具有区段定向诱导分化活性的仿生组织工程韧带的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:制备猪小肠粘膜下层(SIS),将其作为组织工程韧带的支架材料,应用同基双功能交联剂SS-PEG3400-SS与重组人骨形态发生蛋白-2(BMP-2)进行共价偶联,并随后与SIS进行共价交联反应,以研究经过共价偶联固化了BMP-2的SIS在缓慢降解的同时,是否可以随着其降解而长时间自发释放BMP-2,从而持续刺激小鼠胚胎成骨细胞株(MC3T3-E1)向成骨细胞定向分化。
     方法:将BMP-2与同基双功能交联剂SS-PEG3400-SS进行共价交联,然后将交联后的产物与制备的SIS进行共价偶联,从而间接将BMP-2固化在SIS上。用透射电镜对交联后的SIS进行形态学观察,并评估MC3T3-E1细胞在与多种不同SIS上的增殖及定向分化情况。同时比较与BMP-2共价偶联后的SIS与未与BMP-2共价偶联的SIS上钙结节的数量及碱性磷酸酶活力值,结果采用SPSS11.0软件进行统计学分析。
     结果:与未修饰的BMP-2相比,共价修饰后的BMP-2仍具有生物活性。通过将交联剂SS-PEG3400-SS与主要成分为胶原的SIS进行交联,可减慢SIS在体外的降解速度,并且共价交联的BMP-2可随着SIS的降解而长时间释放,从而能持续刺激MC3T3-E1细胞向成骨方向分化。
     结论:BMP-2通过同基双功能交联剂SS-PEG3400-SS与SIS共价偶联。共价偶联了BMP-2的SIS能更好刺激与其复合培养的MC3T3-E1细胞向成骨方向定向分化。
Objectives: To prepare porcine small intestine submucosa(SIS) for the scaffold of tissue engineering ligament,and using the homobifunctional cross-linking agent Disuccinimidyldisuccinatepolyethyleneglycol(SS-PEG3400-SS)for both the covalent coupling of the bone morphogenetic proteins-2(BMP-2) to and cross-linking of SIS. And the goal is to evaluate whether the covalent bound BMP-2 will be released simultaneously with the degradation of SIS,and which will lead to the MC3T3-E1 cell directionally differentiate to osteoblast.
     Methods: Using the homobifunctional cross-linking agent SS-PEG3400-SS to covalently couple of BMP-2, and the conjugated BMP-2 molecules were then allowed to react with SIS for the immobilisation reaction , which leading to covalently immobilise the BMP-2 within SIS. Transmission electron microscope(TEM) were used to observe the morphous of the cross-linked SIS and evaluate the proliferation and differentiation of MC3T3-E1 cells which exposed to the differently modified and loaded SIS. Comparing to the quantity of calcium nodule and alkaline phosphatase (AKP) in per piece of differently modified and loaded SIS, then statistical analysis was performed by using the software package SPSS11.0.
     Results The conjugates (BMP-2)-PEG still have a bioactivity as compared to the non-modified BMP-2. The crosslinking of SIS through corss-linking agent SS-PEG3400-SS stabilize the SIS and slow down its degradation in vitro, and covalent bound BMP-2 can be released persistently and simultaneously with the degradation of the SIS, which can lead to the MC3T3-E1 cell directionally differentiate to osteoblast.
     Conclusion: BMP-2 can covalently link to the SIS through the cross-linking agent. After covalently immobilising the BMP-2 within SIS, the directional differentiation to osteoblast of MC3T3-E1 cells which exposed to the modified SIS can be observed.
引文
1. Voigt C,Schonaich M,Lill H.Anterior cruciate ligament reconstruction:state of the art[J].Eur J Trauma,2006,32(4):332-329.
    2.敖英芳,田得祥,崔国庆,等.运动员前交叉韧带损伤的流行病学研究[J].体育科学,2000,20(4):47-49.
    3. Breitfus s H, Frohlich R, Povacz P, et al.The tendon defect after anterior cruciate ligament recons truction us ing the midthird patellar tendon a problem for the patellofemoral joint?Knee Surg Sports Traumatol Arthrosc 1996;3(4):194-198
    4. Kartus J , Movin T, Karls son J .Donor-s ite morbidity and anterior knee problems after anterior cruciate ligament recons truction us ing autografts . Arthroscopy 2001;17(9):971-980.
    5. Otto D, Pinczewski LA, Clingeleffer A,et al.Five-year results of s ingleincis ion arthroscopic anterior cruciate ligament recons truction with patellar tendon autograft.Am J Sports Med 1998;26(2):181-188.
    6. Badylak SF, Kropp B, McPherson T, Liang H, Snyder PW. Small intestional submucosa: a rapidly resorbed bioscaffold for augmentation cystoplasty in a dog model. Tissue Eng. 1998 Winter;4(4):379-87.
    7. Chen W, Li C, Wu S, Xie H, Luo J.[Effect of acellular process on small intestinal submucosa cell residue and growth factor content] Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2010 Jan;24(1):94-9.
    8. Ding H, Zhang C.[Current development of basic research and clinical use of small intestinal submucosa] Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2010 Jan;24(1):112-5.
    9. Badylak SF, Kropp B, McPherson T, Liang H, Snyder PW. Small intestional submucosa: a rapidly resorbed bioscaffold for augmentation cystoplasty in a dog model. Tissue Eng. 1998 Winter;4(4):379-87.
    10. Kropp BP. Small-intestinal submucosa for bladder augmentation: a review of preclinical studies. World J Urol. 1998;16(4):262-7.
    11. Gilbert TW, Stewart-Akers AM, Simmons-Byrd A, Badylak SF. Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. J Bone Joint Surg Am. 2007 Mar;89(3):621-30.
    12. Murphy KD, Mushkudiani IA, Kao D, Levesque AY, Hawkins HK, Gould LJ. Successful incorporation of tissue-engineered porcine small-intestinal submucosa as substitute flexor tendon graft is mediated by elevated TGF-beta1 expression in the rabbit. J Hand Surg Am. 2008 Sep;33(7):1168-78.
    13. Phipatanakul WP, Petersen SA. Porcine small intestine submucosa xenograft augmentation in repair of massive rotator cuff tears. Am J Orthop (Belle Mead NJ). 2009 Nov;38(11):572-5.
    14. Ueno T, de la Fuente SG, Abdel-Wahab OI, Takahashi T, Gottfried M, Harris MB, Tatewaki M, Uemura K, Lawson DC, Mantyh CR, Pappas TN. Functional evaluation of the grafted wall with porcine-derived small intestinal submucosa (SIS) to a stomach defect in rats. Surgery. 2007 Sep;142(3):376-83.
    15. Nishimura T, Ueno T, Nakatsu H, Oga A, Kobayashi S, Oka M. In Vivo Motility Evaluation of the Grafted Gastric Wall with Small Intestinal Submucosa. Tissue Eng Part A. 2010 Feb 8.
    16. Zhang F, Zhang J, Lin S, Oswald T, Sones W, Cai Z, Dorsett-Martin W, Lineaweaver WC. Small intestinal submucosa in abdominal wall repair after TRAM flap harvesting in a rat model. Plast Reconstr Surg. 2003 Aug; 112(2):565-70.
    17. Pu LL; Plastic Surgery Educational Foundation DATA Committee. Small intestinal submucosa (Surgisis) as a bioactive prosthetic material for repair of abdominal wall fascial defect. Plast Reconstr Surg. 2005 Jun;115(7):2127-31.
    18. Lantz GC, Badylak SF, Hiles MC, Coffey AC, Geddes LA, Kokini K, Sandusky GE, Morff RJ. Small intestinal submucosa as a vascular graft: a review. J Invest Surg. 1993 May-Jun;6(3):297-310.
    19. Bejjani GK, Zabramski J; Durasis Study Group. Safety and efficacy of the porcine small intestinal submucosa dural substitute: results of a prospective multicenter study and literature review. J Neurosurg. 2007 Jun;106(6):1028-33.
    20. Everaerts F, Torrianni M, Hendriks M, Feijen J. Biomechanical properties of carbodiimide crosslinked collagen: influence of the formation of ester crosslinks. J Biomed Mater Res A. 2008 May;85(2):547-55.
    21. Merrett K, Liu W, Mitra D, Camm KD, McLaughlin CR, Liu Y, Watsky MA, Li F, Griffith M, Fogg DE. Synthetic neoglycopolymer-recombinant human collagen hybrids as biomimetic crosslinking agents in corneal tissue engineering. Biomaterials. 2009 Oct;30(29):5403-8. Epub 2009 Jul 2.
    22. Yung CW, Wu LQ, Tullman JA, Payne GF, Bentley WE, Barbari TA. Transglutaminase crosslinked gelatin as a tissue engineering scaffold. J Biomed Mater Res A. 2007 Dec 15;83(4):1039-46.
    23. Yang CH. Evaluation of the release rate of bioactive recombinant human epidermal growth factor from crosslinking collagen sponges. J Mater Sci Mater Med. 2008 Mar;19(3):1433-40. Epub 2007 Oct 4.
    24. Yao C, Markowicz M, Pallua N, Noah EM, Steffens G. The effect of cross-linking of collagen matrices on their angiogenic capability. Biomaterials. 2008 Jan;29(1):66-74.
    25. Koch S, Yao Ch, Grieb G, Prével P, Noah EM, Steffens GC. Enhancing angiogenesis in collagen matrices by covalent incorporation of VEGF. J Mater Sci Mater Med. 2006 Aug;17(8):735-41.
    26. Sung HW, Huang DM, Chang WH, Huang RN, Hsu JC. Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: in vitro study. J Biomed Mater Res. 1999 Sep 15;46(4):520-30.
    27. Xi-xun Y, Fei L, Yuan-ting X, Chang-xiu W. In vitro study in the endothelial cell compatibility and endothelialization of genipin-crosslinked biological tissues for tissue-engineered vascular scaffolds. J Mater Sci Mater Med. 2010 Feb; 21(2):777 -85.
    28. Sung HW, Chen CN, Huang RN, Hsu JC, Chang WH. In vitro surface characterization of a biological patch fixed with a naturally occurring crosslinking agent. Biomaterials. 2000 Jul;21(13):1353-62.
    29. Chevallay B, Abdul-Malak N, Herbage D. Mouse fibroblasts in long-term culture within collagen three-dimensional scaffolds: influence of crosslinking with diphenylphosphorylazide on matrix reorganization, growth, and biosynthetic and proteolytic activities. J Biomed Mater Res. 2000 Mar 15;49(4):448-59.
    30. Yung CW, Wu LQ, Tullman JA, Payne GF, Bentley WE, Barbari TA. Transglutaminase crosslinked gelatin as a tissue engineering scaffold. J Biomed Mater Res A. 2007 Dec 15;83(4):1039-46.
    31. Payne RG, McGonigle JS, Yaszemski MJ, Yasko AW, Mikos AG. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials. 2002 Nov;23(22):4373-80.
    32. Chen JS, Noah EM, Pallua N, Steffens GC. The use of bifunctional polyethyleneglycol derivatives for coupling of proteins to and cross-linking of collagen matrices. J Mater Sci Mater Med. 2002 Nov;13(11):1029-35.
    33. Wozney JM, Rosen V.Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop Rel Res 1998;346:26-37.
    34.郝杰,郑启新,郭晓东等.生物活性骨基质材料的研制及其细胞相容性的研究[J].生物医学工程学杂志,2005,22(3):433-437.
    35. Abraham GA, Murray J, Billiar K, Sullivan SJ. Evaluation of the porcine intestinal collagen layer as a biomaterial. J Biomed Mater Res. 2000 Sep5;51(3):442-52.
    36. Allman AJ, McPherson TB, Badylak SF, Merrill LC, Kallakury B, Sheehan C,Raeder RH, Metzger DW. Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation. 2001 Jun 15;71(11):1631-40.
    37. Sarikaya A, Record R, Wu CC, Tullius B, Badylak S, Ladisch M. Antimicrobialactivity associated with extracellular matrices. Tissue Eng. 2002 Feb;8(1):63-71.
    38. McDevitt CA, Wildey GM, Cutrone RM. Transforming growth factor-beta1 in a sterilized tissue derived from the pig small intestine submucosa. J Biomed Mater Res A. 2003 Nov 1;67(2):637-40.
    39. Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem. 1997 Dec 15;67(4):478-91.
    40. Hurst RE, Bonner RB. Mapping of the distribution of significant proteins and proteoglycans in small intestinal submucosa by fluorescence microscopy.J Biomater Sci Polym Ed. 2001;12(11):1267-79.
    1. Voigt C,Schonaich M,Lill H.Anterior cruciate ligament reconstruction:state of the art[J].Eur J Trauma,2006,32(4):332-329.
    2.敖英芳,田得祥,崔国庆,等.运动员前交叉韧带损伤的流行病学研究[J].体育科学,2000,20(4):47-49.
    3. Chang SKY,Egami DK,Shaieb MD,et a1.Anterior cruciate ligament reconstruction: allograft versus autograft.Arthroscopy,2003,19:453-462.
    4. Fox JA, Nedeff DD, Bach Jr BR, Spindler KP. Anterior cruciate ligament reconstruction with patellar autograft tendon. Clin Orthop Relat Res. 2002 Sep;(402):53-63.
    5. Aglietti P, Giron F, Buzzi R, Biddau F, Sasso F.Anterior cruciate ligament reconstruction: bone-patellar tendon-bone compared with double semitendinosusand gracilis tendon grafts. A prospective, randomized clinical trial. J Bone Joint Surg Am. 2004 Oct;86-A(10):2143-55.
    6. Kartus J, Movin T, Karisson J. Donor-site morbidity and anterior knee problems after anterior cruciate ligament reconstruction using autografts. Arthroscopy 2001, 17(9):971-80.
    7. Rosenberg TD, Franklin JL, Baldwin GN, Nelson KA.Extensor mechanism function after patellar tendon graft harvest for anterior cruciate ligament reconstruction.Am J Sports Med. 1992 Sep-Oct;20(5):519-25; discussion 525-6.
    8. Biau DJ, Tournoux C, Katsahian S, Schranz PJ, Nizard RS. Bone-patellar tendon-bone autografts versus hamstring autografts for reconstruction of anterior cruciate ligament: meta-analysis. BMJ. 2006 Apr 29; 332(7548): 995-1001. Epub 2006 Apr 7.
    9. Poolman RW, Abouali JA, Conter HJ, Bhandari M. Overlapping systematic reviews of anterior cruciate ligament reconstruction comparing hamstring autograft with bone-patellar tendon-bone autograft: why are they different? J Bone Joint Surg Am. 2007 Jul;89(7):1542-52.
    10. Eriksson K,Kindblom LG, Hamberg P.The semitendinosus tendon regenerates after resection: a morphologic and MRI analysis in 6 patients after resection for anterior cruciate ligament reconstruction.Acta Orthop Scand, 2001, 72(4):379—84.
    11.龚熹,敖英芳.自体半腱肌腱股薄肌腱重建前交叉韧带术后肌腱再生的临床研究.中国运动医学杂志,2005,24(1):13-15.
    12. Billotti JD, Meese MA, Alberta F, et a1.A prospective,clinical study evaluating arthroscopic ACL reconstruction using the semitendinosus and iliotibial band: 2 to 5-year follow up. Orthopaedics, 1997, 2: 125—131.
    13.刘玉杰,王志刚,李众利,等.关节镜下骨栓绳肌腱结嵌入固定法重建膝前后十字韧带[J].中华骨科杂志,2004,24(3) :133 - 136.
    14. Prodromos CC, Joyce BT. Shi K, et a1. A meta—analysis of stability after anterior cruciate ligament reconstruction as a function of hamstring versus patellar tendon graft and fixation type[J]. Ar. Thrcocopy. 2005, 21(10):1202—1207.
    15. Yasuda K, Tsujino J, Ohkoshi Y, Tanabe Y, Kaneda K. Graft site morbidity with autogenous semitendinosus and gracilis tendons. Am J Sports Med. 1995 Nov-Dec; 23(6): 706-14.
    16. Noyes FR, Barber-Westin SD. Anterior cruciate ligament revision reconstruction: results using a quadriceps tendon-patellar bone autograft. Am J Sports Med. 2006 Apr;34(4):553-64. Epub 2005 Dec 19.
    17. Chen CH, Chen WJ, Shih CH. Arthroscopic anterior cruciate ligament reconstruction with quadriceps tendon-patellar bone autograft. J Trauma. 1999 Apr;46(4):678-82.
    18. Theut PC, Fulkerson JP, Armour EF, Joseph M. Anterior cruciate ligament reconstruction utilizing central quadriceps free tendon. Orthop Clin North Am. 2003 Jan;34(1):31-9.
    19. DesRosiers EA , Yahia L, Rivard CH. Proliferative and matrix synnthesis response of canine anterior crueiate ligament fibroblsts submitted to combined growth factors[J].J Orthop Res,1996,14 (2):200-8.
    20. Clark JC, Rueff DE, Indelicato PA, Moser M. Primary ACL reconstruction using allograft tissue. Clin Sports Med. 2009 Apr;28(2):223-44, viii.
    21. Krych AJ, Jackson JD, Hoskin TL, Dahm DL. A meta-analysis of patellar tendon autograft versus patellar tendon allograft in anterior cruciate ligament reconstruction. Arthroscopy. 2008 Mar; 24(3): 292-8. Epub 2007 Nov 5.
    22. Kleipool AE, Zijl JA, Willems WJ. Arthroscopic anterior cruciate ligament reconstruction with bone-patellar tendon-bone allograft or autograft. A prospective study with an average follow up of 4 years. Knee Surg Sports Traumatol Arthrosc. 1998;6(4):224-30.
    23. Sadovsky P, Musil D, Stehlík J. Allograft for surgical reconstruction of the cruciate ligaments of the knee-part 1. Acta Chir Orthop Traumatol Cech. 2005;72(5):293-6.
    24. Zhang L, Liu JS, Sun J, Li ZY, Ma J. Comparison of the clinical outcome of anterior cruciate ligament reconstruction using allograft anterior tibialis and autologous hamstring tendon. Zhongguo Gu Shang. 2009 Mar;22(3):166-9.
    25. Caborn DN, Selby JB. Allograft anterior tibialis tendon with bioabsorbable interference screw fixation in anterior cruciate ligament reconstruction. Arthroscopy. 2002 Jan; 18 (1):102-5.
    26. Nyland J, Caborn DN, Rothbauer J, Kocabey Y, Couch J. Two-year outcomes following ACL reconstruction with allograft tibialis anterior tendons: a retrospective study. Knee Surg Sports Traumatol Arthrosc. 2003 Jul;11(4):212-8. Epub 2003 Jun 19.
    27. Li J, Chen G, Tu CQ, Li Q. Arthroscopic transtibial double-bundle posterior cruciate ligament reconstruction using calcaneal-tendon allograft. Sichuan Da Xue Xue Bao Yi Xue Ban. 2005 Sep;36(5):730-3.
    28. Indelli PF, Dillingham MF, Fanton GS, Schurman DJ. Anterior cruciate ligament reconstruction using cryopreserved allografts. Clin Orthop Relat Res. 2004 Mar; (420):268-75.
    29. Ahn JH, Yoo JC, Wang JH. Posterior cruciate ligament reconstruction: double-loop hamstring tendon autograft versus Achilles tendon allograft--clinical results of a minimum 2-year follow-up. Arthroscopy. 2005 Aug;21(8):965-9.
    30. Bai L, Wang J, Fu Y. Anterior crucial ligament reconstruction with allograft hamstring fixed by Rigidfix and Intrafix anchorages. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi.2007 Aug;21(8):882-5.
    31. Edgar CM, Zimmer S, Kakar S, Jones H, Schepsis AA. Prospective comparison of auto and allograft hamstring tendon constructs for ACL reconstruction. Clin Orthop Relat Res. 2008 Sep;466(9):2238-46. Epub 2008 Jun 25.
    32. Corner EM. The exploration of the knee joint with some illustrative cases.Br J Surg,1914,2:191.
    33. Trieb K, Blahovec H, Brand G, Sabeti M, Dominkus M, Kotz R. In vivo and in vitro cellular ingrowth into a new generation of artificial ligaments. Eur Surg Res. 2004 May-Jun;36(3):148-51.
    34. Nau T, Lavoie P, Duval N. A new generation of artificial ligaments in reconstruction of the anterior cruciate ligament. Two-year follow-up of a randomised trial. J Bone Joint Surg Br. 2002 Apr; 84(3): 356-60.
    35. Liu ZT, Zhang XL, Jiang Y, Zeng BF. Int Orthop. Four-strand hamstring tendon autograft versus LARS artificial ligament for anterior cruciate ligament reconstruction. 2009 Apr 25.
    36. Li B, Wen Y, Wu H, Qian Q, Wu Y, Lin X. Arthroscopic single-bundle posterior cruciate ligament reconstruction: retrospective review of hamstring tendon graft versus LARS artificial ligament. Int Orthop. 2009 Aug;33(4):991-6. Epub 2008 Jul 25.
    37. West RV, Harner CD. Graft selection in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg. 2005 May-Jun;13(3):197-207.
    38. Pasa L, Pokorny V, Adler J. Arthroscopic treatment of the unstable knee joint by ligament reconstruction using allografts. Acta Chir Orthop Traumatol Cech. 2001; 68(1):31-8.
    39. Clark JC, Rueff DE, Indelicato PA, Moser M. Primary ACL reconstruction using allograft tissue. Clin Sports Med. 2009 Apr;28(2):223-44, viii.