液压挖掘机动臂下降势能回收技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压挖掘机是一种高能耗、高排放的工程机械。随着各国施工项目的不断增多,液压挖掘机的用量也在逐年增加,因此,研究液压挖掘机的节能技术对减少常规能源消耗和改善环境具有重要的现实意义。液压挖掘机工作过程中,各机械臂的升降都比较频繁,而机械臂的下降速度主要是靠调节主阀节流口开度来控制,如果能将机械臂的下降势能进行回收并加以利用,可进一步提高液压挖掘机的整机节能效果。
     目前,液压挖掘机机械臂势能回收技术的研究主要集中于液压开式回路能量回收系统的开发,其系统都存在一定程度的节流损失和旁通损失。本文结合863国家高技术研究发展计划项目“新型混合动力工程机械关键技术及系统开发”,根据液压挖掘机动臂的实际作业工况,对液压挖掘机动臂下降势能回收技术进行了深入系统的研究,并取得了如下创新性成果。
     1.提出并设计了一种新型液压挖掘机动臂闭式回路势能回收系统。采用模糊PI自整定控制算法控制永磁无刷直流电动机,实现液压动力系统的变转速容积调速控制,使系统的输入功率与负载所需功率完全匹配,无节流损失和溢流损失,提高了能量回收系统的运行效率和节能效果。
     2.基于闭式回路动臂势能回收系统的工作原理以及对系统各构成环节运动规律的分析,建立了系统的数学模型和仿真模型,提出了动臂势能回收系统的控制策略。通过仿真研究,对挖掘机动臂变负载(铲斗盛装不同重量负载)运行各工况下动臂液压缸活塞的运行速度、蓄能器压力及液压缸大小腔压力的变化特性进行了分析。
     3.通过自主开发的闭式回路动臂势能回收系统试验平台对仿真结果进行了验证试验,并对其系统的运行效率及系统节能效果进行了综合评价,结果表明:所提出的闭式回路动臂势能回收系统运行稳定,与原车阀控动臂液压系统相比,运行效率较高,节能效果显著。
     此外,本文还进行了以下研究工作:
     1.对液压挖掘机各执行机构的可回收能量分布进行了分析。以某公司8吨级液压挖掘机为对象建立了各执行机构、液压系统及系统能量损耗模型,采用仿真和实验测试相结合的方法,对液压挖掘机工作过程中各执行机构的能量消耗情况和可回收能量所占比重进行了研究,为发掘系统的节能潜力和找到能量回收研究的主攻方向提供了理论依据。
     2.基于闭式回路动臂势能回收系统的节能机理,对系统在不同工况运行时各动力元件之间的能量转换关系进行了分析,以8吨级液压挖掘机为设计对象,对闭式回路动臂势能回收系统的主要元件进行了参数匹配。
     3.建立了永磁无刷直流电动机的数学模型,对电机的调速性能及抗干扰性能进行了仿真和试验研究,结果表明该方法具有较好的动态控制品质,比较适用于闭式回路动臂势能回收系统的变转速容积调速控制。
Hydraulic excavator is the construction machinery with high energy consumption andhigh emission. With increasing construction project in the world, the sales of Hydraulicexcavator are increasing year by year. Therefore, the study on energy-saving technology ofhydraulic excavators has important practical significance to reduce the consumption ofconventional energy sources and improve the environment. The manipulator movements ofHydraulic excavator are more frequent in the work process, and the gravitational potentialenergy of manipulator is dissipated into heat in the control valves when the manipulator goesdown. It can further improve the energy-saving effect if gravitational potential energy ofmanipulator can be recovered and reused.
     At present,the study on manipulator potential energy recovery technology of Hydraulicexcavator focused on the development of energy recovery system with hydraulic open loop,which will lead to throttling losses and bypass losses. This Ph.D. dissertation is developedunder the project named “the key technology and system development of new hybridconstruction machinery (2009AA044403)” which is supported by National High TechnologyResearch and Development Program863. According to the actual operating conditions of thehydraulic excavator boom, this paper has made a deep and systematical research on boompotential energy recovery technology and some innovative contributions are enumerated asfollows.
     1. Boom potential energy recovery system with closed circuit in hydraulic excavatorswas put forward, which control brushless dc motor using control algorithm of fuzzy PIauto-tuning to achieve volumetric speed control. It can achieve exactly power match betweensystem input power and load required power.
     2. The mathematical models of Boom potential energy recovery system with closedcircuit were built on the basis of the system working principles, and control strategy ofsystem was proposed according to and the analysis on motion law of the constituent links. The changes characteristics of cylinder rod velocity, accumulator pressure and hydrauliccylinder pressure were analyzed via numerical simulation under variable load operatingconditions of boom.
     3. The experiment bench was set up and the simulation results were verified by benchtest. The results showed that the simulation results were correct and the boom potentialenergy recovery system with closed circuit works steadily. Compared with the traditionalvale-controlled system of the hydraulic excavator, the system has higher operating efficiencyand higher energy saving.
     Other researches are:
     1.8-ton Hydraulic excavator model was built for multi-body dynamics, hydraulicsystem and system energy loss model. The regenerated energy of the boom, the arm, thebucket and swing were calculated in the typical working cycle and typical working cycleexperiment was carried out, which can provide theoretical basis to explore the energy-savingpotential of the system and find the main direction of the energy recovery research.
     2. Energy exchange relation among very power element was analyzed on the basis ofenergy-saving mechanism of boom potential energy recovery system with closed circuit. Themain components parameter matching of boom potential energy recovery system was carriedout according to the parameter8-ton Hydraulic excavator.
     3. Magnet brushless dc motor model was built and the speed adjusting performance andanti-jamming performance of Magnet brushless dc motor were analyzed via numericalsimulation. The results showed fuzzy PI auto-tuning controller has better dynamic controlquality, which applies to volumetric speed control of boom potential energy recovery systemwith closed circuit.
引文
[1]中华人民共和国国民经济和社会发展第十二个五年计划纲要,第九篇,第一章[EB/OL].2011-1-26.http://www.rd.gd.cn/dhl/rdhyzy2/syjsic/dhwj/sewgh/201101/t20110126_114924.html.
    [2]我国工程机械运行情况及“十二五”展望[EB/OL].2010-12-21.http://www.docin.com/p-308429639.html
    [3]苏子孟.中国工程机械行业“十二五”规划展望[J].建设机械技术与管理.2011,24(2):27-33.
    [4]刘崇.观拉斯维加斯博览会谈液压挖掘机发展[J].建筑机械化,2002,21(4):19-20.
    [5]陈正利.我国挖掘机行业的形成与发展、现状及前景[J].建设机械技术与管理,2004(11):25-29.
    [6]挖掘机市场调查报告[EB/OL].2012.3: http://wenku.baidu.com/view/bca281492e3f5727a5e9629c.html
    [7]李宏宝.2011年中国挖掘机市场分析[J].建筑机械,2011(12):42-45.
    [8] Masayuki KAGOSHIMA, Masayuki KOMIYAMA, Takao NANJO, et al.Developmentof New Hybrid Excavator[J]. KOBELCO TECHNOLOGY REVIEW,2007,21(11):39-49.
    [9]宋世鹏,朱新云,赵磊.液压挖掘机功率损失分析及节能控制技术研究[J].机床与液压,2008,36(11):80-81.
    [10]雷廷强,刘强.液压挖掘机节能控制系统的研究[J].机床与液压,2009,37(8):71-73.
    [11] S. Ghosal,D. Misra,T.K.Saha,D.Chakravorty,B. Chaudhuri.Failure Analysis ofstacker-cum-Reclaimer in Ore Handling Plant[J]. J Fail. Anal and Preven.2008(8):564-571.
    [12]任小青.液压挖掘机节能技术的发展综述[J].机床与液压,2009,37(8):248-250.
    [13]刑婷.节能与创新成为关注焦点[J].建筑机械技术与管理,2008,(8):40-42.
    [14]沈伟,姜继海.液压混合动力挖掘机的能量回收效率分析[J].华南理工大学学报(自然科学版),2012,40(1):82-87.
    [15]顾临怡,谢英俊.多执行器负载敏感系统的分流控制发展综述[J].机床与液压,2001,(3):3-6.
    [16]李艳杰,于安才,姜继海等.挖掘机节能液压控制系统分析与应用[J].液压与气动,2010(8):69-74.
    [17] UEHARA K, TOMINAGA H. Energy saving on hydraulic systems ofexca-vators[J]. SAE Paper,1982,10(1):57-63.
    [18]刘顺安,王辉,沙永柏.液压挖掘机开心负荷传感泵控系统研究[J].中国工程机械学报,2004,2(3):296-299.
    [19] Yasuo Aoki, Kazuo Auehara, Kazuyaki hirose, et al. Load sensing fluid powersystem(CLSS)[J], Komatsu technical report.1993,39(2):2-25.
    [20]黄宗益.东芝负载敏感压力补偿挖掘机液压系统[J].建筑机械化,2005,(5):29-31.
    [21]邱清盈,陆银,冯培恩,管成,武建伟.负载敏感液压挖掘机作业循环时间建模与优化[J].农业机械学报,2011,42(10):39-44.
    [22]孙希刚.液压开式负荷传感系统(OLSS)与闭式负荷传感系统(CLSS)在挖掘机上的应用[J].建筑机械技术与管理,2010,(2):83-87.
    [23] Henke, Russell W. Evolution of load-sensing hydraulics[J], Diesel ProgressInternational Edition.1998,17(4):53-55.
    [24]王玉林,黄鸣辉,张军等.节能技术在挖掘机液压系统上的应用分析[J].建筑机械化,2011,32(5):31-33.
    [25] Zhao Jingyi, Sun Bingyu. Introduction of Load-sensing Hydraulic Technology[C].秦皇岛:2007年国际流体动力传动与控制学术会议论文集.2007.
    [26]路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002.
    [27]高峰,潘双夏.负流量控制模型与试验研究[J].机械工程学报,2005,41(7):107-111.
    [28]高峰,潘双夏.液压挖掘机负流量负荷传感控制策略[J].农业机械学报,2005,36(7):111-113.
    [29]王爽,李志远,余新旸等.液压挖掘机负流量控制系统的节能分析与实现[J].合肥工业大学学报(自然科学版),2006,29(2):213-216.
    [30]李艳杰,于安才,姜继海等.挖掘机节能液压控制系统分析与应用[J].液压与气动,2010,(8):69-74.
    [31]贾文华,殷晨波,曹东辉等.挖掘机正流量泵控液压系统的特性分析[J].南京工业大学学报(自然科学版),2011,33(6):98-101.
    [32] Bin Yao, Song Liu. Energy-saving control of hydraulic systems with novelprogrammable valves[C].4th World Congress on Intelligent Control andAutomation(WCICA2002), China, June10-14,2002.
    [33] JANSSON A, PALMBERG J O. Separate controls of meter out orifices in mobilehydraulic systems[J]. SAE Transaction,1990,99(2):377-383.
    [34] ELFVING M. A concept for a distributed controller of fluid power actuator[D].Sweden: Linkoping University,1997.
    [35]王庆丰.大惯量负载电液进出口节流独立调节系统研究[J].中国机械工程,1999,(8):21-23.
    [36]王庆丰,顾林怡,路甬祥.基于压差传感的电液进、出口节流独立调节原理及控制特性研究[J].机械工程学报,2001,37(4):21-24.
    [37]权龙,廉自生.应用进出油口独立控制原理改善泵控差动缸系统效率[J].机械工程学报,2005,40(3):123-127.
    [38]刘英杰,徐兵,杨华勇等.电液比例负载敏感负载口独立控制系统仿真[C].北京:第五届全国流体传动与控制学术会议暨2008年中国航空学会液压与气动学术会议论文集,2008.
    [39] Bin Yao, Song Liu. Coordinate control of energy-saving programmable valves[J].IEEE Transactions on Control Systems Technology,2008,16(1):34-45.
    [40]徐兵,曾定荣,葛耀峥等.负载口独立控制负载敏感系统模式切换特性[J].浙江大学学报(工学版),2011,45(5):858-863.
    [41]徐绳武.泵控系统在国外的发展[J].液压气动与密封,2010,30(3):1-4.
    [42]闻德生,郭高峰,杜孝杰等.新型液压多泵在液压调速系统中的节能分析[J].中国机械工程,2011,22(24):2966-2969.
    [43] Stecklein Gary. Regenerative Hydraulics-The use of multiple hydraulic pumpscan satisfy the needs of circuits in off-highway equipment[J]. SAE2006OGEoff-highway engineer,2006,14(6):65-66.
    [44]张玉川.液压挖掘机的控制系统[J].建筑机械,1999,(5):11-15.
    [45]王红彬,薛丽.国外液压挖掘机新技术发展动向[J].国外工程机械,1993,19(2):20-21.
    [46] Nikolaus H. W. Antriebssystem mit Hydraulischer kraftübertrsgung: Germany,2739968.4[P].1977-06-09.
    [47] W. H. Dieter. The future for hydraulics[J]. Rexroth information quarterly,1985,(3):5-15.
    [48] W. Holz. Power matching control(secondary regulation)[J]. Rexroth informationquarterly,1988,(1):17-24.
    [49]肖沁.二次调节静液传动技术在工程机械中的应用[J].工程机械,2004,35(6):39-40.
    [50]刘宇辉,蒲红,张艳萍等.二次调节静液传动技术的发展及应用[J].佳木斯大学学报(自然科学版),2001,19(1):52-56.
    [51]战兴群.静液驱动二次调节技术控制特性的研究[D].哈尔滨:哈尔滨工业大学,1999.
    [52]姜继海,于庆涛.二次调节静液传动技术[J].流体传动与控制,2005,11(4):1-5.
    [53]林述温,花海燕.1种挖掘机恒压网络二次调节液压系统及其能耗分析[J].中国工程机械学报,2009,7(1):52-57.
    [54]赵春涛,姜继海,赵克定等.二次调节静液传动技术在城市公交车辆中的应用[J].汽车工程,2001,23(6):423-426.
    [55] H.Wang, Y.Y. Liu, Z. D. Ma. Sub-frame design for a hydraulic hybrid vehiclesystem[J]. Proceedings of the ASME design engineering division,2005,118(1):193-200.
    [56] T.M.Nguyen, M.H.Elahinia. Vibration Isolation for parallel hydraulic hybridvehicles[J]. shock and vibration,2008,15(2):193-204.
    [57] Achten P A J, Fu Zhao.Valving land phenomena of the innas hydraulictransformer[J]. International journal of fluid power,2000,(2):39-47.
    [58] Ma W D, Sento Yayoi, Ikeo Shigeru, et al. A hydraulic cylinder drives usingconstant pressure system[C]. Proceedings of the fith international conference offluid power transmission and control, Hangzhou, China, March,2001:1-4.
    [59] Achten P A J. Fu Zhao, Vale G E M. Transforming future hydraulics a new designof a hydraulic transformer[C]. The fifth Scandinavian international conferenceon fluid power. Sweden: Link ping University,1997.
    [60]欧阳小平,徐兵,杨华勇等.液压变压器在液压电梯系统中的节能应用[J].中国机械工程,2003,14(19):1660-1662.
    [61]张树忠.基于液压式能量回收的挖掘机动臂节能研究[D].成都:西南交通大学,2011.
    [62] Margolis D. Energy Regenerative Actuator for Motion Control with Applicationto Fluid Power Systems[J]. Journal of Dynamic Systems, Measurement, andControl,2005,127(1):33-40.
    [63] Nanjo T, Imanishi E, Kagcahima M. Power simulation for energy saving in hybridexcavator[J]. JSAE Transaction,2004,47(44):101-106.
    [64]王晓霞,王洪祥,潘琪.液压技术中的节能与能量回收[J].机械工程师,1997(7):24-25.
    [65]张维刚,谭彧,朱小林等.液压技术在混合动力汽车节能方面的应用[J].机床与液压,2006(6):144-146.
    [66]广濑久士,丹下昭二.电动车及混合动力车的现状与展望[J].汽车工程,2003,25(2):204-209.
    [67]邓涛. CVT混合动力汽车再生制动系统前向建模与仿真[D].重庆:重庆大学,2007.
    [68]付主木,王斌,高爱云等. HEV再生制动时电池快速充电模糊控制策略[J].东南大学学报(自然科学版),2012,42(3):435-440.
    [69]黄宗益,李兴华,叶伟等.挖掘机工作装置液压操纵回路(一)[J].建筑机械化,2003,24(11):29-31.
    [70]黄宗益,李兴华,叶伟等.挖掘机工作装置液压操纵回路(二)[J].建筑机械化,2003,24(12):19-21.
    [71]韩慧仙.液压挖掘机动臂液压缸再生回路控制[J].液压气动与密封,2008,28(5):48-50.
    [72]许红平.基于液压挖掘机分段功率控制的节能技术[J].浙江工业大学学报,2002,30(4):328-331.
    [73]李武,崔毅,潘国远等.液压挖掘机分工况控制中泵-发动机的匹配[J].建筑机械(上半月),2008(11):101-105.
    [74]刘顺安,王辉,游善兰等.全液压挖掘机分工况转速感应控制[J].中国工程机械学报,2004,2(2):176-179.
    [75]高峰.液压挖掘机节能控制技术的研究[D].浙江:浙江大学,2001.
    [76]尚涛,赵丁选,肖英奎等.液压挖掘机功率匹配节能控制系统[J].吉林大学学报(工学版),2004,34(4):592-596.
    [77]杜雪飞,孙跃.混合电动车及其电气驱动系统[J].重庆大学学报(自然科学版),2002,25(9):59-62.
    [78] Chau K. T, Wong Y. S. Overview of power management in hybrid electricvehicles[J]. Energy Conversion and Management,2002(43):1953-1968.
    [79]王银辉,刘兴华,仇滔等.混合动力电动汽车的研究[J].内燃机,2003(3):27-29,31.
    [80]王伟华,金启前,曾小华等.混合动力汽车动力总成试验台研究[J].中国公路学报,2005,18(2):103-106.
    [81]熊志伟.混合动力城市客车动力系统研究[D].武汉:武汉理工大学,2006.
    [82]沈同全,程夕明,孙逢春等.混合动力汽车的发展趋势[J].农业装备与车辆工程,2006(3):7-10.
    [83] Akihiro K.,Tetsuya A., Shoichi S. Drive force control of a parallel-series hybridsystem[J]. JSAE Review,1999(20):337-341.
    [84]俞明,罗玉涛,黄榕清等.一种混联式电动汽车驱动系统[J].华南理工大学学报(自然科学版),2001,29(8):90-92.
    [85]沈继军,俞明,黄榕清等.一种混联式混合动力驱动系统的性能分析[J].华南理工大学学报(自然科学版),2002,30(6):94-97.
    [86]周磊,罗禹贡,杨殿阁等.混联式混合动力车多能源动力控制系统的开发[J].机械工程学报,2007,43(4):125-131.
    [87]郭海龙,李礼夫.混联式HEV发动机输出转矩实时测算方法[J].农业机械学报,2011,42(10):30-34.
    [88]兼泽佳行,大圣泰弘,河口正,楠本悠也,草鹿仁.挖掘机械通过混合动力系统的高效能化.汽车技术学会学术报告论文集,2001,135:17-20.
    [89] Mastubara M. Hybrid system for construction machine. Japan,20011173024[P].2001-06-02.
    [90] Yamashita K. Flow rate control device in a hydraulic excavator. United States ofAmerica,6202411[P].2001-03-20.
    [91] Maruse M, Oji N. Hybrid type construction machine. Japan,20040111502[P].2004-01-15.
    [92]鹿儿岛昌之,空利雄,小见山昌之.混合动力挖掘机的动力源控制系统的开发.汽车技术学会学术报告论文集,2003,119:1-6.
    [93]菅野直纪,南条孝夫,今西悦二郎,吉松英昭,上岛卫.建筑机械的回转系统开发.汽车技术学会学术报告论文集,2004,284:7-12.
    [94] Tianliang Lin, Qing feng Wang, Baozan Hu, et al. Development of hybrid poweredhydraulic construction machinery[J]. Automation in Construction,2010,19:11-18.
    [95]沈黎.混合动力挖掘机[J].交通世界(建养机械),2009(08):34-37.
    [96]王庆丰,林添良,龚文等.一种混合动力工程机械蓄能器——液压马达能量回收系统.中国,200820167914.7[P].2009-8-26.
    [97]王庆丰,林添良,龚文等.混合动力工程机械执行元件的能量回收系统.中国,200810122075.1[P].2009-4-15.
    [98]张彦廷.基于混合动力与能量回收的液压挖掘机节能研究[D].浙江:浙江大学,2006.
    [99] Dingxuan Zhao, Miao Xu, Peng Liu, et al. Research on hydraulic excavator testbench[J]. Applied Mechanics and Materials,2012,121:3456-3460.
    [100]邢树鑫,林明智,戴群亮等.混合动力挖掘机回转系统设计[J].工程机械,2010,41(12):38-40.
    [101]王冬云,潘双夏,林潇等.并联混合动力挖掘机动力源匹配方法研究[J].浙江大学学报(工学版),2009,43(10):1783-1788.
    [102]刘刚,宋德朝,陈海明等.并联混合动力挖掘机系统建模及控制策略仿真[J].同济大学学报(自然科学版),2010,38(7):1079-1084.
    [103]肖清,王庆丰,张彦廷等.液压挖掘机混合动力系统建模及控制策略研究[J].浙江大学学报(工学版),2007,41(3):480-483,528.
    [104] Margolis M. Energy regenerative systems. ASME Journal of Dynamic actuatorfor motion control with application to fluid power System[J]. Measurement, andControl,2005(127):33-40.
    [105] Nanjo T, Imanishi E, Kagcahima M. Power simulation for energy saving inhybrid excavator[J]. JSAE Transaction,2004,47(44):101-106.
    [107]王庆丰,张彦廷,肖清.混合动力工程机械节能效果评价及液压系统节能的仿真研究[J].机械工程学报,2005,41(12):135-140.
    [107] Lin X, Pan SX, Wang DY. Dynamic simulation and optimal control strategy fora parallel hybrid hydraulic excavator[J]. Journal of Zhejiang University Science,A,2008,9(5):624-632.
    [108]张敏杰,王庆九,管成.并联式油液混合动力挖掘机动力系统仿真研究[J].中国机械工程,2010(21):1932-1935.
    [109] Alexander Riell. PC200-8Hybridbagger: die weltweit erste Baumaschine mitHybridantrieb[J]. Baumaschine-baugerat-baustelle,2010,46(9):32-33.
    [110]小川悦央,Etsuo Ogawa.建設機械の最新排出ガス規制と対応について:最新油圧ショベル技術の紹介-中型油圧ショベルコマツPC200-8シリーズ[J].建設機械,2006,42(7):20-23.
    [111]菊地正己.世界初のハイブリッド油圧ショベル「PC200-8ハイブリッド」発売へ[J].モ-タ-ビクル,2008,58(7):44-45.
    [112] M. Ochiai. Development for environment friendly construction machinery[J].International Construction,2003(9):24-28.
    [113] Hitachi construction machinery Co.Ltd. Dvelopment of battery drivenconstruction machinery for CO2reduction[J]. Technical report for developmentof technical measure for global warming contril,2005.
    [114] Riyuu S, Tamura M, OehiaiM. Hybrid construction machine. Japan,2003328397[P].2003-11-19.
    [115]张彦廷,王庆丰,肖清等.混合动力液压挖掘机液压马达能量回收的仿真及试验[J].机械工程学报,2007,43(8):218-223,228.
    [116]林潇,管成,裴磊等.混合动力液压挖掘机动臂势能回收系统[J].农业机械学报,2009,40(4):96-101,77.
    [117]成凯,张俊,王鹏宇等.混合动力挖掘机回转系统仿真模型的建立与分析[J].建筑机械(上半月),2011(6):81-86.
    [118] S.WILLIAMSON Sheldon, Ali EMADI, Kaushik RAJASHEKARA.Comprehensive efficiency modeling of electric traction motor drives for hybridelectric vehicle Propulsion[J]. IEEE transactions on vehicular technology,2007,56(l):1561-1572.
    [119]张伟,王益群.流体传动及控制技术的评述[J].机械工程学报,2003,39(10):95-99.
    [120]刘海昌.飞轮储能型二次调节流量耦联系统研究[D].哈尔滨:哈尔滨工业大学,2008.
    [121] J. V. Mierlo, G. Maggetto, P. Lataire. Which Energy Saving Source for RoadTransport in the Future A Comparison of Battery, Hybrid and FuelCellVehicles[J]. Energy Conversion and Management.2006,47(17):2748-2760.
    [122] E.D.Mark. The Evaluation and Analysis of a Power Split Hydraulic HybridDrivetrain[D]. Columbia: University of Missouri-Columbia,2003.
    [123] BruunL. Svenskutvecklat energisparsystem Caterpillars gr vmaskiner[J].Scandinavia,2002:6-9.
    [124] Fritz Darlene. Hybrid innovations for hydraulic braking[J]. SAE Off-HighwayEngineering,2008,16(4):41-43.
    [125] WUBIN,LINCHAN-CHIAO,FILIPIZORAN. et al. Optimal Power Managementfor a Hydraulic Hybrid Delivery Truek[J]. Vehicle System Dynamies.2004,42(l):23-40.
    [126] Bruun L. Swedish developed energy saving system in Caterpillars excavators[J].Fluid Scandinavia,2002(2):6-9
    [127]姜继海,于斌,于安才等.基于能量回收再利用的液压挖掘机回转系统节能研究[J].流体传动与控制,2011,49(6):7-10.
    [128]管成,徐晓,林潇等.液压挖掘机回转制动能量回收系统[J].浙江大学学报(工学版),2012,46(1):142-149.
    [129]张树忠,邓斌,柯坚.基于液压变压器的挖掘机动臂势能再生系统[J].中国机械工程,2010,21(10):1161-1166.
    [130] Zimmerman J D, Pelosi M, Williamson C A. Energy Consumption of anLSExcavator Hydraulic System[C].2007ASME International MechanicalEngineering Congress and Exposition. Seattle, USA,2007:1-10.
    [131] Joo-Young Oh, Gyu-Hong Jung, Geun-Ho Lee, et al. Modeling andCharacteristics Analysis of Single-Rod Hydraulic System UsingElectro-Hydrostatic Actuator[J]. International journal of precision engineeringand manufacturing,2012,13(8):1445-1451.
    [132]杨存智,赵继云,郑友江等.基于计算机控制的大惯量变频液压容积调速试验系统的研究[J].液压与气动,2006,(12):14-16.
    [133]施优优.注塑机容积调速系统与节能[J].流体传动与控制,2008,29(4):55-57.
    [134]丛伟,刘宏涛.液压系统容积调速回路特性及其在机床中的应用[J].沈阳航空工业学院学报,2003,20(3):20-23.
    [135]胡东明,徐兵,杨华勇等.变频驱动的闭式回路节能型液压上升/下降系统[J].浙江大学学报(工学版),2008,42(2):209-214.
    [136]董伟亮,罗红霞.液压闭式回路在工程机械行走系统中的应用[J].工程机械,2004,35(5):38-40.
    [137] Van de Ven J D, Olson M W, Li P Y. Development of a Hydro-mechanicalHydraulic Hybrid Drive Train with Independent Wheel Torque Control for anUrban Passenger Vehicle[J]. Proceedings of the National Conference on FluidPower,2008(51):503-514.
    [138]权凌霄,孔祥东,高英杰等.不考虑进口特性的蓄能器吸收冲击理论及试验[J].机械工程学报,2007,43(9):28-32.
    [139]徐兵,黄方平,张斌等.新型节能变频闭式液压抽油机的设计[J].机床与液压,2006(1):72-74,14.
    [140]胡东明,徐兵,杨华勇等.采用闭式油路的变频液压电梯能耗特性分析[J].浙江大学学报(工学版),2007,41(3):475-479.
    [141]雅丽,黄志坚.蓄能器实用技术[M].北京:化学工业出版社,2007.
    [142] Wa1t F1ippo. Accumulators deliver new Payoffs[J]. Machine Design,2008,80(3):46-49.
    [143] Wei Liu, Bing Xu, HuaYong Yang, HongFei Zhao, et al. Dynamiccharacteristics of hydraulic power steering system with accumulator inload-haul-dump vehicle[J]. Journal of Central South University of Technology,2004,11(4),451-456.
    [144]林建杰,徐兵,杨华勇等.蓄能器作为压力油源的液压电梯节能系统研究[J].中国机械工程,2003,14(24):2081-2084.
    [145]张玉龙,王银山,贾同国等.超级电容在混合动力汽车中的应用发展[J].长春工程学院学报:自然科学版,2012,13(1):53-56.
    [146]张探.无刷直流电机的原理及其应用(第二版)(电气自动化新技术丛书)[M].北京:机械工业出版社,2004.
    [147]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2002.
    [148]冯东青,谢宋和等.智能模糊控制[M].北京:化学工业出版社.1998.
    [149]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003.
    [150]赵涛.一种新型混合动力电动汽车的动力系统设计、仿真及电机驱动系统的研究[D].合肥工业大学,2005.
    [151]姜卫东.混合动力电动汽车用无刷直流电机动态性能及控制策略的研究[D].合肥:合肥工业大学,2004.
    [152]曹善华,余涵,冯培恩等.单斗液压挖掘机[M].北京:中国建筑工业出版社,1986.