转染bFGF的骨髓间充质干细胞复合SIS构建组织工程皮肤治疗兔2型糖尿病早期皮肤缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:1.改良兔2型糖尿病模型的构建方法并建立兔2型糖尿病早期皮肤缺损模型,观察阻碍兔2型糖尿病早期皮肤缺损愈合的相关因素;2.将碱性成纤维细胞生长因子基因以基因转染的方法转染至骨髓间充质干细胞,并复合猪小肠黏膜下层构建组织工程皮肤;3.将组织工程皮肤移植修复兔2型糖尿病早期皮肤缺损,观察组织工程皮肤对2型糖尿病早期皮肤缺损的疗效。
     方法:本研究分为三个部分:
     第一部分,兔2型糖尿病模型早期皮肤缺损愈合相关因素的研究:1、全身状况:通过高糖高脂饲料2月+链脲菌素耳缘静脉注射改良诱导兔2型糖尿病模型,并定期监测血糖、血脂、胰岛素水平的变化情况;2、局部观察:在兔2型糖尿病模型的基础上制作糖尿病早期皮肤缺损模型,与正常皮肤缺损对比其在造模后3天、1周、2周、4周缺损皮肤修复的情况,包括周围有无炎症、瘢痕面积的大小及形状、修复后皮肤的物理特性、颜色,并比较修复面积;取缺损皮肤行HE染色,观察空白组及糖尿病皮肤缺损组各时相点表皮及真皮组织组织修复情况、炎症反应、肉芽组织生长情况;在HE染色的基础上,进行免疫组化检测,对比2型糖尿病早期皮肤缺损与正常皮肤缺损创面PCNA、MMP9、CD8及胶原纤维的表达。
     第二部分:转染碱性成纤维细胞生长因子骨髓间充质干细胞复合小肠黏膜下层构建的组织工程皮肤的实验研究:日本大耳兔骨髓间充质干细胞进行体外培养扩增后,通过pCDNA3.1质粒将碱性成纤维细胞生长因子基因转染至生长状态良好的骨髓间充质干细胞,并将转染后的细胞接种子制备好的猪小肠黏膜下层上,进行体外联合培养,构建组织工程皮肤。观察细胞生长情况,流式细胞术检测骨髓间充质干细胞表型,WesternBlot和免疫荧光检测pCDNA-bFGF真核表达载体转染兔骨髓间充质干细胞的结果,并通过光镜和电镜观察组织工程皮肤的结构。
     第三部分:组织工程皮肤治疗兔2型糖尿病早期皮肤缺损的实验研究:构建好的组织工程皮肤移植修复2型糖尿病早期皮肤缺损,并设空白支架对照组,于术后3天、1周、2周、4周取材,进行大体观察和HE染色观察各时相点组织修复情况、炎症反应、肉芽组织生长情况,并行免疫组化染色观察创面PCNA、MMP9、CD8及胶原纤维的阳性表达。
     采用SPSS13.5统计软件进行数据录入和统计处理,采用方差分析、卡方检验(X2检验)进行统计学分析。
     结果:
     第一部分高糖高脂饲料2月+链脲菌素改良诱导兔2型糖尿病成模率为70%,不成模的原因主要为因腹膜炎及反应性低血糖导致的死亡(约占不成模率20%)和因胰腺自愈能力较强而致的早期复原(约占不成模率10%)。皮肤缺损愈合模型大体观察结果:各时间点位中,空白对照修复皮肤缺损的时间明显快于糖尿病早期皮肤缺损,创面面积小于糖尿病早期皮肤缺损,两组比较有统计学意义(P<0.05)。HE染色提示:2型糖尿病早期皮肤缺损愈合过程中肉芽组织出现时间较晚,肉芽组织形成较正常组少,成熟晚,肉芽组织内血管新生不活跃,炎症反应持续时间长,在愈合的晚期仍可出现较为严重的炎性反应,有微坏死灶形成。免疫组化染色提示:糖尿病情况下PCNA在创伤后2周到4周其表达水平与正常组相近,差异不明显,在造模后3天及1周,2型糖尿病皮肤缺损的PCNA表达明显低于空白对照组;CD8表达在伤后3天、1周均高于空白对照组,在2周时较正常2周为低,4周时检测发现高表达;MMP9表达在糖尿病组中各时间点位表达均高于空白对照组;Van Geisen染色空白组颜色在各时相点均较糖尿病组深。
     第二部分传代后骨髓间充质干细胞生长迅速,呈长梭形,形态良好。细胞的表面抗原CD90、CD44有阳性表达,而CD45为阴性。构建了碱性成纤维细胞生长因子基因和pCDNA-bFGF真核表达载体,将载体转染入兔骨髓基质干细胞通过检测证明能稳定表达,转染后的骨髓间充质干细胞在猪小肠黏膜下层中生长良好,可体外构建组织工程皮肤。
     第三部分大体观察和HE染色提示:术后3天组织工程皮肤移植组和空白支架对照组修复面积未见明显统计学差异;术后1周,组织工程皮肤移植组修复面积较空白支架对照组高;2周:组织工程皮肤组修复快于空白支架组,组织工程皮肤移植组修复面积较空白支架对照组高;在术后4周,组织工程皮肤移植组修复面积仍较空白支架对照组略高。免疫组化染色提示:组织工程皮肤移植组和空白支架对照组CD8分子表达水平均不高,两组间无统计学差异;PCNA表达在组织工程皮肤移植组术后3天、1周、2周均高于空白对照组,在术后4周时,组织工程批租移植组的PCNA水平要低于空白支架对照组:MMP9的表达水平在创伤后3天和1周时空白支架组与组织工程皮肤移植组之间相比未见明显差异,但在2周及4周时差异明显;Van Geisen染色组织工程皮肤移植组颜色在各时相点均较空白支架对照组深,HCK染色在组织工程皮肤移植组4周为阳性。
     结论:
     第一部分:1、高糖高脂饮食加STZ小剂量注射可成功构建2型糖尿病动物模型,成模率高,稳定。单纯高糖高脂饮食是无法诱导出2型糖尿病的。2、2型糖尿病兔早期即可皮肤缺损愈合能力差,出现愈合慢甚至不愈合。3、2型糖尿病早期皮肤缺损愈合过程中,其肉芽组织出现时间较晚,成熟晚,肉芽组织明显少于正常情况;组织增殖和修复能力是滞后、紊乱的;局部免疫功能是异常的,过度的,紊乱的;细胞外基质过度分解,其中炎性反应重,且炎性反应紊乱,持续时间长可能造成是糖尿病皮肤缺损难愈的主要原因。
     第二部分:1、本实验体外扩增培养骨髓间充质干细胞,并经检测加以证实,可作为组织工程的种子细胞;2、本实验于体外克隆了碱性成纤维细胞生长因子基因,构建了pCDNA-bFGF真核表达载体,并将pCDNA-bFGF真核表达载体转染至骨髓间充质干细胞,经检测可持续的表达;3、将转染了bFGF的骨髓间充质干细胞与猪小肠粘膜下层支架复合培养构建了组织工程皮肤。
     第三部分:1、BMSCs在体内的微环境下可分化为表皮样细胞;2、构建的组织工程皮肤可明显的改善2型糖尿病早期皮肤缺损创面的愈合情况,是治疗糖尿病皮肤缺损的有效方法;3、组织工程皮肤由于bFGF有效存在而具有更好修复作用
Objective:
     1. To establish the rabbit type 2 diabetes mellitus models and the skin defect model with type 2 diabetes mellitus, then some data of histology and immunohistochemistry was detected to approach the factors related to the skin healing with type 2 diabetes mellitus.
     2. Basic fibroblast growth factor (bFGF) gene was transfected into bone marrow mesenchymal stem cells (BMSCs), and combined the cells with SIS to construct tissue-engineered skin.
     3. The tissue-engineered skin was transplanted to heal the skin defect with type 2 diabetes mellitus, then the effect of the tissue-engineered skin was observed.
     Methods:
     The hole experiment was devided into 3 parts:
     Part one: The study of healing factors of skin defect with type 2 diabetes. The rabbit type 2 diabetes mellitus models was induced by 2 month feeding with high glucose and grease and streptozocin injection. The blood sugar, blood fat and insulin was detected at the times of 2 month feeding, 2 weeks , 4 weeks, and 8 weeks after the injection. Then the skin defect was estabolished based on the type 2 diabetes model, and the defect skin healing was compared at the 3 days, 1 week, 2 weeks, 4 weeks with control group, included the inflammation, area of healing and crust. Also the HE stain and immunohistochemistry stain was taken to compared the expression of PCNA, CD8, MMP9 and collagen fibers.
     Part two: Construction of tissue-engineered skin using basic fibroblast growth factor gene transfected bone marrow mesenchymal stem cells combined with small intestinal submucosa. BMSCs were obtained from Japanese big-eared rabbits, and in vitro cultured. Then the subcultured BMSCs were transfected by pCDNA3.1 plasmid, followed by incubation on swine SIS to construct the tissue-engineered skin. The growth of cells and phenotype of BMSCs were detected by flow cytometry. In addition, the result of transfecting BMSCs with pCDNA-bFGF vector was measured by Western blot, and the structure of tissue-engineered skin was observed.
     Part three: The tissue-engineered skin constructed in part 2 was transplanted to the skin defect with type 2 diabetes, and the control group was also set up. Then the defect skin healing was compared at the 3 days, 1 week, 2 weeks, 4 weeks with control group, included the inflammation, area of healing and crust. Also the HE stain and immunohistochemistry stain was taken to compared the expression of PCNA, CD8, MMP9 and collagen fibers.
     Results:
     Part one: The rate of models of type 2 diabetes mellitus induced by 2 month feeding with high glucose and grease and streptozocin injection was 70%. In the models of skin healing, the healing of control group was faster than the DM group, as same as the area of healing(P<0.05). HE stain suggested: the emergence time of granulation tissue was later and less. The neogenesis of vessels in granulation tissue was not active. The during of Inflammatory reaction was longer, and severe Inflammatory reaction and necrosis could be deteced in advanced stage. The immunohistochemistry stain showed: the expression of PCNA in DM group was higher than control group at 3 days and 1 week after surgery(P<0.05), but at 2 and 4 weeks there were no Significant difference between the 2 groups; the expression of CD8 in DM group was higher at 3days, 1 week and 4 weeks, but lower at 2 weeks(P<0.05); the expression of MMP9 in DM group was higher at all time, as some as the Van Geisen stain.
     Part two: After passaged, BMSCs were grown quickly with long-fusiform shape. The cells were positive expressed CD90 and CD44, but negative expressed CD45. bFGF had been transfected into BMSCs, and stable expressed. The transfected BMSCs grew well in SIS.
     Part three: The macroscopy and HE stain showed: there were no significant difference between the tissue-engineered skin group and control group at the 3 days, but showed the significant difference between two groups at 1,2 and 4 weeks(P<0.05). The immunohistochemistry stain suggested: the expression of PCNA in tissue-engineered skin group was higher than control group at 3 days, 1 and 2 weeks, but lower at 4 weeks(P<0.05); there were no significant difference between the two groups in the expression of CD8; there were no significant difference between the two groups in the expression of MMP9 at 3 days and 1 weeks, but significant difference at 2 and 4 weeks(P<0.05); the color were more obvious in tissue-engineered skin group by Van Geisen stain at all time; the HCK stain werepositive at 4 weeks.
     Conclusion:
     Part one: 1. The rabbit type 2 diabetes mellitus model could be induced by 2 monthfeeding with high glucose and grease and streptozocin injection. 2. The capability ofskin healing in diabetes mellitus was poor, the slow union and disunion occurrence. 3. Theemergence time of granulation tissue was later and less; the neogenesis of vessels in granulationtissue was not active; the capability of hyperblastosis and repairing was hysteresis and disorder;the ECM disintegration was excess and local immunity was abnormal, excess and disorder; andthe main reason of poor capability in skin healing with DM might be the severe and long duringinflammatory disorder.
     Part two: 1. BMSCs were grown quickly with long-fusiform shape. 2. bFGF had been transfectedinto BMSCs, and stable expressed. 3. The transfected BMSCs grew well in SIS, andtissue-engineered skin was constructed successfully.
     Part three: 1. The BMSCs could differentiate into epidermis cells.2. The tissue-engineeredskin could improve the skin healing in DM. 3. The better repairing could be obtained as bFGF.
引文
1.Wild S,Roglic G,Green A,Cicree R,King H.Global prevalence of diabetes:estimatesfor the year 2000 and projections for 2030.Diabetes Care 2004;27:1047-53.
    2.楚同彬,贾树华,姜潮.糖尿病足坏疽截肢患者的社会心理及生活质量的研究现状[J].中国临床康复,2004,8(17):3342-4
    3.林炜栋,陆树良,青春,等.糖尿病难愈创面与晚期糖基化终末产物的关系[J].中国临床康复,2003,6(18):370
    4.孙昱,杨海山,柳林.链脲佐菌素与四氧嘧啶诱导建立兔1型糖尿病模型的比较[J].中国实验诊断.2008,12(4):442-444.
    5.李晶,张春元,张宝珍.四氧嘧啶诱发大白兔糖尿病模型的实验研究[J].中国校医,1999,13(1):30.
    6.孟建波,康胜群,康素娴,等.四氧嘧啶诱导兔1型糖尿病模型的实验研究[J].河北医药,2009,31(1):19-20
    7.余臣祖,张朝宁,刘国安.实验性2型糖尿病动物模型研究进展[J].医学综述.2006,12(1):41-42.
    8.孙焕,陈广,陆付耳.介绍几种诱发性糖尿病动物模型[J].中国实验方剂学杂志,2007(02):12.
    9.黄国钧,黄勤挽.医药实验动物模型-制作与运用.北京:第一版.化学工业出版社.2008,532-533
    10.Blondel O,Bailbe D,Portha B.Insulin resisitance in rats with noninsulin-dependent diabetes induced by neotatal(5days) streptcotocin:evidence foe reversal following phorizing reatment[J].Metabolism,1990,29(8):787.
    11.Unger RH,Orci L.Disease of liporegulation:new perspective on obesity and related disorders[J].FASEB J,2002,12(6):312
    12.McGanyJDBantinglecture2001:dysregulation of fatty acid metabolism in the etiology of type 2 diabetes[J].Diabetes,2002,51(16):7-18.
    13.Lupi R,Del Guerra S,Fierabracci V,et al.Lipotoxicity in human pancreatic islets and the protective effect of metformin[J].Diebetes,2002,51 suppll:3134-137.
    14.李光伟,潘孝仁,Lillioja,等.检测人胰岛素敏感性的一项指标[J].中华内科杂志,1993,32(10)656-659
    15.徐延光,郑少雄.2型糖尿病胰岛素抵抗与脂代谢紊乱关系探讨[J].天津医科大学学报,2003,9(4)523-525.
    16.Boyko EJ,Ahroni JH,Cohen V,Nelson KM,Heagerty PJ.Prediction of diabetic foot ulcer occurrence using commonly available clinical information[J].Diabetic Care 2006;29:1202-7.
    17.Managing foot ulcers in patients with diabetes[J].Drug and Therapeutics Bulletin.2002,40(2):11-14.
    18.Kern P,Moczar M,Robert L.Biosynthesis of skin collagensin normal and diabetic mice[J].Biochem J,1979,182(2):337-345.
    19.Edelson GW:Systemic and nutritional considerations in diabetic wound healing.Clin Podiatr Med Surg 15:41-48,1998
    20.Lerman OZ,Galiano RD,Armour M,Levine JP,Gurtner GC:Cellular dysfunction in the diabetic fibroblast:impairment in migration,vascular endothelial growth factor production,and response to hypoxia.Am J Pathol.2003,162:303-312
    21,付小兵,孙同柱,杨银辉,等.碱性成纤维细胞生长因子和转化生长因子-β在溃疡与增生性瘢痕组织中的表达及其创面修复的影响[J].中国修复重建外科杂志,2000,14(5):271-274.
    22.武香秀,刘志跃,付小兵,等.糖尿病皮肤溃疡PDGF及其受体基因表达和蛋白含量的变化[J].内蒙古医学杂志.2008,40(6):643-646
    23.林源,王润秀,农庆文,等.糖尿病创面愈合过程的动态组织学特征[J].中国临床康复.2005,9(3):118-120.
    24.Hunt TK,Burke J,Barbul A,Gimbel ML.Wound healing(Letter).Science 1999 Jun 11;284(5421):1775.
    25.Mast BA,Schultz GS.Interactions of cytokines,growth factors,and proteases in acute and chronic wounds[J].Wound Repair Regen.1996,4(4):411-20.
    26 Singer,A.J.,Clark,R.A.F.Cutaneous wound healing.New Engl.J.Med.1999,341(10):738-746.
    27 Kihara Yasuyuki,Tashiro Mitsuo,NakamuraHayato,et al.Role of TGF-[beta]1,Extracellular Matrix,and Matrix Metalloproteinase in the Healing Process of the Pancreas After Induction of Acute Necrotizing Pancreatitis Using Arginine in Rats[J].Pancreas.2001,23(3):288-295.
    28 Nwomeh BC,Yager DR,Cohen IK:Physiology of the chronic wound[J].Clin Plast Surg.1998,25(6):341-356.
    29.Gillitzer R,Goebeler M:Chemokines in cutaneous wound healing[J].J Leukoc Biol.2001,69(4):513-521
    30.陆树良,主编.烧伤创面愈合机制与新技术[M].北京:第一版.人民军医出版社,2003.10.
    31.Yusof MI,Al-Astani AD,Jaafar H,et al.Morphometric analysis of skin microvasculature in the diabetic foot[J].Singapore Med J,2008,49(12):100-104.
    32.Lazarus GS,Cooper DM,Knighton DR,Margolis DJ,Pecoraro RE,Rodeheaver G,Robson MC.Definitions and guidelines for assessment of wounds and evaluation of healing[J].Arch Dermatol.1994 Apr;130(4):489-493.
    33.CoiwellAS,KrummelTM,LongakerMT,et a.l Wnt-4 expression is increased in fibroblasts afterTGF-betal stimulation and during fetal and postnatal wound repair[J].PlastReconstrSurg,2006,117(7):2297-2301.
    34.Fathke C,W ilson L,Shah K,et al.Wnt signaling induces epithelial differentiation during cutaneous wound healing[J].BMC CellBio,1 2006,3(4):147.
    35.董炜,牛轶雯,董叫云,等.晚期糖基化终末产物对中性粒细胞生物学行为的影响[J].中华烧伤杂志,2008,24(1):1.
    36.田鸣,青春,牛轶雯,等.糖基化终末产物对表皮角质形成细胞功能的影响及其机制[J].中华创伤杂志,2006,22(10):779-782.
    37.陆树良,青春,谢挺,等.糖尿病皮肤”隐性损害”的机制研究[J].中华创伤杂志,2004,20(8):468-473.
    38.董叫云,高见佳宏,青春,等.MCI-186对高糖环境中内皮细胞凋亡的干预作用[J].中华糖尿病杂志,2005,13(3):243.
    39.刘晓燕,傅汉菁,冯雅娟.2型糖尿病患者足背皮肤微血流变化及其相关危险因素分析[J].微循环学杂志,2009,19(1):25-28
    40.LateefH,StevensMJ,Varani J.All-trans-retinoic acid suppresses matrix metalloproteinase activity and increases collagen synthesis in diabetic human skin in organ culture[J].Am J Patho,12004,165(1):167-174.
    41.Han YP,TuanTL,HughesM,eta.l Transforming growth factor-beta and tumor necrosis factor-alpha-mediated induction and proteolytic activation ofMMP-9 in human skin[J].J BiolChem,2001,276(25):22341-22350.
    42.Gupta D,Varma S,KhandelwalRL.Long-term effects of tumor necrosis factor-alpha treatment on insulin signaling pathway inHepG2 cells and HepG2 cells overexpressing constitutively active Akt/PKB.J Cell Bio-chem,2007,100:593-607.
    43.吴晓燕,汤旭磊,高林.2型糖尿病免疫炎症的初步探讨[J].2009,23(10):944-946.
    44.Natali A,Toschi E,Baldeweg S,et a.l Clustering of insulin resistance with vascular dysfunction and low-grade inflammation in type 2 diabetes.Diabetes,2006,55:1133-1140.
    45.陈灿,王志军.皮肤组织工程研究的新进展[J].组织工程与重建外科杂志,2008,4(3):171-173.
    46.Perng CK,Kao CL,Yang YP,et al.Culturing adult human bone marrow stem cells on gelatin scaffold with pNIPAAm as transplantedgrafts for skin regeneration[J].J Biomed Mater Res A.2008;84(3):622-630.
    47.Minguell JJ,Erices A,Conget P.Mesenchymal stem cells[J].Exp Biol Med(Maywod).2001;226(6):507-520.
    48.Nakagawa H,Akita S,Fukui M,et al.Human mesenchymal stem cells successfully improve skin-substitute wound healing[J].Br J Dermatol.2005;153(1):29-36.
    49.Robert JD,Annemarie BM.Mesenchymal stem cells:Biologyand potential clinical uses[J].Exp Hemato.2000;28:875 -884.
    50.David JA,Fred HG,Irving LW.Can stem cells cross the lineageboundaries?[J].Nat Med.2001;7:393-395.
    51.Timothy RB,Fabio MVR,Gilmor LK,et al.From marrow to brain:expression of neuronal phenotypes in adult mice[J].Science.2000;290:1775-1779.
     52.Tremain N,Korkko J.Ibberson D,et al.MicroSAGE analysis of 2353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells revealsmRNAs ofmultiplecell lineages[J].Stem Cells,2001,19(5):408-418.
    53.Liu YB,Deborah S,Gao XH,et al.Wound repair by bone marrow stromal cells through growth factor production[J].J Surg Res.2006;136(2):336-341.
    54.Mackenzie TC,Flake AW.Human mesenchymal stem cells persist demonstrate site-specific multipotential differentiation and arepresent in sites of wound healing and tissue regeneration aftertransplantation into fetal sheep[J].Blood Cells Mol Dis.2001;27(3):601-604.
    55.Uemura R,Xu MF,Ahmad N,et al.Bone Marrow Stem Cells Prevent Left Ventricular Remodeling of Ischemic Heart Through Paracrine Signaling.Circulation Res.2006;98:1414-1421
    56.Perng CK,Kao CL,Yang YP,et al.Culturing adult human bone marrow stem cells on gelatin scaffold with pNIPAAm as transplantedgrafts for skin regeneration[J].J Biomed Mater Res A,2008,84(3):622-630.
    57.LazaruSHM,Haynesworth SE,Gerson SL,eta.l Ex vivo expansion and subsequent infusion ofhuman bonemarrow-derived stromal progenitor cells(mesenchymalprogenitor cells):Implications for therapeutic use[J].BoneMarrow Transplant,1995,16(4):557-564.
    58.王宾,沈来根,朱越锋,等.hVEGF165在兔骨髓间充质干细胞中的表达[J].浙江临床医学,2008,10(1):7-8.
    59.Pittenger MF,Mackay AM,Stephen C,et al.Multilineage Potential of Adult Human Mesenchymal Stem Cells[J].Science.1999,284:143.
    60.彭亮权,王大平,何春耒,等.人骨髓间充质干细胞的分离、培养与鉴定[J].中国临床解剖学杂志,2009,(3):321-324.
    61.Liora BW,Solomonik I,Spira R.Novel Insights into Wound Healing Sequence of Events.Toxicologic Pathology.2007;35(6):767-779.
    62.Fujisawa K,Miyamoto Y,Nagayama M.Basic fibroblast growth factor and epidermal growth factor reverse impaired ulcer healing of the rabbit oral mucosa[J].J Oral.Pathol Meal.2003;32(6):358.
    63.Tanaka H,Mizokami H,Shiigi E,et al.Effects of basic fibroblast growthfactor on the Repair of large osteohondral defects of articular cartilage in rabbits:dose-response effects and long-term outcomes[J].Tissue.2004;10(3-4):633-639.
    64.Trounson A.The Production and Directed Differentiation of Human Embryonic Stem Cells[J].Endocr Rev.2006;27:208-219.
    65.Robert J,Tomanek C,Li H,et al.Coronary vascularization during development in the rat and its relationship to basic fibroblast growth factor[J].Cardiovascular Res.1996;31:116-126.
    66.龚振宇,周树夏,曹建广,等.碱性成纤维细胞生长因子促进兔下颌骨骨折愈合[J].中国临床康复,2003,7(4):550.
    67.Hanasono MM,Lum J,Carrol LA,et al.The effect of silicone gel on basicfibroblast growth factor levels in fibroblast cell culture[J].Arch Facial Plast Surg.2004;6(2):88.
    68.崔世军,张建,俞恒锡,等.VEGF及bFGF基因治疗家兔肢体缺血的实验研究[J].北京医 学,2007,29(8):503-504.
    69.Vassalli G,Roehrich ME,Vogt P.Modalities and future prospects of gene therapy in heart transplantation.Eur J Cardiothorac Surg.2009;35:1036-1044.
    70.Auger FA.Adventitia contribution to vascular contraction:Hints provided by tissue-engineered substitutes[J].Cardiovascular Res.2007;75(8) 659-668.
    71.Siow RCM,Churchman AT.Adventitial growth factor signalling and vascular remodelling:Potential ofperivascular gene transfer from the outside-in.Cardiovascular Res.2007;75(8):659-668
    72.Schachner T,Laufer G,Bonatti J.In vivo(animal) models of vein graft disease.Eur J Cardiothorac Surg.2006;30:451-463.
    73.Ferguson RE Jr.Pu LL.Repair of the abdominal donor-sitefascial defect with small intestinal submucosa(surgisis) afterTRAM flap breast reconstruction[J].Ann Plast Surg.2007;58(1):95-98.
    74.张长青,邹剑,张晔,等.轴卷的猪小肠黏膜下层--种新的人工肌腱的实验研究[J].中国全科医学,2004,7(22):1650-1652.
    75.Griffith LG,Naughton G.Tissue engineering current challenges and expanding opportunities [J].Science.2002;295:1009-1014.
    76.Xie ST,Chen B,Tao K,et al.Construction and transplantation oftissue engineering skin with EPCs in athymic mice[J].Chin J Exp Surg.2006;23(12):1530-1532.
    77.McDevitt CA,Wildey GM,Cutrone RM1 Transforming growth factor2 beta in a sterilized tissue derived from the pig small intestine submucosal[J].J BiomedMater Res.2003;67:637-640.
    78.Hodde JP,Record RD,Liang HA,et al.Vascular endothelial growthfactor in porcine2derived extracellular matrix[J].Endothelium.2001;8:11-24.
    79.McDevitt CA,Wildey GM,Cutrone RM.Transforming growth factor-beta in a sterilized tissue derived from the pig small intestine submucosa[J].J BiomedMater Res,2003,67:637-640.
    80.Hodde JP,Record RD,Tullius RS,et al.Retention of endothelial cell adherence to porcine-derived extracellular matrix after disinfection and sterilization[J].Tissue Eng.2002;8:225-234.
    81.岑石强,李万里,黄富国,等小肠黏膜下层复合上皮细胞及成肌细胞构建组织工程食管的初步研究[J].中国修复重建外科杂志,2006,20(10):1040-1043.
    82.Le Visage C,Yang SH,Kadakia L,et al.Small intestinal submucosa as a potential bioscaffold for intervertebral disc regeneration[J].Spine.2006;31(21):2423-2431.
    83.Hauser S,Bastian PJ,Fechner G,et al.Small intestinesubmucosa in urethral stricture repair in a consecutive series[J].Urology.2006;68(2):263-266.
    84.马鑫,张长青,张开刚,等.不同比例小肠黏膜下层复合双相磷酸钙修复骨缺损的组织学研究[J].中国修复重建外科杂志,2006,20(11):1061-1065.
    85.邹剑,刘粤,朱轶等.猪小肠黏膜下层修复鼠皮肤全层缺损的实验研究[J].中国修复重建外科杂志,2008,21(8):872-875.9.
    86.Zhai Y,Ghobrial RM,Busuttil RW,et al.:Th1 and Th2 cytokines in organ transplantation:paradigm lost?[J].Crit Rev Immunol 1999,19:155-172.
    87.李彦,宋振强,任惠珠.前列地尔和小牛血去蛋白提取物联合治疗糖尿病足[J].中国组织工程研究与临床康复,2008,50(12):9970-9972.
    88.王爱红,许樟荣,许永杰,等.前列腺素E1脂微球载体制剂治疗糖尿病下肢动脉病变的临床观察[J].中华老年多器官疾病杂志,2005,4(1):22-2.
    89.刘启亮,胡捷,孙婷婷.前列地尔脂微球制剂治疗糖尿病性皮肤溃疡的临床研究[J].中日友好医院学报,2009,23(4):230-231.
    90.The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus[J].The Diabetes Control and Complications Trial Research Group.N Engl J Med.1993;329(14):977-986.
    91.Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes.UK Prospective Diabetes Study(UKPDS) Group.Lancet.1998;352(9131):854-865
    92.Caputo GM,Cavanagh PR,Ulbrecht JS,et al.Assessment and management of foot disease in patients with diabetes[J].N Engl J Meal 1994;331(13):854-860.
    93.Conrad MF,Cambria RP,Stone DH,et al.Intermediate results of percutaneous endovascular therapy of femoropopliteal occlusive disease:a contemporary series[J].J Vasc Surg,2006,44(4):762.
    94.谷涌泉,张建,俞恒锡,等.下肢远端动脉旁路移植治疗糖尿病足46例报告[J].中国实用外科杂志.2003,23(8):487-489.
    95.Treiman GS,Whiting JH,Treiman RL,et al.Treatment of limb-threatening ischemia with percutaneous intention al extraluminal recanalization:a preliminary evaluation[J].Vasc Surg,2003,38(1):29.
    96.Faglia E,Mantero M,Caminiti M,et al.Extensive use of peripheral angioplasty,particularly infrapopliteal,in the treatment of ischaemic diabetic foot ulcers:clinical results of a multicentric study of 221 consecutive diabetic sub jects[J].J Intern Med.2002,252(3):225.
    97.卞丽香,宋开兰,孙秋英,等.下肢血管介入对糖尿病下肢血管病变合并糖尿病足的临床价值及预后[J].医学影像学杂志,2007,17(10):1089.
    98.刘丽,靖冬梅,王爱林.血管内超声消融术治疗糖尿病足的疗效观察[J].中华糖尿病杂志,2004,12(5):332-333.
    99.GehlingUM,Ergan S,SehumacherU,et a.l In vitro differentiation of endothelial cells from AC 133-positive progenitor cells[J].Blood,2000,95:3106-3112.
    100.QuiriciN,SoligoD,Ganeva L,et a.l Differentiation and expansion of endothelial cells from human bonemarrow CD133+cells[J].Br JHeamato,1 2001,115:186-194.
    101.谷涌泉,张健,乔立行,等.自体骨髓干细胞移植治疗慢性下肢缺血94例不同病变分期患者的效果比较[J].中国临床康复,2005,9(38):7-10.
    102.Kawamura A,Horie T and Tsuda I et al.Clinical study of therapeutic angiogenesis by autologous peripheral blood stem cell(PBSC) transplantation in 92 patients with critically ischemic limbs.J Artif Organs.2006;9(4):226-33.
    103.van Houtum WH,Rauwerda JA,Ruwaard D,et al.Reduction in diabetes-related lower-extremity amputations in The Netherlands:1991-2000[J].Diabetes Care.2004;27(5):1042-1046
    104.Dang CN,Prasad YD,Boulton AJ,et al.Methicillin-resistant Staphylococcus aureus in the diabetic foot clinic:a worsening problem.Diabet Med.2003;20(2):159-161.
    105.许永楷.糖尿病足局部外治疗法研究.中华中医药学会周围血管病分会第二届学术大会论文集[C].2009.32-35.
    106.Atindas M,Cinar C.Promoting primary healing after ray amputations in the diabetic foot:the plantar dermo-fat pad flap,Plast Reconstr Surg 2005;116(4):1029-1034.
    107.Tosun Z,Ozkan A,Karacor Z,et al.Delaying the reverse sural flap provides predictable results for complicated wounds in diabetic foot[J].Ann Plast Surg 2005;55(2):169-173.
    108.梁家龙,颜文武,王忠远,等.腓肠神经和隐神经营养血管蒂皮瓣修复胫前和足部软组织缺损[J].中国修复重建外科杂志,2007,21(2):212-214.
    109.Melton LJ,Macken KM,Palumbo PJ,Elveback LR.Instance and prevalence of clinical peripheral vascular disease in a population based cohort of diabetic patients[J].Diabetes Care 1980;3:650-4.
    110.Boulton A.A pathway to ulceration aetiopathogenesis.The foot in diabetes.Second edition.1994:37-48.
    111.宋振强,王润秀,林源,等.表皮生长因子诱导糖尿病难愈性创面成纤维细胞增殖的对照观察[J].中国临床康复.2006,10(1):74-75,78.
    112.Hong JP,Jung HD,Kim YW.Recombinant human epidermal growth factor(EGF) to enhance healing for diabetic foot ulcers[J].Ann Plast Surg.2006;56(4):399-400.
    113.Cruciani M,Lipsky BA,Mengoli C,et al.Are granulocyte colony-stimulating factors beneficial in treating diabetic foot infections?:A meta-analysis[J].Diabetes Care 2005;28(2):454-460.
    114.CasascoM,Camaglia AI,Zerbinati F,et al.Morphological aspects of an artificial skin[J].Ital J Anat Embryol 2001;106:239-249.
    115.Fivenson D,Scherschun L.Clinical and economic impact of Apligraf for the treatment of nonhealing venous leg ulcers[J].Int J Dermatol 2003;42(12):960-965.
    116.Martin LK,Kirsner RS.Ulcers caused by bullous morphea treated with tissue-engineered skin[J].Int J Dermatol 2003;42(5):402-404.
    117.刘鹏,刘涛,李媛,等.骨髓间充质干细胞促进皮肤创伤愈合的研究[J].第四军医大学学报,2007,28(13):1208-1210.
    118.王汉群,姜任武,龙剑虹,等.骨髓间充质干细胞修复兔皮肤缺损创面的实验研究[J].南华大学学报医学版.2005,33(3):326-330.
    119.何丽娟,南雪,王韫芳,等.自体骨髓间充质干细胞为种子细胞构建组织工程化全层皮肤[J].中国科学C辑:生命科学.2007,37(3):262-270.
    120.林才,乔亮,陆树良,等.糖尿病足溃疡创面血管化程度和促血管化生长因子表达变化及其机制探讨.第五届全国烧伤救治专题研讨会烧伤后脏器损害的临床救治论文汇编[C].2008.301-305.
    1 陈灿,王志军.皮肤组织工程研究的新进展[J].组织工程与重建外科杂志.2008,4(3):171-173
    2 Kaur P.Li A.Adhesive properties of human basal epidermal cells and analysis of keratinocyte stem cells,transit amplifying cells,and postmitotic differentiating cells[J].J Invest Dermatol,2000,114(3):413-420
    3 Hu KK,Dai YC,Li J,et al.Construction of a tissue engineering skin with epidermal stem cells[J].Zhonghua Zhengxing Waike
    4 Taylor G,Lehrer MS,Jensen PJ,et al.Involvement of follicular stem cells in forming not only the follicle but also the epidermis[J].Cell,2000,102(4):451-461
    5 Zheng Y,Du X,Wang W,et al.Organogenesis from dissociated cells:generation of mature cycling hair follicles from skin-derived cells.[J]Invest Dermatol,2005,124(5):867-876
    6 Geng S,Zeng W,Tan S.Skin construction by hair follicle stem cells and fibroblasts[J].Zhongguo Xiufu Chongjian Waike Zazhi,2006,20(2):165-168
    7 Kurt S.Bioengineering the hair follicle:fringe benefits of stem cell technology.Current Opinion in Biotechnology 2005;16(5):493-497.
    8 Tremain N,Korkko J,Ibberson D,et al.MicroSAGE analysis of 2353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells revealsmRNAs ofmultiplecell lineages[J].Stem Cells,2001,19:408-418.
    9 Perng CK,Kao,CL,Yang YP,et al.Culturing adult human bone marrow stem cells on gelatin scaffold with pNIPAAm as transplantedgrafts for skin regeneration[J].J Biomed Mater Res A,2008,84(3):622-630.
    10 LazarusHM,Haynesworth SE,Gerson SL,eta.l Ex vivo expansion and subsequent infusion ofhuman bonemarrow-derived stromal progenitor cells(mesenchymalprogenitor cells):Implications for therapeutic use[J].BoneMarrow Transplant,1995,16(4):557-564.
    11 LiuY,DulchavskyDS,GaoX,eta.l Wound repairby bonemarrow stromal cells through growth factor production[J].J Surg Res,2006,136(2):336-341.
    12 Supp DM,Bell SM,Morgan JR,et al.Genetic modification of cultured skin substitutes by transduction of human keratinocytes and fibroblasts with platelet-derived growth factor-A.Wound Repair Regen 2000;8(1):26-35
    13 CasascoM,Camaglia AI,Zerbinati F,et al,Morphological aspects of an artificial skin.Ital J Anat Embryol 2001;106:239-249.
    14 Fivenson D,Scherschun L.Clinical and economic impact of Apligraf for the treatment of nonhealing venous leg ulcers.Int J Dermatol 2003;42(12):960-965.
    15 DinhTL,Veves A.The efficacy of Apligraf in the treatment of diabetic foot ulcers.Plast Reconstr Surg 2006;117(7):152-157.
    16 Martin LK,Kirsner RS.Ulcers caused by bullous morphea treated with tissue-engineered skin.Int J Dermatol 2003;42(5):402-404
    17 Thornton JF,Rohrich RJ.Dermal substitute(Integra)for open nasal wounds.Plast Reconstr Surg 2005;116(2):677
    18 Clayman MA,Clayman SM,Mozingo DW.The use of collagen-glycosaminogly cancopolymer(Integra) for the repair of hypertrophic scars and keloids.J Burn Care Res 2006;27(3):404-409.
    19 Klein MB,Engrav LH,Holmes JH,et al.Management of facial burns with a collagen/glycosaminoglycan skin substitute-prospective experience with 12 consecutive patients with large,deep facial burns.Burns 2005;31(3):257-261.
    20 Kopp J,Jeschke MG,Bach AD,et al.Applied tissue engineering in the closure of severe burns and chronic wounds using cultured human autologous keratinocytes in a natural fibrin matrix.Cell Tissue Bank 2004;5(2):89-96
    21 Callcut RA,Schurr MJ,Sloan M,et al.Clinical experience with Alloderm:a one-staged composite dermal/epidermal replacement utilizing processed cadaver dermis and thin autografts.Burns 2006;32(5):583-588
    22 邹剑,刘粤,朱轶等.猪小肠黏膜下层修复鼠皮肤全层缺损的实验研究[J].中国修复重建外科杂志,2008,21(8):872-875.
    23 Zhai Y,Ghobrial RM,Busuttil RW,et al.:Th1 and Th2 cytokines in organ transplantation:paradigm lost? Crit Rev Immunol 1999,19:155-172.
    24 Bannasch H,Fohn M,Unterberg T,et al.Skin tissue engineering.Clin Plast Surg 2003;30(4):573-579
    25 Stark HJ,Willhauck MJ,Mirancea N,et al.Authentic fibroblast matrix in dermal equivalents normalises epidermal histogenesis and dermoepidermal junction in organotypic co-culture.Eur J Cell Biol 2004;83(11-12):631-645
    26 荣祥明,余春艳,耿献辉等.组织工程全层皮肤的研究现状[J].中国麻风皮肤病杂志.2008;24(8):630-633
    27 Kallianinen LK,Hirshberg J,Marchant B,et al.Role of platelet-derived growth factor as an adjunct to surgery in the management of pressure ulcers[J].Plast Reconstr Surg,2000,106(6):1243-1248.
    28 Lee JA,Conejero JA,Mason JM,et al.Lentiviral transfection with the PDGF-B gene improves diabetic wound healing[J].Plast Reconstr Surg,2005,116(2):532-538
    29 Peted ZM,Rhee SJ,Hsu M,et al.The ontogeny of scarless healing Ⅱ:EGF and PDGF-βgene expression in fetal rat skin and fibroblasts as a function of gestational age[J].Ann Plast Surg,2001,47(4):417-424
    30 Trounson A.The Production and Directed Differentiation of Human Embryonic Stem Cells.Endocr Rev.2006;27:208-219.
    31 Robert J,Tomanek C,Li H,et al.Coronary vascularization during development in the rat and its relationship to basic fibroblast growth factor.Cardiovascular Res.1996;31:116-126.
    32 郭蔚莹,王苹,刘青,等.碱性成纤维细胞生长因子对糖尿病大鼠创面愈合的影响[J].中国实验诊断学,2008,12(3):315-318.
    33 Hanasono MM,Lum J,Carrol LA,et al.The effect of silicone gel on basicfibroblast growth factor levels in fibroblast cell culture.Arch Facial Plast Surg.2004;6(2):88.
    34 Pienimaki JP,Rilla K,Fulop C,et al.Epidermal growth factor activates hyaluronan synthase 2 in epidermal keratinocytes and increases pericellular and intracellular hyaluronan[J].J Bio Chem,2001,276(23):20428-20435.
    35 Hong JP,et al.The effect of various concentrations of human recombinant epidermal growth factor on split-thickness skin wounds[J].Int Wound J,2006,3(2):123-130.
    36 Cordeiro MF,Mead A,Ali RR,et al.Novel antisense oligonucleotides targeting TGF-beta inhibit in vivo scarring and improve surgical outcome[J].Gene Ther,2003,10(1):59-71.
    37 Ferguson MW, O'Kane S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention[J]. Philos Trans R Soc Lond B Biol Sci, 2004,359(1445):839-850.
    
    38 Jones JE,Nelson EA.Skin grafting for venous leg ulcers.Cochrane Database Syst Rev 2005;25(1):CD001737.