细胞—细胞外基质复合材料修复尿道缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究利用组织工程原理和干细胞技术,构建尿道组织,修复兔尿道全段缺损。对细胞与细胞外基质材料在体外的复合方法,复合细胞材料修复尿道缺损的过程及其与单纯细胞外基质材料修复效果的差异,种子细胞在植入机体后的命运转归进行初步探讨,为进一步研究奠定基础。同时初步探讨利用BMSC-FG作为填充材料(Bulking Agent,BA)治疗压力性尿失禁及膀胱输尿管返流的可行性。
     方法:①选择兔膀胱尿路上皮细胞、兔膀胱平滑肌细胞及兔骨髓间充质干细胞(BMSC)作为种子细胞,采用相应的培养及纯化策略,获取满足实验要求的种子细胞。并对两种可行的上皮细胞培养方案进行对比,选择更好的培养方法。利用细胞计数及MTT法对三种细胞在体外的生长增殖情况进行研究。利用脂质体转染对兔BMSC进行绿色荧光蛋白基因转染,试图获得稳定表达。②选择两种常用的泌尿外科组织工程材料——同种膀胱细胞外基质BECM和猪小肠粘膜下层SIS分别与兔BMSC及兔尿路上皮细胞进行复合培养,在体外构建尿道工程组织,对细胞在材料表面的分布及增殖情况进行研究。③分别利用复合有兔BMSC及尿路上皮细胞的兔膀胱细胞外基质对长度为1.5—2.0cm的雄性兔悬垂部全长尿道缺损进行原位修复实验,并与单纯BECM修复进行对比,32只动物分
Objective: To construct engineering urethral tissue in vitro using technique of Tissue Engineering and stem cells for repairing the urethral defect of a rabbit model. Looking for better ways for construction of urethra in vitro, and comparing the different between involve seeded matrices and unseeded matrices in the repairing process. To elucidate the destiny of the seeding cells in vivo and the possibility of using BMSC with fibrin glue as a bulking agent to treat stress incontinence and vesico-ureteral reflux.
    Methods: (1) Bladder urothelium, bladder smooth muscle cells and bone marrow mesenchymal stem cells (BMSC) were choose as seed cells, primary culture and purify system were build to proliferate the seed cells. Two culture system (method 1 and method 2) were built for urothelium and one was choose to culture them in posterior studies. The proliferation characteristic of these cells were studied using cell counting and MTT Cell Proliferation Assay. To modify the BMSC, a liposome based plasmid transfection system was used to transfect BMSC, and its proliferation condition was studied after transfection. (2)Seeding BMSC and urothelium on the BECM and SIS was
引文
1. Svensjo T, Yao F, Pomahac B,et al.Autologous Keratinocyte Suspensions Accelerate Epidermal Wound Healing in Pigs. J Surg Res, 2001; 99(2):211-21
    
    2. Kurzrock EA, Lieu DK, deGraffenried LA, et al. Rat urothelium: improved techniques for serial cultivation, expansion, freezing and reconstitution onto acellular matrix. J Urol, 2005; 173(l):281-5
    
    3. Rebel JM, De Boer WI, Thijssen CD, et al. An in vitro model of urothelial regeneration: effects of growth factors and extracellular matrix proteins. J Pathol 1994; 173(3):283-91
    
    4. Dubeau L, Jones PA. Growth of normal and neoplastic urothelium and response to epidermal growth factor in a defined serum-free medium. Cancer Res, 1987; 47(8):2107-12
    
    5. Sugasi S, Lesbros Y, Bisson I. In vitro engineering of human stratified urotheliumranalysis of its morphology and function . J Urol, 2000; 164(3Pt2): 951-7
    
    6. Zhang YY, Ludwikowski B, Hurst R, et al. Expansion and long-term culture of differentiated normal rat urothelial cells in vitro. In Vitro Cell Dev Biol Anim,2001; 37(7):419-29
    
    7. Bhargava S, Chappie CR, Bullock AJ, et al. Tissue-engineered buccal mucosa for substitution urethroplasty.BJU Int, 2004; 93(6): 807-11
    
    8. Fossum M, Gustafson CJ, Nordenskjold A, et al. Isolation and in vitro cultivation of human urothelial cells from bladder washings of adult patients and children. Scand J Plast Reconstr Surg Hand Surg,2003; 37(1):41-5
    
    9. Southgate J, Hutton KA, Thomas DF, et al. Normal human urothelial cells in vitro: proliferation and induction of stratification. Lab Invest, 1994; 71(4):583-94
    
    10. Kreft ME, Romih R, Sterle M. Antigenic and ultrastructural markers associated with urothelial cytodifferentiation in primary explant outgrowths of mouse bladder. Cell Biol Int, 2002; 26(1):63-74
    
    11. Pariente JL,Kim BS, Atala A. In vitro biocompatibility evaluation of naturally derived and synthetic biomaterials using normal human bladder smooth muscle cellsJUrol, 2002; 167(4): 1867-71
    
    12. Pariente JL, Kim BS, Atala A. In vitro biocompatibility assessment of naturally-derived and synthetic biomaterials using normal human urothelial cells. J Biomed Mater Res, 2001; 55(1):33-9
    
    13. Staack A, Hayward SW, Baskin LS,et al. Molecular, cellular and developmental biology of urothelium as a basis of bladder regeneration. Differentiation, 2005; 73(4):121-33
    
    14. Kropp BP, Zhang Y, Tomasek JJ, et al. Characterization of cultured bladder smooth muscle cells: assessment of in vitro contractility. J Urol, 1999; 162(5): 1779-84
    
    15. Chung SY, Krivorov NP, Rausei V, et al. Bladder reconstitution with bone marrow derived stem cells seeded on small intestinal submucosa improves morphological and molecular composition. J Urol, 2005; 174(l):353-9
    
    16. Zhang Y, Lin HK, Frimberger D, et al. Growth of bone marrow stromal cells on small intestinal submucosa: an alternative cell source for tissue engineered bladder. BJU Int, 2005; 96(7): 1120-5
    
    17. Cross WR, Thomas DF, Southgate J. Tissue engineering and stem cell research in urology. BJU Int, 2003; 92(2):165-71
    
    18. Atala A. Regenerative medicine and urology. BJU Int, 2003; 92(Suppl l):58-67
    
    19. Yokoyama T, Chancellor MB, Yoshimura N, et al. Gene therapy and tissue engineering for urologic dysfunction: status and prospects. Molecular urology, 2001; 5(2):67-70
    
    20. Voytik-Harbin SL, Brightman AO, Kraine MR, et al. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem, 1997; 67(4): 478-91
    
    21. Hodde, J., McPherson, T., Savaino, J. et al: Vascular Endothelial Growth Factor (VEGF) in SIS, Presented at Second SIS Symposium, Orlando, Florida, 1998
    
    22. Hurst RE, Bonner RB. Mapping of the distribution of significant proteins and proteoglycans in small intestinal submucosa by fluorescence microscopy. J Biomater Sci Polym Ed, 2001; 12(11):1267-79
    
    23. Cheng EY, Kropp BP. Urologic tissue engineering with small-intestinal submucosa: potential clinical applications. World J Urol, 2000; 18(1):26-30
    
    24. Allman A J, TB McPherson, Badylak SF, et al.Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation, 2001; 71(11): 1631-40
    
    25. Lu SH, Sacks MS, Chung SY, et al. Biaxial mechanical properties of muscle-derived cell seeded small intestinal submucosa for bladder wall reconstitution. Biomaterials 2005, 26(4):443-9
    
    26. Brown AL, Brook-Allred TT, Waddell JE, et al. Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscle-urothelial cell interactions. Biomaterials, 2005; 26(5):529-43
    
    27. Kimuli M, Eardley I, Southgate J. In vitro assessment of decellularized porcine dermis as a matrix for urinary tract reconstruction. BJU Int, 2004,94(6):859-66
    
    28. Yang SX, Yao Y, Hu YF, et al. Reconstruction of rabbit urethra using urethral extracellular matrix. Chin Med J (Engl), 2004; 117(12): 1786-90
    29. Yang SX, Shen FJ, Hu YF, et al. Experimental bladder defect in rabbit repaired with homologous bladder extracellular matrix graft. Chin Med J (Engl), 2005; 118(11):957-60
    
    30. Mantovani F, Trinchieri A, Castelnuovo C, et al. Reconstructive urethroplasty using porcine acellular matrix. Eur Urol,2003; 44(5):600-2
    
    31. Badylak SF. The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol, 2002; 13(5):377-83
    
    32. Record, RD, Hillegonds D, Simmons C, et al. In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair.Biomaterials, 2001; 22(19):2653-9
    
    33. Campodonico F, Benelli R, Michelazzi A, et al. Bladder Cell Culture on Small Intestinal Submucosa as Bioscaffold: Experimental Study on Engineered Urothelial Grafts.Eur Urol, 2004; 46(4):531-7
    
    34. Zhang Y, Kropp BP, Moore P, et al. Coculture of bladder urothelial and smooth muscle cells on small intestinal submucosa: potential applications for tissue engineering technology. J Urol, 2000; 164(3Pt2):928-34
    
    35. Tash JA, David SG, Vaughan EE, et al. Fibroblast growth factor-7 regulates stratification of the bladder urothelium. J Urol, 2001; 166(6):2536-41
    
    36. Shiroyanagi Y, Yamato M, Yamazaki Y, et al. Transplantable urothelial cell sheets harvested noninvasively from temperature-responsive culture surfaces by reducing temperature. Tissue Eng, 2003; 9(5): 1005-12
    
    37. Yamato M, Utsumi M, Kushida A, et al. Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng, 2001; 7(4):473-80
    
    38. De Filippo RE, Yoo JJ, Atala A. Urethral replacement using cell seeded tubularized collagen matrices. J Urol, 2002; 168(4Pt2): 1789-93
    39. Yoo JJ, Meng J, Oberpenning F, Atala A. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 1998; 51 (2):221-5
    40. Sugasi S, Lesbros Y, Bisson I,et al. In vitro engineering of human stratified urothelium:analysis of its morphology and function. J Urol, 2000; 164(3Pt2): 951-7
    41. Ludwikowski, B., Zhang, Y. Y. and Frey, P.: The long-term culture of porcine urothelial cells and induction of urothelial stratification. BJU Int, 1999; 84:507-514
    42. Wunsch L, Ehlers EM, Russlies M. Matrix testing for urothelial tissue engineering. Eur J Pediatr Surg JT, 2005; 15(3):164-9
    43. Campodonico F, Benelli R, Miehelazzi A, et al. Bladder cell culture on small intestinal submucosa as bioscaffold: experimental study on engineered urothelial grafts. Eur Urol, 2004 ; 46(4):531-27
    44. Moriya K, Kakizaki H, Watanabe S, et al. Mesenchymal cells infiltrating a bladder acellular matrix gradually lose smooth muscle characteristics in intraperitoneally regenerated urothelial lining tissue in rats. BJU Int, 2005; 96(1): 152-7
    45. Campodonico F, Michelazzi A, Benelli R, et al. Simple method for in vitro bladder urothelium regeneration on a heterologous acellular matrix. Pediatr Surg Int 2003; 19(5):415-6
    46.金锡御,吴雄飞。《尿道外科学》,2005,253-276,人民卫生出版社。
    47.吴阶平。《吴阶平泌尿外科学》,2004,833,山东科技出版社。
    48. Atala A.Experimental and clinical experience with tissue engineering techniques for urethral reconstruetion.Urol Clin North Am, 2002; 29(2):485-92
    49. E1-Kassaby AW, Retik AB, Yoo JJ, et al. Urethral stricture repair with an off-the-shelf collagen matrix. J Urol, 2003; 169(1): 170-3
    50. Schultheiss D, Gabouev AI, Cebotari S, et al. Biological vascularized matrix for bladder tissue engineering: matrix preparation, reseeding technique and short-term implantation in a porcine model. J Urol,2005; 173(l):276-80
    
    51. De Filippo RE, Yoo JJ, Atala A. Urethral replacement using cell seeded tubularized collagen matrices. J Urol, 2002; 168(4Pt2):1789-92
    
    52. Zhang Y, Lin HK, Frimberger D, et al. Growth of bone marrow stromal cells on small intestinal submucosa: an alternative cell source for tissue engineered bladder. BJU Int, 2005; 96(7):1120-25
    
    53. Chung SY, Krivorov NP, Rausei V, et al. Bladder reconstitution with bone marrow derived stem cells seeded on small intestinal submucosa improves morphological and molecular composition. J Urol, 2005; 174(1):353-9
    
    54. Frimberger D, Morales N, Shamblott M, et al. Human Embryoid Body-Derived Stem Cells In Bladder Regeneration Using Rodent Model.Urology, 2005; 65(4): 827-32
    
    55. Lakshmanan Y, Frimberger D, Gearhart J D.,et al. Human embryoid body-derived stem cells in co-culture with bladder smooth muscle and urothelium.Urology, 2005; 65(4): 821-6
    
    56. Kanematsu A, Yamamoto S, Iwai-Kanai E,et al.Induction of Smooth Muscle Cell-Like Phenotype in Marrow-Derived Cells among Regenerating Urinary Bladder Smooth Muscle Cells. Am J Pathol, 2005; 166(2):565-73
    
    57. Bartsch G Jr, Frimberger D. Embryonic and adult stem cells for tissue engineering in urology. Urologe A, 2004; 43(10): 1229-36
    
    58. Kropp BP, Cheng EY, Lin HK, et al. Reliable and reproducible bladder regeneration using unseeded distal small intestinal submucosa. J Urol, 2004; 172(4Pt2):1710-3
    
    59. Kropp BP, Cheng EY. Bioengineering organs using small intestinal submucosa scaffolds: in vivo tissue-engineering technology. J Endourol, 2000; 14(l):59-62
    60. Freytesa DO, Badylak SF, Webster JJ, et al. Biaxial strength of multilaminated extracellular matrix scaffolds.Biomaterial, 2004; 25(12):2353-61
    
    61. S.E. Dahms, H.J. Piechota, R. Dahiya, et al. Composition and biomechanical properties of the bladder acellular matrix graft.xomparative analysis in rat, pig and human. Br J Urol, 1998; 82(3):411-9
    
    62. Gabouev AI, Schultheiss D, Mertsching H, et al. In vitro construction of urinary bladder wall using porcine primary cells reseeded on acellularized bladder matrix and small intestinal submucosa. Int JArtif Organs, 2003, 26(10):935-42
    
    63. Lai JY, Chang PY, Lin JN,et al.Bladder autoaugmentation using various biodegradablescaffolds seeded with autologous smooth muscle cells in a rabbit model.J Pediatr Surg, 2005; 40(12): 1869-73
    
    64. Schultheiss D, Gabouev AI, Cebotari S, et al. Biological vascularized matrix for bladder tissue engineering: matrix preparation, reseeding technique and short-term implantation in a porcine model. J Urol, 2005; 173(1):276-80
    
    65. Youssif M, Shiina H, Urakami S, et al.Effect of vascular endothelial growth factor on regeneration of bladder acellular matrix graft: histologic and functional evaluation. Urology. 2005; 66(1):201-7
    
    66. Bartsch GJ, Atala A. Tissue engineering in urology. Basic principles and application. Urologe A, 2003; 42(3):354-365
    
    67. Master VA, Wei G, Liu W, et al. Urothlelium facilitates the recruitment and trans-differentiation of fibroblasts into smooth muscle in acellular matrix. J Urol, 2003 ; 170(4Pt2): 1628-32
    
    68. Hu P, Meyers S, Liang FX, et al. Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability. Am J Physiol Renal Physiol, 2002; 283(6):1200-7
    69. Truschel ST, Ruiz WG, Shulman T, et al.Primary uroepithelial cultures. A model system to analyze umbrella cell barrier function. J Biol Chem, 1999; 274(21): 15020-9
    
    70. Yoo JJ, Meng J, Oberpenning F, Atala A. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology, 1998; 51(2):221-5
    
    71. De Filippo RE, Yoo JJ, Atala A. Urethral replacement using cell seeded tubularized collagen matrices. J Urol, 2002; 168(4Pt2):1789-93
    
    72. Zhang Y, Kropp BP, Moore P, et al. Coculture of bladder urothelial and smooth muscle cells on small intestinal submucosa: potential applications for tissue engineering technology. J Urol, 2000; 164(3Pt2):928-35
    
    73. Campodonico F, Benelli R, Michelazzi A, et al. Bladder cell culture on small intestinal submucosa as bioscaffold: experimental study on engineered urothelial grafts. Eur Urol, 2004; 46(4):531-7
    
    74. Schoellera T, Neumeisterb MW, Huemera GM, et al.Capsule induction technique in a rat model for bladder wall replacement: an overview. Biomaterials, 2004; 25(9): 1663-73
    
    75. Lin J, Hao JR, Jin J, et al. Homologous dermal acellular matrix graft for urethral reconstruction in man (report of 16 cases). Zhonghua Yi Xue Za Zhi, 2005; 85(15):1057-9
    
    76. Bach AD, Bannasch H, Galla TJ, et al. Fibrin glue as matrix for cultured autologous urothelial cells in urethral reconstruction. Tissue Eng, 2001; 7(1):45-53
    
    77. Klausner AP, Steers WD. Research frontiers in the treatment of urinary incontinence. Clin Obstet Gynecol, 2004; 47(1):104-13
    
    78. Tsai CC, Lin V, Tang L. Injectable biomaterials for incontinence and vesico-ureteral reflux: Current status and future promise. J Biomed Mater Res Part B: Appl Biomater, 2006; 77(1): 171 -8
    
    79. Yokoyama T, Yoshimura N, Dhir R, et al. Persistence and survival of autologous muscle derived cells versus bovine collagen as potential treatment of stress urinary incontinence. J Urol, 2001; 165(1):271-6
    
    80. Jack GS. .Almeida FG,Zhang R,et al.processed lipoaspirate cells for tissue engineering of the lower urinary tract: implications for the treatment of stress urinary incontinence and bladder reconstruction.J Urol, 2005,174(5):2041-45
    
    81. Strasser H, Marksteiner R, Margreiter E, et al. Stem cell therapy for urinary incontinence. Urologe A, 2004; 43(10): 1237-41
    
    82. Yokoyama T, Huard J, Chancellor MB. Myoblast therapy for stress urinary incontinence and bladder dysfunction. World J Urol, 2000;18(1):56-61
    1. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitorcells responsible for postnatal vasculogenesis inphysiological and pathological neovascularization.Circ Res 1999; 85: 221-228.
    2. Takahashi T, Kalka C, Masuda H,et al.Ischemia- and cytokine-induced mobilization of bonemarrow-derived endothelial progenitor cells for neovascularization.Nature Med 1999; 5: 434-438.
    3. Kalka C,Masuda H,Takahashi T, et al. Transplantation of ex vivo expanded endothelialprogenitor cells for therapeutic neovascularization.Proc Natl Aca Sci USA 2000; 97: 3422-3427.
    4. Jeltsch M, Kaipaincn A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGFC transgenic mice. Science 1997; 276: 1423-1425.
    5. Waltenberger J, Mayr U,Pentz S, et al, Functional upregulation of the vascular endothelialgrowth factor receptor KDR by hypoxia. Circulation1996; 94: 1647-1654.
    6. Kalka C, Masuda H, Takahashi T, et al. Vascular endothelialgrowth factor165 gene transfer augments circu-lating endothelial progenitor cells in human subjects.Circ Res 2000; 86:1198-1202
    7. Kalka C, Tehrani H, Laudenberg B, et al. Mobilization of endothelialprogenitor cells following gene therapy with VEGF165in patients with inoperable coronary disease. AnnThorac Surg 2000; 70: 829-834.
    
    8. KY Lee , MC. Peters , DJ. Mooney.Comparison of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in SCID mice. Journal of Controlled Release,2003, 87:49-56
    
    9. Giordano FJ, Ping P, McKirnan MD, et al. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med. 1996 May;2(5):534-9.
    
    10. Liekens S, Clercq ED, Neyts J ,et al. Angiogenesis: regulators and clinical applications Biochemical Pharmacology ,2001,61: 253 - 270
    
    11. Rabinovsky ED. ,Draghia R Insulin-like Growth Factor I Plasmid Therapy Promotes in Vivo Angiogenesis. Molecular Therapy ,2004,V9: 46-55
    
    12. Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 1996;271:10079-86.
    
    13. Kameha R. Kidd, Stuart K. Williams Laminin-5-enriched extracellular matrix accelerates angiogenesis and neovascularization in association with ePTFE J Biomed Mater Res,2004, 69A: 294 - 304
    
    14. Kameha R. Kidd, Raymond B. Nagle, Stuart K. Williams. Angiogenesis and neovascularization associated with extracellular matrix-modified porous implants.J Biomed Mater Res,2002, 59: 366 - 377,
    
    15. Mark A. Schwartz, Alice L. Stone, Kevin A. Greer,Gene expression in tissue associated with extracellular matrix modified ePTFE. J Biomed Mater Res, 2005, 73A: 30 - 38
    
    16. Orlic, D., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature 410: 701-705.
    
    17. Jackson, K. A., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107: 1395-1402.
    
    18. Kocher, A. A., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 7: 430-436.
    
    19. Asahara, T., et al. (1999). Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85: 221-228.
    
    20. Prisca Zammaretti, Andreas H. Zisch,Adult 'endothelial progenitor cells' Renewing vasculature. The International Journal of Biochemistry & Cell Biology ,2005,V37: 493-503
    
    21. Assmus, B., Schachinger, V., Teupe, C.et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation, 2002,106(24):3009-3017
    
    22. Hattori, K., et al. (2001). Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J. Exp. Med. 193: 1005 - 1014.
    
    23. Isner JM. Tissue responses to ischemia: local and preremoteresponses for preserving perfusion of ischemicmuscle. J Clin Invest 2000; 106: 615-619.
    
    24. Ortega N, L'Faqihi FE, Plouet J. Control of vascular endothelial growth factor agiogenic activity by the extracellular matrix. Biology of the Cell 1998:V90,381-390
    25. M.H. Sheridan , L.D. Shea , M.C. Peters ,Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. Journal of Controlled Release 2000,64:91-102
    
    26. Kanematsu A, Yamamoto S, Noguchi T,et al. Bladder regeneration by bladder acellular matrix combined with sustained release of exogenous growth factor. J Uro, 2003,V170,1633-1638
    
    27. Laham, R.J., Sellke, F.W., Edelman, E.R., et. al. Local perivascular delivery of basic .broblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 1999,100, 1865 - 1871
    
    28. Wissink M.J.B., Beernink R., Poot A.A., et al. Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices. Journal of Controlled Release ,2000 ,64:103-114
    
    29. Zisch AH, Lutolf MP, Ehrbar M, et al. Cell-demanded release of VEGF from synthetic, biointeractive cell-ingrowth matrices for vascularized tissue growth. FASEB J. 2003 Dec;17(15):2260-2
    
    30. Alison B. Pratt, Franz E. Weber, Hugo G Schmoekel, Synthetic Extracellular Matrices for In Situ Tissue Engineering. Biotechnology And Bioengineering, 2004, V86:27-36
    
    31. Jennie B. Leacha, Christine E. Schmidt.Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials ,2005,26:125 - 135
    
    32. Martin C. Peters, Peter J. Polverini, David J. Mooney Engineering vascular networks in porous polymer matrices.J Biomed Mater Res, 2002 ,60: 668 - 678
    
    33. Arsic N, Zentilin L, Zacchigna S, et al. Induction of Functional Neovascularization by Combined VEGF and Angiopoietin-1 Gene Transfer Using AAV Vectors. Molecular Therapy ,2003,V7: 450-9
    
    34. Angela K. Pannier, Lonnie D. Shea. Controlled Release Systems for DNA Delivery. Molecular Therapy,2004 V10, 19-26
    
    35. J. Bonadio, Tissue engineering via local gene delivery: update and future prospects for enhancing the technology, Adv. Drug. Deliv. Rev. ,2000,44:185 - 194.
    
    36. Friess, Collagen-biomaterial for drug delivery, Eur. J. Pharm. Biopharm. 1998, 45:113-136.
    
    37. T. Ochiya, Y. Takahama, S. Nagahara,et al.New delivery system for plasmid DNA in vivo using atelocollagen as a carrier: the Minipellet, Nat. Med. 1999,5: 707-710
    
    38. J. Bonadio, E. Smiley, P. Patil, S. Goldstein, Localized direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration, Nat. Med. 1999, 5: 753 - 759
    
    39. Delivery and expression of pDNA embedded in collagen matrices 。 Hagit Cohen-Sacksa, Victoria Elazara, Jianchuan Gaoa, et al. Journal of Controlled Release 2004, 95: 309 - 320
    
    40. Luu YK, Kim K, Hsiao BS,et al.Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J control Release 2003,v89:341-353
    
    41. Elcin YM.Dixit V,Gitinick GExtensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: imlications for tissue engineering and wound healing.Artif Organs 2001;25 ( 7) :558-65
    
    42. Langer R, Vacanti JP. Tissue engineering. Science. 1993 May 14;260(5110):920-6.
    
    
    43. Kim SS, Utsunomiya H, Koski JA, et al. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann Surg. 1998 Jul;228(l):8-13
    
    44. Satoshi K, Jeffrey B, Rahul B A, et al. Silicon micromachining to tissue engineering branched vascular channels for liver fabrication.Tissue Engineering, ,2000,6:105-117.
    
    45. Hammond JS, Beckingham IJ, Shakesheff KM. Scaffolds for liver tissue engineering. Expert Rev Med Devices. 2006 Jan;3(1):21-7.
    
    46. L.M. Goncalves, S.E. Epstein, J.J. Piek, Controlling collateral development: the difficult task of mimicking mother nature, Cardiovasc. Res,2001,49: 495 - 496
    
    47. S.D. Putney, P.A. Burke, Improving protein therapeutics with sustained-release formulations, Nature Biotech. 1998, 16;153 - 157
    
    48. Henrik Eckardt, Kristian G Bundgaard a, Knud S.et al. Effects of locally applied vascular endothelial growth factor (VEGF) and VEGF-inhibitor to the rabbit tibia during distraction osteogenesis. Journal of Orthopaedic Research ,2003,21:335 - 340