自体滑膜间充质干细胞—小肠粘膜下层复合物修复兔半月板损伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:以经体外扩增及细胞因子诱导后已进入软骨细胞分化谱系的兔自体滑膜间充质干细胞(SMSCs)为种子,借助猪小肠粘膜下层(SIS)为支架,以SMSCs-SIS复合物的形式回植入兔体内半月板缺损处,探讨以此修复半月板损伤的可行性。方法:通过有限稀释单克隆培养法将兔SMSCs由滑膜组织中分离出来并加以纯化,并进一步在体外培养条件下研究其形态学、超微结构、分子表型、增殖动力学、核型以及致瘤性等基本的生物学特性;在体外用BMP-2、TGF-β3和DEX协同刺激SMSCs后,以RT-PCR检测I、II型胶原及软骨特异性聚集蛋白聚糖(Aggrecan)的mRNA表达,细胞免疫荧光化学染色检测细胞分化过程中I、II型胶原的表达,碱性甲苯胺蓝细胞化学染色检测软骨特异性糖胺聚糖(GAG)的表达,借此判断BMP-2、TGF-β3和DEX是否能够诱导SMSCs进入软骨细胞分化谱系;采用Abraham方法处理SIS,并检测其生物安全性和组织相容性,评价其作为种子细胞支架的可能性;最后将经体外扩增及细胞因子诱导已进入软骨细胞分化谱系的SMSCs种植在SIS支架上,回植入体内,6周、12周后取修复组织块行HE染色,碱性甲苯胺蓝染色,I型、II型胶原与S100蛋白的免疫化学组织染色,探讨以此修复损伤半月板结构和功能的可行性。结果:在体外培养条件下兔SMSCs的增生分裂能力十分活跃,可以通过离体培养使其实现数目的扩增;DNA含量检测、染色体核型分析、荷瘤实验结果表明,SMSCs是正常的二倍体细胞,无致瘤性,可作为半月板组织工程的种子细胞。在体外,SMSCs经BMP-2、TGF-β3和DEX协同诱导后14天,RT-PCR检测到I型、II型胶原及软骨特异性聚集蛋白聚糖(aggrecan)mRNA的表达,细胞免疫荧光化学染色也证实有I型、II型胶原的表达,同时碱性甲苯胺蓝细胞化学染色也证实有软骨细胞特异性胞外基质GAG成分,以上即证明SMSCs已进入软骨细胞分化谱系;本实验制成的SIS经组织切片和扫描电镜的观察表明是一种海绵样结构,其表面及内部均含有丰富的微孔结构,并与SMCSs有良好的组织相容性,可作为SMCSs的支架材料。SMSCs-SIS复合物植入半月板缺损区12周后大体观察原半月板缺损区有半月板样组织生成,HE染色可见纤维软骨样结构,周围胶原纤维结构明显,排列规则;碱性甲苯胺蓝染色可见蓝色异染基质-GAG;I型胶原、II型胶原与S100蛋白的免疫化学组织染色呈强阳性。而胶原对照及空白对照组则仅见纤维组织样的修复组织。结论:利用自体SMSCs经体外扩增及细胞因子刺激后,以SIS为支架,按一定的密度复合预培养后,回植入半月板缺损区的方法,是一种较为可行的修复半月板损伤的方法。为进一步提高这一方法的有效性,还需要在生物材料科学、生物力学和生物化学等方面进行更为深入的研究。
The feasibility study of rabbit meniscus repair was evaluated with the use of rabbit autologous synovial-derived mesenchymal stem cells(SMSCs) and pig’s small intestinal submucosa(SIS). Synovium cell populations were enzymatically released from the synovial tissue and were expanded in monolayer with serial passages at confluence. Cell clones were obtained by limiting dilution. After the synergic stimulation of such cytokines as BMP-2、TGF-β3 and DEX, the SMSCs were detected by RT-PCR and by histo- and immunohisto-chemistry for the expression of chondrocyte-related maker to confirm the pluropotential cell’s entering into the chondrogenic lineage. Subsequently, SIS scaffold was synthesized and SMSCs that had entered into the chondrogenic lineage were added into the porous SIS scaffold. Then, the SMSCs-SIS were implanted in vivo to the menisci-injured rabbit knees as the substitute for the injured meniscus.
     After 6, 12 weeks postoperation, the implants were evaluated by gross observations and by histo- and immunohisto-chemistry. As a result, the SMSCs-enriched SIS implants underwent inflammation, degradation, SMSCs differentiation and remodeling stages in vivo, and consequently formed a meniscus-like fibrocartilage tissue. The collage I, collage II and S-100 protein were expressed at area of the repaired meniscal tissue by immunohistochemistry. The glycosaminoglycan(GAG) was detected by toluidine blue staining. All above proved the repaired meniscal tissue were chondrocyte-like fibrochondrocytes. On the contrast, the results of control group showed that both SIS implants without SMSCs and no substitute had limited regenerating tissue, further evaluations by histological observations showed no evidence of fibrochondrocytes, and hence these regenerated tissue were fibrous rather than fibrocartilagous.
     In conclusion, the inducing of rabbit meniscus repair by autologous SMSCs and porous SIS scaffold is proved to be feasible in this study. However, further studies such as improving biomaterial design, evaluating the biomechanical properties of the regenerated tissue and ensuring clinical safety et al. are necessary to enhance the efficiency of the idea.
引文
1.吴海山,徐青蕾.膝半月板外科与组织工程学重建.上海:第二军医大学出版社. 1999. 7-9.
    2. Andersson-Molina H, Karlsson H, Rockborn P. Arthroscopic partial and total meniscectomy: a long-term follow-up study with matched controls. Arthroscopy, 2002, 18: 183-189.
    3. Bonneux I, Vandekerckhove B. Arthroscopic partial lateral meniscectomy: long-term results in athletes. Acta Orthop Belg, 2002, 68: 356-361.
    4. Chatain F, Robinson AH, Adeleine P, et al. The natural history of the knee following arthroscopic medial meniscectomy. Knee Surg Sports Traumatol Arthrosc, 2001, 9: 15-18.
    5. Cicuttini FM, Forbes A, Yuanyuan W, et al. Rate of knee cartilage loss after partial meniscectomy. J Rheumatol. 2002, 29(9): 1809-1810.
    6. Robertson DD, Armfield DR, Towers JD, et al. Meniscal root injury and spontaneous osteonecrosis of the knee: an observation. J Bone Joint Surg Br, 2009, 91(2): 190-195.
    7. Centeno CJ, Busse D, Kisiday J, et al. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician, 2008, 11(3): 343-353.
    8. van Tienen TG, Heijkants RG, de Groot JH, et al. Presence and mechanism of knee cartilage degeneration after meniscal reconstruction in dogs. Osteoarthritis Cartilage, 2003, 11(1): 78-84.
    9. Englund M. The role of the meniscus in osteoarthritis genesis. Rheum Dis Clin North Am, 2008, 34(3): 573-579.
    10. Wyland DJ, Guilak F, Elliott DM, et al. Chondropathy after meniscal tear or partial meniscectomy in a canine model. J Orthop Res, 2002, 20(5): 996-1002.
    11. Seedhom BB, Hargreaves DJ. Transmission of load in the knee joint with special reference to the role of the menisci, part II: experimental results, discussions, and conclusions. Eng Med Biol, 1979, 8: 220-228.
    12.祝云利,荆鑫,缪志和,等.纤维软骨细胞-胶原复合物修复半月板损伤的实验研究.解放军医学杂志, 2002, 27 (1) : 20-21.
    13. Verbruggen G, Cornelissen M, Almqvist KF, et al. Influence of aging on the synthesis and morphology of the aggrecans synthesized by differentiated human articular chondrocytes. Osteoarthritis Cartilage, 2000, 8(3): 170-179.
    14.陶凌辉,周强,李起鸿.传代培养骨后板软骨细胞作用组织工程种子细胞的生物学研究.中国临床康复, 2003, 7(23) . 3156–3157.
    15. Goto H, Shuler FD, Lamsam C, et a1.Transfer of lacZ marker gene to the meniscus. J Bone Joint Surg Am, 1999, 81(7): 918–925.
    16.杨志明.组织工程[M].北京:化学工业出版社, 2002.
    17.徐青镭,吴海山,周维江.兔骨髓干细胞向软骨细胞分化用于半月板组织工程重建.中国临床康复, 2003, 6: 912-913.
    18. Yamasaki T, Deie M, Shinomiya R, et al. Meniscal regeneration using tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow. J Biomed Mater Res A, 2005, 75(1): 23-30.
    19. Angele P, Johnstone B, Kujat R, et al. Stem cell based tisssue engineering for meniscus repair. J Biomed Mater Res A, 2008, 85(2): 445-455.
    20. De Bari C, Dell’Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum, 2001, 44: 1928-1942.
    21. Djouad F, Bony C, Haupl T, et al. Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther, 2005, 7(6): 1304-1315.
    22. Jo CH, Ahn HJ, Kim HJ, et al. Surface characterization and chondrogenic differentiation of mesenchymal stromal cells derived from synovium. Cytotherapy, 2007, 9(7): 316-327.
    23. Pei M, He F, Boyce BM, et al. Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthritis Cartilage, 2008 Dec 10. [Epub ahead of print] .
    24. Koga H, Muneta T, Ju YJ, et al. Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells, 2007, 25(3): 689-696.
    25. Allman AJ, McPherson TB, Badylak SF, el a1. Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation, 2001, 71(11): 1631-1640.
    26. Sarikaya A, Record R, Wu CC, et a1. Antimicrobial activity associated with extracellular matrices. Tissue Eng, 2002, 8(1): 63-71.
    27. Grimes M, Pembroke JT, McGloughlin T. The effect of choice of sterilisation method on the biocompatibility and biodegradability of SIS (small intestinal submucosa). Biomed Mater Eng, 2005, 15(1-2): 65-71.
    28. Roeder R, Wolfe J, Lianakis N, et al. Compliance, elastic modulus, and burst pressure of small-intestine submucosa (SIS) small-diameter vascular grafts. Boimed Mater Res, 1999, 47: 65-70.
    29. Nihsen ES, Johnson CE, Hiles MC, et a1. Bioactivity of small intestinal submucosa and oxidized regenerated cellulose/collagen. Adv Skin Wound Care, 2008, 21(10): 479-486.
    30. Suckow MA, voytik-Harbin SL, Terril LA, et al. Enhanced bone regeneration using porcine small intestinal submucosa. J Invest Surg, 1999, 12: 277-287.
    31. Cook JL, Tomlinson JL, Arnoczky SP, et al. Kinetic study of the replacement of porcine small intestinal submucosa grafts and the regeneration of meniscal-like tissue in large avascular meniscal defects in dogs. Tissue Eng, 2001, 7(3): 321-334.
    32. Rosen M, Ponsky J, Petras R, et al. Small intestinal submucosa as a bioscaffold for biliary tract regeneration. Surgery, 2002, 132(3): 480-486.
    33. Voytik-Harbin SL, Brightman AO, Kraine MR, et al. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem, 1997: 67(4): 478-491.
    34. Timothy B, Mcpherson, Stephen F. Characterization of fibronectin derived from porcine small intestinal submucosa. Tissue Eng, l998, 4(1): 75-83.
    35. Hodde J, Hiles M. Bioactive FGF-2 in sterilized extracellular matrix. Wounds, 2001, 13(5): 195-201.
    1.吴海山,徐青蕾.膝半月板外科与组织工程学重建.上海:第二军医大学出版社. 1999. 136-137.
    2. Nagase T, Muneta T, Ju YJ, et al. Analysis of the chondrogenic potential of human synovial stem cells according to harvest site and culture parameters in knees with medial compartment osteoarthritis. Arthritis Rheum, 2008, 58(5): 1389-1398.
    3. Pei M, He F, Kish VL, et al. Engineering of functional cartilage tissue using stem cells from synovial lining: a preliminary study. Clin Orthop Relat Res, 2008, 466(8): 1880-1889.
    4. Pei M, He F, Vunjak-Novakovic G. Synovium-derived stem cell-based chondrogenesis. Differentiation, 2008, 76(10): 1044-1956.
    5. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol, 2004, 36(4): 568-584.
    6. De Bari C, Dell’Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum, 2001, 44: 1928-1942.
    7.祝云利,荆鑫,缪志和,等.纤维软骨细胞-胶原复合物修复半月板损伤的实验研究.解放军医学杂志, 2002, 27 (1): 20-21.
    8. Verbruggen G, Cornelissen M, Almqvist KF, et al. Influence of aging on the synthesis and morphology of the aggrecans synthesized by differentiated human articular chondrocytes. Osteoarthritis Cartilage, 2000, 8(3): 170–179.
    9.陶凌辉,周强,李起鸿.传代培养骨后板软骨细胞作用组织工程种子细胞的生物学研究.中国临床康复, 2003, 7(23): 3156-3157.
    10. Goto H, Shuler FD, Lamsam C, et a1.Transfer of lacZ marker gene to the meniscus. J Bone Joint Surg Am, 1999, 81(7): 918-925.
    11.杨志明.组织工程[M].北京:化学工业出版社, 2002.
    12.徐青镭,吴海山,周维江.兔骨髓干细胞向软骨细胞分化用于半月板组织工程重建.中国临床康复, 2003, 6: 912-913.
    13. Yamasaki T, Deie M, Shinomiya R, et al. Meniscal regeneration using tissueengineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow. J Biomed Mater Res A. 2005, 75(1): 23-30.
    14. Angele P, Johnstone B, Kujat R, et al. Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A, 2008, 85(2): 445-455.
    15. Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum, 2005, 52(8): 2521-2529.
    16. Djouad F, Bony C, Haupl T, et al. Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther, 2005, 7(6): 1304-1315.
    17. Jo CH, Ahn HJ, Kim HJ, et al. Surface characterization and chondrogenic differentiation of mesenchymal stromal cells derived from synovium. Cytotherapy, 2007, 9(4): 316-327.
    18. Shintani, Kurth T, Hunziker EB. Expression of cartilage-related genes in bovine synovial tissue. J Orthop Res, 2007, 25(6): 813-819.
    19. Yoshimura H, Muneta T, Nimura A, et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res, 2007, 327(3): 449-462.
    20. Gautier S, Xhauflaire-Uhoda E, Gonry P, et al. Chitin-glucan, a natural cell scaffold for skin moisturization and rejuvenation. Int J Cosmet Sci, 2008, 30(6): 459-469.
    21. FitzGerald O, Bresnihan B. Synovial membrane cellularity and vascularity. Ann Rheum Dis, 1995, 54(6): 511-515.
    22. Nagase T, Muneta T, Ju YJ, et al. Analysis of the chondrogenic potential of human synovial stem cells according to harvest site and culture parameters in knees with medial compartment osteoarthritis. Arthritis Rheum, 2008, 58(5): 1389-1398.
    1. De Bari C, Dell’Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum, 2001, 44, 1928-1942.
    2. Yoshimura H, Muneta T, Nimura A, et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 2007, 327(3): 449-462.
    3. Tateishi K, Ando W, Higuchi C, et al. Comparison of human serum with fetal bovine serum for expansion and differentiation of human synovial MSC: potential feasibility for clinical applications. Cell Transplant, 2008, 17(5): 549-557.
    4. Pei M, He F, Vunjak-Novakovic G. Synovium-derived stem cell-based chondrogenesis. Differentiation, 2008, 76(10): 1044-1156.
    5. Sakaguchi Y, Sekiya I, Yagishita K, et a1. Comparison of human stem cells derived from various mesenchymal issues: Superiority of synovium as a cell source. Arthritis Rheum, 2005, 52(8): 2521-2529.
    6. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003, 113(6): 685-700.
    7. Nagase T, Muneta T, Ju YJ, et a1. Analysis of the chondrogenic potential of human synovial stem cells according to harvest site and culture parameters in knees with medial compartment osteoarthritis. Arthritis Rheum, 2008, 58(5): 1389-1398.
    8. Maniatopiulos C, Sidek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res, 1988, 254: 3l7-330.
    9. Awad HA, Butler DL, Boivin GP, et al. Autologous mesenchymal stem Cells-mesiated repair of tendon. Tissue Eng, 1999, 5(3): 267-277.
    10. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003, 113(6): 685-700.
    11. Wan M, Cao X. BMP signaling in skeletal development. Biochem Biophys Res Commun, 2005, 328(3): 651-657.
    12. Bi W, Huang W, Whitworth DJ, et al. Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc Natl Acad Sci U S A, 2001, 98 (12): 6698-6703.
    13. Tsuchiya H, Kitoh H, Sugiura F, Ishiguro N. Chondrogenesis enhanced by overexpression of sox9 gene in mouse bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun, 2003, 301 (2): 338-343.
    14. Nishimura K, Solchaga LA, Caplan AI, et a1. Chondroprogenitor cells of synovial tissue. Arthritis Rheum, 1999, 42(12), 2631-2637.
    15. Johnstone B, Hering TM, Caplan AI, et a1. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res, 1998, 238(1): 265-272.
    16. Sekiya I, Colter DC, Prockop DJ. BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells. Biochem Biophys Res Commun, 2001, 284(2): 411–418.
    17. Sekiya IL, Larson BL, Vuoristo JT, et a1. Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res, 2005, 320(2): 269-276.
    18. Yokoyama A, Sekiya I, Miyazaki K, et a1. In vitro cartilage formation of composites of synovium-derived mesenchymal stem cells with collagen gel. Cell Tissue Res, 2005, 322(2): 289-298.
    1.吴海山,徐青镭主编.膝半月板外科与组织工程学重建.上海:第二军医大学出版社, 1999年.
    2. Allman AJ, McPherson TB, Badylak SF, el a1. Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation, 2001, 71(11): 1631-1640.
    3. Sarikaya A, Record R, Wu CC, et a1. Antimicrobial activity associated with extracellular matrices. Tissue Eng, 2002, 8(1): 63-71.
    4. Grimes M, Pembroke JT, McGloughlin T. The effect of choice of sterilisation method on the biocompatibility and biodegradability of SIS (small intestinal submucosa). Biomed Mater Eng, 2005, 15(1-2): 65-71.
    5. Roeder R, Wolfe J, Lianakis N, et al. Compliance, elastic modulus, and burst pressure of small-intestine submucosa (SIS) small-diameter vascular grafts. Boimed Mater Res, 1999, 47: 65-70.
    6. Cook JL, Fox DB, Malaviya P, et al. Evaluation of small intestinal submucosa grafts for meniscal regeneration in a clinically relevant posterior meniscectomy model in dogs. J Knee Surg, 2006, 19(3):159-167.
    7.祝云利,荆鑫,缪志和,等.纤维软骨细胞-胶原复合物修复半月板损伤的实验研究.解放军医学杂志, 2002, 27 (1): 20-21.
    8.徐青镭,吴海山,周维江.兔骨髓干细胞向软骨细胞分化用于半月板组织工程重建.中国临床康复, 2003, 6: 912-913.
    9. Kobayashi M, Chang YS, Oka M. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials, 2005, 26: 3243-3248.
    10. Bejjani GK, Zabramski J, Durasis Study Group. Safety and efficacy of the porcine small intestinal submucosa dural substitute: results of a prospective multicenter study and literature review. J Neurosurg, 2007, 106(6): 1028-1033.
    11. Lawrence BJ, Maase EL, Lin HK, et a1. Multilayer composite scaffolds with mechanical properties similar to small intestinal submucosa. J Biomed Mater ResA, 2009, 1, 88(3): 634-643.
    12. Roeder RA, Lantz GC, Geddes LA. Mechanical remodeling of small-intestine submucosa small-diameter vascular grafts-a preliminary report. Biomed Instrum Technol , 2001, 35(2): 110-120.
    13. Hadlock TA, Sundback CA, Huntar DA, et a1. A new artificial nerve graft containing rolled Schwann cell monolayers. Microsurgery, 2001, 21(3): 96-101.
    14. Keskin M, Kelly CP, Moreira-Gonzalez A, et a1. Repairing critical-sized rat calvarial defects with a periosteal cell-seeded small intestinal submucosal layer. Plast Reconstr Surg, 2008, 122(2): 400-409.
    15. Welch JA, Montgomery RD, Lenz SD, et a1. Evaluation of small-intestinal submucosa implants for repair of meniscal defects in dogs. Am J Vet Res, 2002, 63(3): 427-431.
    16. Prilbitkin EA, Ambro BT, Bloeden E, et a1. Rabbit ear cartilage regeneration with a small intestinal submucosa graft. Laryngoscope, 2004, 114(9 Pt 2 Suppl 102):1-19.
    17. Murphy KD, Mushkudiani IA, Kao D, et a1. Successful incorporation of tissue-engineered porcine small-intestinal submucosa as substitute flexor tendon graft is mediated by elevated TGF-beta1 expression in the rabbit. J Hand Surg [Am], 2008, 33(7): 1168-1178.
    18. Derwin K, Androjna C, Spencer E, et a1. Porcine small intestine submucosa as a flexor tendon graft. Clin Orthop Relat Res, 2004, 423: 245-252.
    19. Musahl V, Abramowitch SD, Gilbert TW, et al. The use of porcine small intestinal submucosa to enhance the healing of the medial collateral ligament--a functional tissue engineering study in rabbits. J Orthop Res, 2004, 22(1): 214-220.
    20. Dejardin LM, Arnoczky SP, Ewers BJ, et al. Tissue-engineered rotator cuff tendon using porcine small intestine submucosa: histologic and mechanical evaluation in dogs. The American Journal of Sports Medicine, 200l, 29(2): 175-184.
    21. Aiken SW, Badylak SF, Toombs JP, et al. Small intestinal submucosa as an intra-articular ligamentous graft material: A pilot study in dogs. Vet CompOrthoped Traumatol, 1994, 7: 124-136.
    22. Nihsen ES, Johnson CE, Hiles MC, et a1.Bioactivity of small intestinal submucosa and oxidized regenerated cellulose/collagen. Adv Skin Wound Care, 2008, 21(10): 479-486.
    23. Suckow MA, voytik-Harbin SL, Terril LA, et al. Enhanced bone regeneration using porcine small intestinal submucosa. J Invest Surg, 1999, 12: 277-287.
    24. Cook JL, Tomlinson JL, Arnoczky SP, et al. Kinetic study of the replacement of porcine small intestinal submucosa grafts and the regeneration of meniscal-like tissue in large avascular meniscal defects in dogs. Tissue Eng, 2001, 7(3): 321-334.
    25. Rosen M, Ponsky J, Petras R, et al. Small intestinal submucosa as a bioscaffold for biliary tract regeneration. Surgery, 2002, 132(3): 480-486.
    26. Record RD, Hillegonds D, Simmons C, et a1. In vivo degradation of 14C-labeled small intestinal submucosa(SIS) when used for urinary bladder repair. Biomaterials, 2001, 22(19): 2653-2659.
    27. Hodde JP, Record RD, Liang HA, et a1. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium, 2001, 8(1): 11-24.
    28. Voytik-Harbin SL, Brightman AO, Kraine MR, et al. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem, 1997: 67(4): 478-491.
    29. Timothy B, Mcpherson, Stephen F. Characterization of fibronectin derived from porcine small intestinal submucosa. Tissue Eng, l998, 4(1): 75-83.
    30. Hodde J, Hiles M. Bioactive FGF-2 in sterilized extracellular matrix. Wounds, 2001, 13(5): 195-201.
    31. Abraham GA, Murray J, Billiar K, et al. Evaluation of the porcine intestinal collagen layer as a biomaterial. J Biomed Mater Res, 2000, 51(3): 442-452.
    1.吴海山,徐青蕾.膝半月板外科与组织工程学重建.上海:第二军医大学出版社. 1999. 7-9.
    2. Andersson-Molina H, Karlsson H, Rockborn P. Arthroscopic partial and total meniscectomy: a long-term follow-up study with matched controls. Arthroscopy. 2002, 18: 183-189.
    3. Bonneux I, Vandekerckhove B. Arthroscopic partial lateral meniscectomy: long-term results in athletes. Acta Orthop Belg, 2002, 68: 356-361.
    4. Chatain F, Robinson AH, Adeleine P, et al. The natural history of the knee following arthroscopic medial meniscectomy. Knee Surg Sports Traumatol Arthrosc. 2001, 9: 15-18.
    5. Cicuttini FM, Forbes A, Yuanyuan W, et al. Rate of knee cartilage loss after partial meniscectomy. J Rheumatol. 2002, 29, 1809-1810.
    6. Robertson DD, Armfield DR, Towers JD, et al. Meniscal root injury and spontaneous osteonecrosis of the knee: an observation. J Bone Joint Surg Br, 2009, 91(2):190-195
    7. Centeno CJ, Busse D, Kisiday J, et al. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician, 2008, 11(3): 343-353.
    8. van Tienen TG, Heijkants RG, de Groot JH, et al. Presence and mechanism of knee cartilage degeneration after meniscal reconstruction in dogs. Osteoarthritis Cartilage. 2003, 11(1): 78-84.
    9. Englund M. The role of the meniscus in osteoarthritis genesis. Rheum Dis Clin North Am. 2008, 34(3): 573-579.
    10. Wyland DJ, Guilak F, Elliott DM, et al. Chondropathy after meniscal tear or partial meniscectomy in a canine model. J Orthop Res, 2002, 20(5): 996-1002.
    11. Seedhom BB, Hargreaves DJ. Transmission of load in the knee joint with special reference to the role of the menisci, part II: experimental results, discussions, and conclusions. Eng Med Biol, 1979, 8: 220-228.
    12.徐青镭,吴海山,周维江.兔半月板纤维软骨组织缺损的体外修复实验.第二军医大学学报, 1998, 19(6): 545-547.
    13.付捷,周维江,吴海山.纤维蛋白凝块修复兔半月板缺损.解放军医学杂志, 1997, 22(Suppl): 5-7.
    14.祝云利,荆鑫,缪志和,等.纤维软骨细胞-胶原复合物修复半月板损伤的实验研究.解放军医学杂志, 2002, 27 (1): 20-21.
    15.陶凌辉,周强,李起鸿.传代培养骨后板软骨细胞作用组织工程种子细胞的生物学研究.中国临床康复, 2003, 7(23): 3156-3157.
    16. Yoshimura H, Muneta T, Nimura A, et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res, 2007, 327(3): 449-462.
    17.徐青镭,吴海山,周维江,等.胶原与骨髓干细胞重建兔半月板的组织工程研究.中华骨科杂志, 2002, 22(2): 113-117.
    18. De Bari C, Dell'Accio F, Tylzanowski P, et a1. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum, 2001, 44(8): 1928-1942.
    19. Djouad F, Bony C, Haupl T, et al. Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther, 2005, 7(6): 1304-1315.
    20. Jo CH, Ahn HJ, Kim HJ, et al. Surface characterization and chondrogenic differentiation of mesenchymal stromal cells derived from synovium. Cytotherapy, 2007, 9(7): 316-327.
    21. Archer CW, Dowthwaite GP, Francis-West P. Development of synovial joints. Birth Defects Res C Embryo Today, 2003, 69(2): 144-155.
    22. Theoret CL, Barber SM, Moyana T, et al. Repair and function of synovium after arthroscopic synovectomy of the dorsal compartment of the equine antebrachiocarpal joint. Vet Surg, 1996, 25(2): 142-153.
    23. Hunziker EB, Rosenberg LC. Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am, 1996, 78(5): 721-733.
    24. Crone MH, Watt I. Synovial chondromatosis. J Bone Joint Surg Br, 1988, 70B: 807.
    25. Iwata H, Ono S, Sato K, et al. Bone morphogenetic protein-induced muscle- and synovium-derived cartilage differentiation in vitro. Clin Orthop Relat Res, 1993, 296: 295-300
    26. Allard SA, Maini RN, Muirden KD. Cells and matrix expressing cartilage components in fibroblastic tissue in rheumatoid pannus. Scand J Rheumatol, 1988, 76: 125-129.
    27. Segawa Y, Muneta T, Makino H, et al. Mesenchymal stem cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes share similar gene expression profiles. J Orthop Res, 2008 Oct 30. [Epub ahead of print]
    28. Shintani, Kurth T, Hunziker EB. Expression of cartilage-related genes in bovine synovial tissue. J Orthop Res, 2007, 25: 813-819.
    29. Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissue: superiority of synovium as a cell source. Arthritis Rheum, 2005, 52(8): 2521-2529.
    30. Pei M, He F, Boyce BM, et al. Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthritis Cartilage. 2008 Dec 10. [Epub ahead of print] .
    31. Koga H, Muneta T, Ju YJ, et al. Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells. 2007, 25(3): 689-696.
    32. Gautier S, Xhauflaire-Uhoda E, Gonry P,et al. Chitin-glucan, a natural cell scaffold for skin moisturization and rejuvenation. Int J Cosmet Sci, 2008, 30(6): 459-469.
    33. Allman AJ, McPherson TB, Badylak SF, el a1. Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation, 2001, 71(11): 1631-1640.
    34. Sarikaya A, Record R, Wu CC, et a1. Antimicrobial activity associated withextracellular matrices. Tissue Eng, 2002, 8(1): 63-71.
    35. Grimes M, Pembroke JT, McGloughlin T. The effect of choice of sterilisation method on the biocompatibility and biodegradability of SIS (small intestinal submucosa). Biomed Mater Eng, 2005, 15(1-2): 65-71.
    36. Roeder R, Wolfe J, Lianakis N, et al. Compliance, elastic modulus, and burst pressure of small-intestine submucosa (SIS) small-diameter vascular grafts. Boimed Mater Res, 1999, 47: 65-70.
    37. Nihsen ES, Johnson CE, Hiles MC, et a1.Bioactivity of small intestinal submucosa and oxidized regenerated cellulose/collagen. Adv Skin Wound Care, 2008, 21(10): 479-486.
    38. Suckow MA, voytik-Harbin SL, Terril LA, et al. Enhanced bone regeneration using porcine small intestinal submucosa. J Invest Surg, 1999, 12: 277-287.
    39. Cook JL, Tomlinson JL, Arnoczky SP, et al. Kinetic study of the replacement of porcine small intestinal submucosa grafts and the regeneration of meniscal-like tissue in large avascular meniscal defects in dogs. Tissue Eng, 2001, 7(3): 321-334.
    40. Rosen M, Ponsky J, Petras R, et al. Small intestinal submucosa as a bioscaffold for biliary tract regeneration. Surgery, 2002, 132(3): 480-486.
    41. Abraham GA, Murray J, Billiar K, et al. Evaluation of the porcine intestinal collagen layer as a biomaterial. J Biomed Mater Res, 2000, 51(3): 442-452.
    42. Sittinger M. Tissue engineering and autologous transplant formation: practical approaches with resorbable biomaterials and new cell culture techniques. Biomaterials, 1996, 17: 237-242.
    43. Heizmann CW, Ackermann GE, Galichet A. Pathologies involving the S100 proteins and RAGE. Subcell Biochem. 2007, 45: 93-138.
    44. Donato R. RAGE: a single receptor for several ligands and different cellular responses: the case of certain S100 proteins. Curr Mol Med, 2007, 7(8): 711-724.
    45. Weiss AP, Dorfman HD. S-100 protein in human cartilage lesions. J Bone Joint Surg Am, 1986, 68(4): 521-526.
    46. Schnabel M, Marlovits S, Eckhoff G, et al. Dedifferentiation-associated changesin morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage, 2002, 10(1): 62-70.
    47. Wachsmuth L, S?der S, Fan Z, et al. Immunolocalization of matrix proteins in different human cartilage subtypes. Histol Histopathol, 2006, 21(5): 477-485.
    48. Port J, Jackson DW, Lee TQ, et al. Meniscal repair supplemented with exogenous fibrin clot and autogenous cultured marrow cells in the goat model. Am J Sports Med, 1996, 24: 547-555.
    49. Angele P, Johnstone B, Kujat R, et al. Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A, 2008, 85(2): 445-455.
    50. Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem, 1994, 56: 283-294.
    1. Higuchi H, Kimura M, Shirakura K, et al. Factors affecting long term results after arthroscopic partial meniscectomy. Clin Orthop Relat Res, 2000, 377: 161–168.
    2. McCarty EC, Marx RG, DeHaven KE. Meniscus repair: considerations in treatment and update of clinical results. Clin Orthop Relat Res. 2002, 402: 122–134.
    3. Rath E, Richmond JC, Yassir W, et al. Meniscal allograft transplantation. Two- to eight-year results. Am J Sports Med, 2001, 29: 410–414.
    4. Cheung HS. Distribution of type I, II, III and V in the pepsin solubilized collagens in bovine menisci. Connect Tissue Res, 1987, 16: 343–356.
    5. Wood DJ, Minns RJ, Strover A. Replacement of the rabbit medial meniscus with a polyester-carbon fibre bioprosthesis. Biomaterials, 1990, 11: 13–16.
    6. Tienen TG, Heijkants RG, de Groot JH, et al. Replacement of the knee meniscus by a porous polymer implant: a study in dogs. Am J Sports Med, 2006, 34: 64–71.
    7. Klompmaker J, Jansen HW, Veth RP, et al. Porous implants for knee joint meniscus reconstruction: a preliminary study on the role of pore sizes in ingrowth and differentiation of fibrocartilage. Clin Mater, 1993, 14: 1–11.
    8. Klompmaker J, Veth RP, Jansen HW, et al. Meniscal replacement using a porous polymer prosthesis: a preliminary study in the dog. Biomaterials, 1996, 17: 1169–1175.
    9. Kobayashi M. A study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus in vivo. Biomed Mater Eng, 2004, 14: 505–515.
    10. Testa Pezzin AP, Cardoso TP, do Carmo Alberto Rincon M, et al. Bioreabsorbable polymer scaffold as temporary meniscal prosthesis. Artif Organs, 2003, 27: 428–431.
    11. Hashimoto J, Kurosaka M, Yoshiya S, et al. Meniscal repair using fibrin sealant and endothelial cell growth factor. An experimental study in dogs. Am J Sports Med, 1992, 20: 537–541.
    12. Cook JL, Tomlinson JL, Kreeger JM, et al. Induction of meniscal regeneration indogs using a novel biomaterial. Am J Sports Med, 1999, 27: 658–665.
    13. Stone KR, Rodkey WG, Webber R, et al. Meniscal regeneration with copolymeric collagen scaffolds. In vitro and in vivo studies evaluated clinically, histologically, and biochemically. Am J Sports Med, 1992, 20: 104–111.
    14. Steadman JR, Rodkey WG. Tissue-engineered collagen meniscus implants: 5- to 6-year feasibility study results. Arthroscopy, 2005, 21: 515–525.
    15. Martinek V, Ueblacker P, Braun K, et al. Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg, 2005, 126: 1–7.
    16. Peretti GM, Gill TJ, Xu JW, et al. Cell-based therapy for meniscal repair: a large animal study. Am J Sports Med, 2004, 32: 146-158.
    17. Ibarra C, Jannetta C, Vacanti CA, et al. Tissue engineered meniscus:a potential new alternative to allogeneic meniscus transplantation.Transplant Proc, 1997, 29: 986–988.
    18. Aufderheide AC, Athanasiou KA. Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus. Tissue Eng, 2005, 11: 1095–1104.
    19. Verbruggen G, Cornelissen M, Almqvist KF, et al. Influence of aging on the synthesis and morphology of the aggrecans synthesized by differentiated human articular chondrocytes. Osteoarthritis Cartilage, 2000, 8: 170–179.
    20. Benjamin M, Tyers RN, Ralphs JR. Age-related changes in tendon fibrocartilage. J Anat, 1991, 179: 127–136.
    21. Van Osch GJ, Mandl EW, Jahr H, et al. Considerations on the use of ear chondrocytes as donor chondrocytes for cartilage tissue engineering. Biorheology, 2004, 41: 411–421.
    22. Pang Y, Cui P, Chen W, et al. Quantitative study of tissueengineered cartilage with human bone marrow mesenchymal stem cells. Arch Facial Plast Surg, 2005, 7: 7–11.
    23. Barbero A, Grogan S, Schafer D, et al. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthritis Cartilage, 2004, 12: 476–484.
    24. Roughley PJ, McNicol D, Santer V, et al. The presence of a cartilage-like roteoglycan in the adult human meniscus. Biochem J, 1981, 197: 77–83.
    25. Vanderploeg EJ, Imler SM, Brodkin KR, et al. Oscillatory tension differentially modulates matrix metabolism and cytoskeletal organization in chondrocytes and fibrochondrocytes. J Biomech, 2004, 37: 1941–1952.
    26. Xu JW, Zaporojan V, Peretti GM, et al. Injectable tissue-engineered cartilage with different chondrocyte sources. Plast Reconstr Surg, 2004, 113: 1361–1371.
    27. Ikeda T, Kamekura S, Mabuchi A, et al. The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis Rheum, 2004, 50: 3561–3573.
    28. French MM, Rose S, Canseco J, et al. Chondrogenic differentiation of adult dermal fibroblasts. Ann Biomed Eng, 2004, 32: 50–56.
    29. Sekiya I, Vuoristo JT, Larson BL, et al. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U S A, 2002, 99: 4397–4402.
    30. Kawamura K, Chu CR, Sobajima S, et al. Adenoviral-mediated transfer of TGF-beta1 but not IGF-1 induces chondrogenic differentiation of human mesenchymal stem cells in pellet cultures. Exp Hematol, 2005, 33: 865–872.
    31. Yoo JU, Barthel TS, Nishimura K, et al. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am, 1998, 80: 1745–1757.
    32. Worster AA, Brower-Toland BD, Fortier LA, et al. Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J Orthop Res, 2001, 19: 738–749.
    33. Majumdar MK, Banks V, Peluso DP, et al. Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol, 2000, 185: 98–106.
    34. De Bari C, Dell’Accio F, Luyten FP. Human periosteum-derived cells maintainphenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum, 2001, 44: 85–95.
    35. Nishimura K, Solchaga LA, Caplan AI, et al. Chondroprogenitor cells of synovial tissue. Arthritis Rheum, 1999, 42: 2631–2637.
    36. Park Y, Sugimoto M, Watrin A, et al. BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthritis Cartilage, 2005, 13: 527–536.
    37. Awad HA, Halvorsen YD, Gimble JM, et al. Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng, 2003, 9: 1301–1312.
    38. Leddy HA, Awad HA, Guilak F. Molecular diffusion in tissueengineered cartilage constructs: effects of scaffold material, time, and culture conditions. J Biomed Mater Res B Appl Biomater, 2004, 70B: 397–406.
    39. Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum, 2005, 52: 2521–2529.
    40. Kramer J, Hegert C, Rohwedel J. In vitro differentiation of mouse ES cells: bone and cartilage. Methods Enzymol, 2003, 365: 251–268.
    41. Hegert C, Kramer J, Hargus G, et al. Differentiation plasticity of chondrocytes derived from mouse embryonic stem cells. J Cell Sci, 2002, 115: 4617–4628.
    42. zur Nieden NI, Kempka G, Rancourt DE, et al. Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol, 2005, 5: 1.
    43. Webber RJ, Hough AJ Jr. Cell culture of rabbit meniscal fibrochondrocytes II. Sulfated proteoglycan synthesis. Biochimie, 1988, 70: 193-204.
    44. Nakata K, Shino K, Hamada M, et al. Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin Orthop Relat Res, 2001, 391(Suppl 391): S208–S218.
    45. Lietman SA, Hobbs W, Inoue N, et al. Effects of selected growth factors onporcine meniscus in chemically defined medium. Orthopedics, 2003, 26: 799–803.
    46. Imler SM, Doshi AN, Levenston ME. Combined effects of growth factors and static mechanical compression on meniscus explant biosynthesis. Osteoarthritis Cartilage, 2004, 12: 736–744.
    47. Pangborn CA, Athanasiou KA. Effects of growth factors on meniscal fibrochondrocytes. Tissue Eng, 2005, 11: 1141–1148.
    48. Pangborn CA, Athanasiou KA. Growth factors and fibrochondrocytes in scaffolds. J Orthop Res, 2005, 23: 1184–1190.
    49. Darling EM, Athanasiou KA. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res, 2005, 23: 425–432.
    50. Schnabel M, Marlovits S, Eckhoff G, et al. Dedifferentiationassociated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage, 2002, 10: 62–70.
    51. Isoda K, Saito S. In vitro and in vivo fibrochondrocyte growth behavior in fibrin gel: an immunohistochemical study in the rabbit. Am J Knee Surg, 1998, 11: 209–216.
    52. Tanaka T, Fujii K, Kumagae Y. Comparison of biochemical characteristics of cultured fibrochondrocytes isolated from the inner and outer regions of human meniscus. Knee Surg Sports Traumatol Arthrosc, 1999, 7: 75–80.
    53. Mueller SM, Schneider TO, Shortkroff S, et al. Alpha-smooth muscle actin and contractile behavior of bovine meniscus cells seeded in type I and type II collagen-GAG matrices. J Biomed Mater Res. 1999, 45: 157–166.
    54. Mueller SM, Shortkroff S, Schneider TO, et al. Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro. Biomaterials, 1999, 20: 701–709.
    55. Araujo VG, Figueiredo CA, Joazeiro PP, et al. In vitro rapid organization of rabbit meniscus fibrochondrocytes into chondro-like tissue structures. J Submicrosc Cytol Pathol, 2002, 34: 335–343.
    56. Verdonk PC, Forsyth RG, Wang J, et al. Characterisation of human knee meniscus cell phenotype. Osteoarthritis Cartilage, 2005, 13: 548–560.
    57. Mikic B, Johnson TL, Chhabra AB, et al. Differential effects of embryonic immobilization on the development of fibrocartilaginous skeletal elements. J Rehabil Res Dev, 2000, 7: 127–133.
    58. Ochi M, Kanda T, Sumen Y, et al. Changes in the permeability and histologic findings of rabbit menisci after immobilization. Clin Orthop Relat Res, 1997, 334: 305–315.
    59. Salter DM, Robb JE, Wright MO. Electrophysiological responses of human bone cells to mechanical stimulation: evidence for specific integrin function in mechanotransduction. J Bone Miner Res, 1997, 12(7): 1133-1141.
    60. Durrant LA, Archer CW, Benjamin M, et al. Organisation of the chondrocyte cytoskeleton and its response to changing mechanical conditions in organ culture. J Anat1999, 194 ( Pt 3): 343-353.
    61. Sakao K, Takahashi KA, Arai Y, et al. Induction of chondrogenic phenotype in synovium-derived progenitor cells by intermittent hydrostatic pressure. Osteoarthritis Cartilage, 2008, 16(7): 805-814.