]吴福生.河道漫滩及湿地上淹没柔性植物水流的紊流特性[J].水利学报,2007,38(11):1301-1305.
    [93]Syunswke. Ikeda, and Minoru. Kanazawa. Three-dimensional organized vortices above flexible water plants[J].Journal of hydraulics division,1996,122:643-640.
    [94]IEHISA.NEZU. Turbulent structures in partly vegetated open-channel flows with LDA and PIV measurements[J].Journal of Hydraulic Research,2001,39(6):629-642.
    [95]Li R M,Shen H W.Efect of tall vegetations on flow and Sediment[J] Journal of Hydraulic Division,1973,99(HY5):793-814.
    [96]阎洁,周著,邱秀云.植物坝前上游段推移质泥沙的输移特性[J].新疆农业大学学报,2004,27(4):67-72.
    [97]拾兵,曹叔尤.植物治沙动力学[M].青岛:青岛海洋大学出版社,2000.
    [98]Elliott A H. Settling of fine sediment in fl channel with emergent vegetation[J] Journal of Hydraulic Engineering,2000,126(8):570-577.
    [99]唐洪武,吕升奇.龙涧川刚性植物条件下静水中粗颗粒泥沙沉速研究[J].水利学 报,2007,38(10):1214-1220.
    [100]田振华.植物生长对梯形河槽水沙运动特性的影响研究[D].昆明:昆明理工大学,2010..
    [101]吕升奇.含刚性植物水流中悬移质泥沙分布规律实验研究[D].南京:河海大学,2008.
    [102]Jordanova A A and James C S. Experimental Study of Bed Load Transport through Emergent Vegetation[J]. Journal of Hydraulic Engineering,2003,129(6):474-478.
    [103]Jeffrey T. Rominger, S.M.ASCE; Anne F. Lightbody, A.M.ASCE,and Heidi M. Nepf, A.M.ASCE. Effects of Added Vegetation on Sand Bar Stability and Stream Hydrodynamics [J]. Journal of Hydraulic Engneering,2010,136:994-1002.
    [104]Naot D,Nezu I,Nakagawa H.Hydrodynamic behavior of partially vegetated open channels [J].Journal of Hydraulic Engineering,1996,122(11):625-633.
    [105]Naot D,Nezu I,Nakagawa H.Unstable Pauem in Partly Vegetated Chanels[J].Journal of Hydraulic Engineering,1996,122(11):671-673.
    [106]吴福生,王文野,姜树海.含植物河道水动力学研究进展[J].水科学进展,2007,18(3):456461.
    [107]Cui J,,Neary V S. Large eddy simulation(LES)of fully developed flow through vegetation[A]. Hydroinformatics Proceedings of the Fifth International Conference on Hydroinformatics, Cardif, UK,2002:39-44.
    [108]程莉.植树护岸条件下河道水流的数值模拟[D].南京:河海大学,2002.
    [109]宿晓辉,张建新,李志伟等.带有植物的河道水流浅水紊流运动大涡模拟[J].大连理工大学学报,2003,43(2):223-229.
    [110]顾峰峰.芦苇阻力系数物模及湿地水流数模研究[D].大连:大连理工大学,2006.
    [111]张明亮,沈永明,朱兰燕.受植被影响的弯曲渠道水流平面二维湍流数值模拟[J].水利学报,2008,39(7):794-800.
    [112]刘诚,沈永明.水生植物对水沙运动影响的三维湍流模型[J].水科学进展,2008,19(6):851-856.
    [113]刘超,杨克君,刘兴年,黄尔.植被作用下的弯曲复式河槽漫滩水流二维解析解[J].四川大学学报(工程科学版),2012,44(6):7-12.
    [1]长江科学院.长江防洪模型关键技术报告[A].武汉,2010年,110-121.
    [2]胡华锋.丁坝绕流结构的试验及数值研究[D].长沙:长沙理工大学,2006.
    [3]华明.动力中射流特性研究[D].南京:河海大学,2001.
    [4]袁琳.蒙脱石的胀缩机理及改性技术研究[D].长沙:长沙理工大学,2007.
    [5]王洪虎.不同植物对水流结构变化影响规律试验研究[D].武汉:长江科学院,2012.
    [1]吴持恭.水力学[M].北京:高等教育出版社,2007.
    [2]闫静.含植物明渠水流阻力及紊流特性的实验研究[D].南京:河海大学,2008.
    [3]李玉柱,贺五洲.工程流体力学[M].北京:清华大学出版社,2006.
    [1]Francis, J.B. On the Cause of theMaximumVelocity of Water Flowing in Open Channels Being Below the Surface[J], Trans. ASCE. May.1878.
    [2]Stearns, P.P.On the Current Meter, Together with a Reason Why the Maximum Velocity of Water Flowing in Open Channel is Below the Surface[J]. Trans. ASCE.1883.
    [3]Gibson, A.M. On the Depression of the Filaments of MaximumVelocity in a Stream Flowing through an Open Channels[c]. Proc. Royal Society of London, Series A 82,1909,149-159.
    [4]Shu-Qing Yang,Joong-Woo Lee. Reynolds shear stress distributions in a gradually varied flow in a roughened channel[J] Journal of Hydraulic Research,2007,45 (4):462-471.
    [5]Nezu I. and Nakagawa H.Turbulence in OpenChannel Flows[J].Monograph series of IAHR, Rotterdam, Netherland.1993.
    [6]Boussinesq. J..Essai sur la theorie des eaux courantes[J]. Mem. Pres. Acad. Sci. XXIII,46, Paris. 1877.
    [7]Kironoto, B.A. and Graf, W.H.Turbulence Characteristics in Rough Non-Uniform Open-Channel Flow[J]. Proc. Instin Civ. Engrs Wat., Marit & Energy,1995,112,336-348.
    [8]王兴奎,邵学军,李丹勋.河流动力学基础[M].北京:中国水利水电出版社,2002.
    [9]Ching C Y, Djenidi L, Antonia R A. Low Reynolds number effects in a turbulent boundary layer[J]. Experiments in Fluids,1995, Vol 19:61-68.
    [10]Buschmann M, Meinert J. Power Law or Logarithmic Law for Turbulent Boundary Layers with Low Reynolds Numbers[C].Colloquium Fluid Dynamics. Germany:Prague,1999,99.
    [11]Jarvela J. Effect of Submerged Flexible Vegetation on Flow Structure and Resistance[J]. Journal of Hydrology,2005,307:233-241.
    [12]吕升奇.含刚性植物水流中悬移质泥沙分布规律实验研究[D].南京:河海大学,2008.
    [13]Djenidi L, Dubief Y, Antonia R A. Advantages of using a power law in a low Rθ turbulent boundary layer[J]. Experiments in fluids,1997,22(4):348-350.
    [14]Pearson BR, Antonia RA.Some measurements in a fully developed turbulent pipe flow[A]. Report T. N. FM 95/1,1995, Department of Mechanical Engineering, University of Newcastle.
    [15]Balachandar R, Blakely D, Bugg J. Friction velocity and power law velocity profile in smooth and rough shallow open channel flows[J]. Canadian Journal of Civil Engineering,2002,29(2): 256-266.
    [16]胡春宏,惠遇甲.明渠挟沙水流运动的力学和统计规律[M]北京:科学出版社,1995.
    [17]Nezu I and Rodi W. Experimental study on secondary currents in open channel flow[C].Proceedings of 21st IAHR Congress,1985, Melbourne,2:115-119.
    [18]槐文信,韩杰,曾玉红等.淹没柔性植被明渠恒定水流水力特性的试验研究[J].水利学报,2009,40(7):791-797.
    [1]长江科学院.长江防洪模型利用世界银行贷款项目实体模型选沙报告[A].武汉,2005年,10-29.
    [2]黄岁梁,陈稚聪,府仁寿.模型沙性质研究现状综述[J].长江科学院院报,1995,12(2):14-22.
    [3]钱宁,万兆惠著.泥沙运动力学[M].北京:科学出版社,1986.
    [4]韩其为.水库淤积[M].北京:科学出版社,2003.
    [5]胡春宏,惠遇甲明渠挟沙水流运动的力学和统计规律[M].北京:科学出版社,1995.
    [6]陈珺,嵇敏,唐洪武.甬江洪枯季水沙特性分析[J].水利水运工程学报,2012,10:48-54.
    [7]倪晋仁,王光谦,张红武.固液两相流基本理论及其最新应用[M].北京:科学出版社,1991.
    [8]严冰.波浪及波流共同作用下悬移质浓度垂线分布的研究[D].天津:天津大学,2004.
    [9]Rouse,H.Experiments-on the mechanics of sediment suspension[C].Proc.5th Intern. Cong.For Applied Meth,1938:550-554.
    [10]王兴奎,邵学军.河流动力学基础[M].北京:中国水利水电出版社,2002.
    [11]Vanoni,V,A. and G.N.Nomicos.Resistance properties of sediment-laden streams[J].Trans.ASCE, 1946,111:67-133.
    [12]Ismail,h.M.Turbulent transfer mechanism and suspended sediment in closed channel [J]. Trans.ASCE,1946,117:409-446.
    [13]Einstein,H.A and Ning Chien.Can the Rate of Wash Load Be Predicted from Bed-load Function[J].Trans.Amer.Geophysical Union,1953,34 (6):876-882.
    [14]朱传芳.悬沙垂向扩散系数的实验研究[D].上海:华东师范大学,2007.
    [15]Brush,L.M.Jr.Experimentary study of sediment diffusion[J].Geophysics. Res.,1962,67 (4): 1427-1433.
    [16]Cellino, M and W. H. Graf.Sediment-laden flow in open channel under non-capacity and capacity conditions[J].Hydr. Engi., ASEC,1999,125(5):455-462.
    [17]Graf,W.H.and M. Cellino.Suspension flow in open channels[C].Stochastic Hydraulics'00,Proc.of the Eighth International Symposium on Stochastic Hydraulics,Beijing,China,2000,85-93.
    [18]王兆印,钱宁.粗颗粒高含沙两相紊流运动规律的实验研究[J].中国科学A辑,1984,(8):766-773.
    [19]王兴奎.悬移质泥沙运动及其对水流结构的影响[D].北京:清华大学,1985.
    [20]Jobson H E, Sayre w w. Vertical transfer in open channel flow[J].Journal of Hydraulic Division, 1970,96(3):703-724.
    [21]Jobson H E, Sayre w w. Predicting concentrate on profiles in open channels[J]. Journal of Hydraulic Division,1970,96(10):1983-1996.