红花玉兰花部性状多样性分析与抗旱性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红花玉兰(Magnolia wufengensis)为马履一教授等发现的木兰科木兰属玉兰亚属新种,分布范围狭窄、数量稀少,生境破碎,自然更新困难,处于极度濒危状态,具有极高的科研价值和观赏价值,它作为城市绿化树种和山地造林树种具有广阔的推广应用前景。本文主要对红花玉兰花部性状、花芽分化和发育过程以及抗旱性进行了研究,以期为红花玉兰种质资源保护、遗传育种、引种栽培和推广利用提供参考依据。
     本文采用相关分析、主成分分析和聚类分析方法,对红花玉兰花部12个性状进行了连续观察和分析,并筛选出各具特色的优异性状单株;利用常规石蜡切片法,对红花玉兰有性生殖过程中大、小孢子发生和雌、雄配子体发育进行了细胞学观察;以1年生红花玉兰幼苗为试验材料,设置对照(CK)、轻度干旱胁迫(T1)、中度干旱胁迫(T2)和重度干旱胁迫(T3)4个水分处理水平,对红花玉兰抗旱性进行了研究。主要研究结果如下:
     (1)对红花玉兰花部12个性状的分析结果表明:花部性状遗传变异丰富,各居群内均以12瓣的花朵出现频率最高。聚类分析结果显示个体间的差异较大,同一居群内的个体聚类后分为不同的类别,居群内遗传变异丰富;居群间聚类分析结果显示高峰和栗子坪两个居群在花部性状多样性水平上聚为一类,表明两居群间的遗传多样性较低;影响红花玉兰花部性状的主成分有5个,其中花瓣数的贡献率最大,.达到42.91%;花部12个性状的相关分析结果表明各个性状间的相互影响较大,花柱长与雌蕊数、雄蕊长相互关系密切,花柱长的花朵表现出雌蕊数较多、雄蕊较长。
     (2)从优良单株类型来看,箩筐岩居群资源数量虽然较少,但花被片数目的变异类型丰富;黄粮坪居群花色、花型、大小及花被片形状变异丰富,但花被片数目比较稳定;栗子坪居群花的数目、颜色、形状变异都比较丰富,尤其以花被片数目的变异比较明显;高峰居群花的大小和颜色变异均比较丰富。对四个居群50个优良单株花部性状的聚类分析结果表明红花玉兰在居群内遗传变异丰富;主成分分析结果显示前三个主成分分别为花型因子、花大小因子和花色因子,聚类分析和主成分分析均与花部性状多样性研究结果一致。红花玉兰在长期的生长和演化过程中,对不同环境形成了不同的适应机制,从而产生了从个体到种群水平的不同变异现象。
     (3)对红花玉兰大小孢子发生和雌雄配子体发育过程的细胞学观察结果显示:该物种大小孢子发生和雌雄配子体的形成过程基本正常,不是导致其濒危的原因,红花玉兰的濒危原因有待于做进一步研究。
     (4)干旱胁迫抑制了红花玉兰幼苗的光合作用,随着干旱胁迫程度的加剧,株高、地径、生物量、净光合速率、气孔导度和叶片蒸腾速率逐渐降低,叶绿素a、叶绿素b和总叶绿素含量在T1处理略有升高,在T2和T3处理明显降低;胞间二氧化碳浓度、气孔限制值与水分利用效率保持相对的稳定,在轻度胁迫时略有上升,在中度、重度胁迫时转为下降的趋势,生物量分配更多地流向地下器官,地上器官生物量分配明显变少,造成根冠比增大。在不同的水分供应条件下,红花玉兰幼苗的渗透调节物质、膜脂过氧化及保护酶等参数均表现出明显的差异,随着干旱胁迫程度的加剧,红花玉兰幼苗叶片组织相对含水量有所下降,可溶性蛋白、脯氨酸、丙二醛含量逐渐累积升高,在同一处理水平,随着胁迫时间的延长,相对含水量呈下降的趋势,而脯氨酸表现出明显的累积现象;保护酶SOD、POD、CAT、APX变化规律基本一致均呈现先增加而后降低的变化趋势。干旱胁迫条件下,红花玉兰幼苗的生长受到一定程度的抑制,但能通过多方面的形态和生理调节来适应水分环境的变化,维持植物正常的生理代谢功能,保证了干旱胁迫下的正常生长,这些适应机制使其能够适应较大程度的干旱环境,表现出一定的抗旱耐旱能力,而成为水资源短缺城市造林绿化不可多得的新种质。
Magnolia wufengensis is a new Magnoliaceae species found and nominated by Luyi Ma, Because the narrowness of its dispersal area, the scarcity of its individuals, M.wufengensis now is extremely endangered. This species has high ornamental value and scientific value, it has a broad application prospect as greening tree in urban and mountain area. In order to provide theoretical basis for its germplasm conservation, the breeding, introduction and cultivation, the promotion of its use, the researches on its floral traits, flower bud differentiation, development process, and drought resistance, were carried on in this paper,.
     Firstly, we make continuous observation and analysis of 12 floral traits of M. wufengensis, and selected individuals of different characteristics with the methods of correlation analysis, principal component analysis and cluster analysis; secondly, we make cytological observations of large and small microsporogenesis, female and male gametophyte in its sexual reproduction process through conventional paraffin section method. To study its drought resistance,1-year-old Magnolia wufengensis seedlings were potted under four different soil water content levels: optimal water content (CK), mild drought stress(T1), moderate drought stress(T2) and severe drought stress(T3).The main results are as follows:
     (1)the analysis of 12 floral traits indicated that Floral traits has a rich genetic variation; and flower with 12 petal has highest frequency in its populations. Cluster analysis shows that there is large difference between individuals, so that individuals within the same population clustered into different categories, there is a rich genetic variation within populations; cluster analysis among the populations shows that the diversity of floral traits growed up in Liziping and Gaofeng is in the same level with low genetic diversity among populations. Floral traits of M. wufengensis have 5 main components, the number of petals has the greatest contribution, reaching 42.91%. Correlation analysis of 12 floral traits shows that there is large interaction between different characters, the diversity of floral morphology and quantitative traits may be related to the long-term co-evolution of pollinating insects.
     (2)Considering the types of fine individual, there is fewer resource of M. wufengensis in Luokuangyan, the number of petals have various mutation types; The flower of M. wufengensis growed in Huangliangping have rich color, type, size and shape, the number of petals is stable; M. wufengensis growed in Liziping is rich of the number, color and shape of flower, in particular, the variation in the number of tepals is obvious; M. wufengensis growed in Gaofeng have rich variation on their color and size of flower. Cluster analysis on floral traits of 50 fine individuals in four populations indicates that M. wufengensis has rich variation within populations; principal component analysis revealed that the first three main components were the shape of flower, the size of perianth,and the color of petals, the result of cluster analysis and principal component analysis is the same as the result of research on diversity of floral traits.In the long-term process of growth and evolution, M. wufengensis has developed different adaptation mechanisms to adapt different environments, result in different variation from individual to populations.
     (3)The cytological observation of the process of large and small spores occurred and male and female gametophyte development of M. wufengensis shows that:This process is normal and not the reason of the endangerment of M. wufengensis, the real reasons for its endangement need further study.
     (4) Drought stress has a inhibitive influence on its photosynthesis, with drought stress became more and more serious, the heights, base diameters, biomass, Pn, Gs and Tr of the seedlings decreased significantly; Chla,chlb and chl content increased in treatment of T1, decreased in treatment of T2 and T3; Ci, Ls and the WUE kept stable, they are increasing slightly under low drought stress and then decreasing under high drought stress, but the root and the rhizome grew more than the above ground part, leading to higher root/shoot ratio. Parameters of osmolyte, lipid peroxidation and enzymes of seedlings showed great differences with different water supply leavel,. when drought stress became more and more serious, the RWC of seedlings' leaves decreased, the contents of soluble protein, MDA and Proline accumulated and increased. In the same level, as the time of drought stress became longer and longer, the RWC in seedlings'leaves decreased, Proline increased obviously, the variation trend in SOD, POD, CAT and APX activity was increase at first and then decreased. We can concluded that the growth of M. wufengensis seedlings were negatively influenced by different degree of drought stress, but they could adapt to diverse water stress through plastic responses in morphology and photosynthesis, which proves that M. wufengensis has the tolerant ability of drought conditions. so it is a new urban tree for forestation in water shortage city.
引文
[1]安玉艳,梁宗锁,郝文芳.杠柳幼苗对不同强度干旱胁迫的生长与生理响应[J].生态学报,2011,31(3):0716-0725.
    [2]蔡锡安,孙谷畴,赵平,等.土壤水分对单性木兰幼苗光合特性的影响[J].热带亚热带植物学报,2004,12(3):207~212.
    [3]曹受金,刘辉华.木兰科观赏树种在园林绿化中的应用[J].安徽农业科学,2006,34(23):6183-6184.
    [4]陈存及,代全林,谢芳,等.乳源木莲天然林群落生物多样性研究[J].福建林学院学,2001,21(4):316-319.
    [5]陈发菊,李凤兰,梁宏伟,等.珍稀濒危植物巴东木莲胚胎学研究[J].植物研究,2008,28(6):657-662.
    [6]陈少裕.脂膜过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84-90.
    [7]陈绍光,李燕南,王沙生.空气和土壤干旱对不同杨树种类无性系生长及光合的影响田.北京林业大学学报,1996,18(3):35-41.
    [8]陈小勇.生境片断化对植物种群遗传结构的影响及植物遗传多样性保护[J].生态学报,2000,20(5):884-892.
    [9]方志伟.南平市园林绿化植物抗酸雨能力的研究[J].福建林学院学报,2003,23(1):9-13.
    [10]冯立娟,苑兆和,尹燕雷,等.大丽花花型群体表型性状遗传多样性研究[J].山东农业科学,2010,7:12~16.
    [11]高芬,沈永宝.南京椴大小孢子发生和雌雄配子体的发育[J].林业科技开发,2010,24(5):22-25.
    [12]高景慧,张颖,郭维,等.分枝期3个紫花苜蓿品种光合蒸腾日变化与相关因子的关系分析[J].西北农林科技大学学报,2007,35(10):29-34.
    [13]高俊凤.植物生理学实验技术[M].世界图书出版公司,2000:921.
    [14]顾婧婧,金则新,熊能.濒危植物夏蜡梅花的形态变异[J].植物研究,2010,30(4):461-467.
    [15]顾万春,李文英.我国林木种质资源共享现状及建议[J].世界林业研究,2007,20(1):65-69.
    [16]郭卫华,李波,黄永梅,等.不同程度的水分胁迫对中间锦鸡儿幼苗气体交换特征的影响[J].生态学报,2004,24(12):2716-2722.
    [17]郭献平,王燕凌,廖康,等.水分胁迫对新疆野苹果净光合速率和水分利用率日变化的影响[J].新疆农业大学学报,2009,32(3),17-21.
    [18]韩建秋,王秀峰,张志国.表土干旱对白三叶根系分布和根活力的影响[J].中国农学通报,2007,23(3):458~461.
    [19]郝跃.红花玉兰播种育苗技术与标准化体系研究[D].北京:北京林业大学,2010.
    [20]何开跃,李晓储,黄利斌,等.干旱胁迫对木兰科5树种生理生化指标的影响[J].植物资源与环境学报,2004,13(4):20~23.
    [21]何玉惠.两种驼绒藜属植物抗旱性生理生化指标研究[D].兰州:甘肃农业大学,2005.
    [22]贺少轩,梁宗锁,蔚丽珍,等.土壤干旱对2个种源野生酸枣幼苗生长和生理特性的影响[J].西北植物学报,2009,29(7):1387-1393.
    [23]贺随超,马履一,陈发菊.红花玉兰种质资源遗传多样性初探.西北植物学报,2007,27(12):2421-2428.
    [24]贺随超,马履一.红花玉兰与玉兰亚属儿个种亲缘关系的AFLP分析[J].植物研究,2008,28(3):288~292,298.
    [25]贺随超.红花玉兰形态变异居群遗传与种间关系研究[D].北京:北京林业大学,2009.
    [26]贺窑青,马履一,桑子阳.红花玉兰花色形成的初步研究.西北植物学报,2010,30(11):2252-2257.
    [27]贺窑青.红花玉兰花色形成表型分析及生化研究[D].北京:北京林业大学,2010.
    [28]侯嫦英,方升佐,薛建辉,等.逆境条件对青檀等树种苗木生长及生理特性的影响.南京林业大学学报,2003,27(6):103-106.
    [29]胡适宜.被子植物生殖生物学[M].北京:高等教育出版社,2005.
    [30]胡晓健,欧阳献,喻方圆.干旱胁迫对不同种源马尾松苗木生长及生物量的影响[J].江西农业大学学报,2010,32(3):0510-0516.
    [31]黄坚钦.鹅掌揪雌配子体发育及淀粉动态观察[J].浙江林学院学报,1998,15(2):164-169.
    [32]黄双全,郭友好,吴艳,等.鹅掌楸的花部综征与虫媒传粉[J].植物学报,1999,41(3):241~248.
    [33]黄双全,郭友好,吴艳,等.鹅掌楸的花部数量变异与结实率[J].植物学报,1998,40(1):22-27.
    [34]黄颜梅,张健,罗承德.树木杭旱性研究综述[J].四川农业大学学报,1997(1):49-54.
    [35]姜建国,严媛,宋冬林.盐藻Psy基因保守序列的克隆及同源性分析[J].华南理工大学学报[J].2004,32(10):76-79.
    [36]姜卫兵,曹晶,李刚,等.我国木兰科观赏新树种的开发及在园林绿化中的应用[J].上海农业学报,2005,21(2):68~73.
    [37]姜卫兵,郝胜大,翁忙玲,等.逆境对木兰科树种伤害机理研究进展[J].生态环境,2008,17(1):439~446.
    [38]蒋明廉.不同采收期银杏叶总内酯及其黄酮苷的含量测定[J].广西植物,1997,17(3):283-285.
    [39]蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯,1996,32(2):144~150
    [40]金忠民,沙伟,臧威,等.干旱胁迫对白三叶幼苗保护酶的影响[J].东北林业大学学报,2010,38(7):52-53.
    [41]井振华,李皓,邵文豪,等.浙江柿天然群体表型多样性研究[J].植物研究,2010,30(3):325-331.
    [42]克雷默.植物的水分关系[M].许旭旦等译.北京:科学出版社,1989:461-481.
    [43]黎明,李福秀,马焕成,等.香木莲对短时低温胁迫处理的生理生态响应[J].北方园艺,2006(1):37~39.
    [44]李芳兰,包维,楷吴宁.白刺花幼苗对不同强度干旱胁迫的形态与生理响应[J].生态学报,2009,29(10):5406~5416.
    [45]李刚,姜卫兵,翁忙玲,等.木兰科6种常绿树幼苗抗寒性的初步研究[J].园艺学报,2007,34(3):783~786.
    [46]李桂强,何平,刘庆军.华南黑桫椤天然居群表型多样性分析[J].西南大学学报,2007,29(2):80~85.
    [47]李合生.植物生理生化试验原理和技术[M].北京:高等教育出版社,2000:134-200.
    [48]李合生.植物生理实验指导[M].北京:高等教育出版社,2003:134-137.
    [49]李吉跃.太行山区主要造林树种抗早性研究(V).北京林业大学学报,1991,13(增刊):251-265.
    [50]李明,王根轩.逆境条件对甘薯幼苗保护酶活性及膜质过氧化作用的影响.生态学报,2002,22(4):503~506.
    [51]李树华,许兴,米海莉,等.水分胁迫对牛心朴子植株生长及渗透调节物质积累的影响[J].西北植物学报,2003,23(4),592-596.
    [52]李文英,顾万春.蒙古栎天然群体表型多样性研究[J].林业科学,2005,41(1):49-56.
    [53]李晓储,黄利斌,张永兵,等.四种含笑叶解剖性状与抗旱性的研究[J].林业科学研究,2006,19(2):177~181.
    [54]李晓征,彭峰,徐迎春,等.不同光强下6种常绿阔叶树幼苗的生理特性[J].广西农业科学,2005,36(4):312~315.
    [55]李晓征,彭峰,徐迎春,等.不同遮荫下多脉青冈和金叶含笑幼苗叶片的气体交换日变化[J].浙江林学院学报,2005,22(4):380-384.
    [56]李雪萍,陈发菊,庄静冰,等.珙桐大小孢子发生及雌雄配子发育的细胞学观察[J].浙江农业科学,2008,5:546~550.
    [57]李阳,齐曼·尤努斯,祝燕.水分胁迫对大果沙枣光合特性及生物量分配的影响[J].西北植物学报,2006,26(12):2493~2499.
    [58]李招弟,马履一,陈发菊.黑暗和光照条件下低温胁迫对红花玉兰幼苗生理特性的影响[J].福建林业科技,2009,36(2):242-245.
    [59]李招弟.红花玉兰幼苗光合特性及其对温度胁迫的响应[D].北京:北京林业大学,2009.
    [60]李志国,姜卫兵,翁忙玲,等.模拟酸雨对木兰科树种叶片膜脂过氧化和抗氧化系统的影响[J].生态环境,2007,16(3):779-784.
    [61]李志国,翁忙玲,姜武,等.模拟酸雨对乐东拟单性木兰幼苗部分生理指标的影响[J].生态学杂志,2007,26(1):31-34.
    [62]梁大伟,马履一,贾忠奎,等.自然降温对红花玉兰抗寒生理指标的影响[J].林业科技开发,2010,24(2):23~26.
    [63]梁大伟.红花玉兰种质资源调查与品种分类[D].北京:北京林业大学,2010.
    [64]林文杰,马焕成,周蛟,等.干旱胁迫下保水剂对苗木生长及生理的影响[J].干旱区研究,2004,21(4):353~357.
    [65]刘爱琴,冯丽贞.水分胁迫对杉木无性系光合特性的影响[J].福建林学院学报,1991,18(3):238-241.
    [66]刘长利,王文全,崔俊茹,等.干旱胁迫对甘草光合特性与生物量分配的影响[J].中国沙漠,2006,26(1):142~145.
    [67]刘世鹏,刘济明,陈宗礼,等.模拟干旱胁迫对枣树幼苗的抗氧化系统和渗透调节的影响[J].西北植物学报,2006,26(9):1781~1787.
    [68]刘苏闽,赵明,何小弟,等.芍药性状聚类分析及其在育种上的应用[J].江苏农业科学,2009, 6(2):240~242.
    [69]刘玉壶,夏念和,杨惠秋.木兰科的起源、进化与地理分布[J].热带亚热带植物学报,1995,3(4):1-12.
    [70]刘玉英,徐泽,罗云米.干旱胁迫对不同茶树品种生理特性的影响[J].西南农业学报,2010,23(2):387~389.
    [71]刘裕强,江玲,孙立宏,等.褐飞虱刺吸诱导的水稻一些防御性酶活性的变化[J].植物生理与分子生物学学报,2005,31(6):643-650.
    [72]刘遵春,包东娥.水分胁迫对金光杏梅幼苗生长及其生理指标的影响[J].河北农业大学学报,2007,30(5):28~31,88.
    [73]罗建勋.云杉天然群体遗传多样性研究[D].北京:中国林业科学研究院,2004.
    [74]骆建霞,马莉,柴慈江,等.干旱胁迫对海姆维斯蒂枸子生长及丙二醛和脯氨酸含量的影响[J].天津农业科学,2009,15(1):1~4.
    [75]马飞,姬明飞,陈立同,等.油松幼苗对干旱胁迫的生理生态响应.西北植物学报,2009,29(3):0548-055.
    [76]马履一,王罗荣,贺随超,等.中国木兰科木兰属一新变种[J].植物研究,2006,26(5):517-519.
    [77]马履一,王罗荣,贺随超,等.中国木兰科木兰属一新种[J].植物研究,2006,22(1):4-7.
    [78]马学平,宋玉霞,马洪爱,等.肉苁蓉雌雄配子体发育的研究[J].电子显微报,2009,28(1):74-80.
    [79]马玉心,蔡体久,宋丽萍,等.兴安鹿蹄草在雪盖前后丙二醛及渗透调节物质的变化规律[J].生态学报,2007,27(11):4596-4602.
    [80]苗海霞,干旱胁迫下6种经济林树种苗期反应特性的研究[D].泰安:山东农业大学,2005.
    [81]明军,顾万春.紫丁香表型多样性研究[J].林业科学研究,2006,19(2):199-204.
    [82]欧斌,赖福胜,王波,等.深山含笑育苗技术及苗木物候与生长规律研究[J].江西林业科技,2004,(4):27~28.
    [83]潘跃芝,龚沟,梁汉兴.濒危植物红花木莲小抱子发生及雄配子体发育的研究[J].云南植物研究,2001,23(1):85-90.
    [84]潘跃芝,龚洵,梁汉兴.濒危植物香木莲的胚胎学研究[J].武汉植物学研究,2003,21(1)1~8.
    [85]潘跃芝,龚洵.濒危植物红花木莲大孢子发生和雌配子体发育的研究[J].西北植物学报,2002,22(5):1209~1214.
    [86]潘跃芝.濒危植物香木莲和红花木莲的生殖生物学研究[D].昆明:中国科学院昆明植物研究所,2000.
    [87]庞云龙,王进鑫,田丽.水分胁迫及复水对元宝枫幼树生理特性的影响[J].西北农林技大学学报.2008,36(6):92-96.
    [88]任丽花,王义祥,翁伯琦,等.土壤水分胁迫对圆叶决明叶片含水量和光合特性的影响[J].厦门大学学报,2005,44(6):28-31.
    [89]芮飞燕,马履一,彭祚登,等.红花玉兰等5个玉兰种花粉形态观察及分类学意义[J].植物研究,2007,27(4):393-397.
    [90]芮飞燕.红花玉兰种子生物学特性研究[D].北京:北京林业大学,2009.
    [91]申仕康,马海英,刘湘永,等.中国特有植物猪血木的濒危原因及保护对策[J].生态环境,2007,16(6):1819~1823.
    [92]时忠杰,胡哲森,李荣生.水分胁迫与活性氧代谢[J].贵州大学学报(农业与生物科学版),2002,21(2):140-145.
    [93]史燕山,骆建霞,王煦,等.5种草本地被植物抗早性研究.西北农林科技大学学报,2005,33(5):130~134
    [94]苏秀城.福建含笑杉木混交林幼龄期生产力及生态特性研究[J].中南林学院学报,2000,20(4):76~80.
    [95]孙彩霞,沈秀英,刘志刚.作物抗旱生理生化机制的研究现状和进展[J].杂粮作物,2002,22(5):285~288.
    [96]孙存华,李扬,杜伟,等.干旱胁迫下藜的光合特性研究[J].植物研究,2007,27(6):715-720.
    [97]孙存华,李扬,贺鸿雁,等.藜对干旱胁迫的生理生化反应[J].生态学报,2005,25(10):2556-2561.
    [98]孙谷畴,赵平,曾小平.两种木兰科植物叶片光合作用的光驯化[J].生态学报,2004,24(6):1111~1117.
    [99]孙国荣,张睿,姜丽芬,等.干旱胁迫下白桦(Betula platyphylla)实生苗叶片的水分代谢与部分渗透调节物质的变化[J].植物研究,2001,21(3):413-415.
    [100]孙景宽,李田,夏江宝,等.干旱胁迫对沙枣幼苗根茎叶生长及光合色素的影响[J].水土保持通报,2011,31(1):68-71.
    [101]孙景宽,张文辉,刘新成.干旱胁迫对沙枣和孩儿拳头的生理特性的影响[J].西北植物学报,2008,28(9),1868~1874.
    [102]孙云,江春柳,赖钟雄,等.茶树鲜叶抗坏血酸过氧化物酶活性的变化规律及测定方法[J].热带作物学报,2008,29(5):562-563.
    [103]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002.
    [104]田如男,薛建辉,李晓储,等.深山含笑和乐昌含笑的抗寒性测定[J].南京林业大学学报,2004,28(6):55~57.
    [105]田如男,薛建辉,潘良,等.铅胁迫对4种常绿阔叶行道树幼苗细胞膜透性的影响[J].南京林业大学学报,2004,28(4):43-46.
    [106]田如男,薛建辉.6个常绿阔叶乔木树种抗寒性研究[J].西南林学院学报,2005,25(4):110-112.
    [107]田智得,朱方容,林强.175份桑树种质资源的结实性农艺性状主成分与聚类分析[J].蚕业科学,2010,36(1):0001~0011.
    [108]王利琳,胡江琴,庞基良,等.凹叶厚朴大、小饱子发生和雌、雄配子体发育的研究[J].实验生物学报,2005,38(6):490-500.
    [109]王罗荣,马履一,王希群,等.红花玉兰播种育苗技术的初步研究[J].浙江林学院学报,2007,24(2):242~246.
    [110]王罗荣,王键,刘鑫等.五峰县珍稀红花玉兰种质资源保护与开发利用对策[J].湖北林业科技,2002,122(5):18~19.
    [111]王宁宁,胡增辉,沈应柏.珙桐苗木叶片光合特性对土壤干旱胁迫的响应[J].西北植物学 报,2011,31(1):0101-0108.
    [112]王文奎,周春玲,戴思兰.毛华菊花朵形态变异[J].北京林业大学学报,1999,21(3),92-95.
    [113]王西群.湖北省五峰县红花玉兰种群生物学研究[D].北京:北京林业大学,2007.
    [114]王晓蓉,李伟,郑有良.栽培二粒小麦(Triticum dicoccum Schrank)主要农艺性状分析[J].四川农业大学学报,2007,25(3):239-243.
    [115]王宇超,王得祥,彭少兵,等.干旱胁迫对木本滨藜生理特性的影响[J].林业科学,2010,46(1):61~67.
    [116]王玉魁,阎艳霞,余新晓,等.干旱胁迫下灰白滨藜保护酶活性及抗旱生理特性研究[J].西北植物学报,2010,24(10):122~126.
    [117]王峥峰,安树青,朱学雷,等.热带森林乔木种群分布格局及其研究方法比较[J].应用生态学报,1998,9(6):575-580.
    [118]夏鹏云,吴军,乔俊鹏,等.干旱胁迫对大叶冬青叶片生理特性的影响[J].河南农业大学学报,2010,44(1):47-51.
    [119]肖炳光,张燕春.烤烟品种主成分分析和聚类分析[J].种子,2000,108(2):27-29.
    [120]肖盛华,王国平.加强红檵木木种质资源的保护与开发利用[J].湖南林业科技,1999,26(3):45-48.
    [121]谢乾瑾,夏新莉,刘超.水分胁迫对不同种源蒙古莸光合特性与生长的影响[J].林业科学研究,2010,23(4):567~573.
    [122]谢志玉,张文辉,刘新成.干旱胁迫对文冠果幼苗生长和生理生化特征的影响[J].西北植物学报,2010,30(5):0948-0954.
    [123]徐飞,郭卫华,徐伟红,等.刺槐幼苗形态、生物量分配和光合特性对水分胁迫的响应[J].北京林业大学学报,2010,32(1):24-30.
    [124]徐亮,司马永康,杨卫,等.大果木莲的花部数量变异研究[J].广西林业科学,2006,35(1):23-25.
    [125]许长成,樊继萍,邹琦.干旱条件下冬小麦幼苗根细胞膜脂组成的变化[J].植物学通报,1996,13(2):21-24.
    [126]许建新,张金像,许涵,等.深山含笑对酸雨胁迫的适应性研究[J].广东林业科技,2007,23(1):22~27.
    [127]薛崧,汪沛洪,许大全,等.水分胁迫对冬小麦C02同化作用的影响[J].植物生理学报,1992,18(1):1~7.
    [128]颜淑云,周志宇,邹丽娜,等.干旱胁迫对紫穗槐幼苗生理生化特性的影响[J].干旱区研究,2011,28(1):139-145.
    [129]杨方云,魏朝富,刘英.干旱胁迫下甜橙叶片保护酶体系的变化研究[J].植物营养与肥料学报,2006,12(1):119~124.
    [130]杨义芳,颜锋.银杏叶及其制剂的开发应用近况[J].中草药,1995,17(11),40-41.
    [131]杨玉珍,王顺财,彭方仁,我国楸树研究现状及开发利用策略[J].林业科技开发,2006,20(3):4~7.
    [132]姚史飞,尹丽,胡庭兴,等.干旱胁迫对麻疯树幼苗光合特性及生长的影响[J].四川农业大学学报,2009,27(4):444-449.
    [133]叶冰莹,陈由强,朱锦懋,等.水分胁迫对三种木麻黄小枝活性氧伤害的研究[J].福建师范大学学报,2000,16(1):76-79.
    [134]叶桂艳.中国木兰科树种[M].北京:中国林业出版社,1996.
    [135]应叶青,吴家胜,戴文圣,等.柃木苗期光合特性研究[J].浙江林学院学报,2004,21(4),366~370.
    [136]喻晓丽,邸雪颖,宋丽萍.水分胁迫对火炬树幼苗生长和生理特性的影响[J].林业科学,2007,43(11):57~61.
    [137]曾小平,赵平,蔡锡安,等.不同土壤水分条件下焕镛木幼苗的生理生态特性[J].生态学杂志,2004,23(2):26-31.
    [138]张大勇.植物生活史进化和繁殖生态学[M].北京:科学出版社,2004.
    [139]张都海,魏君莉,朱锦茹,等.深山含笑人工林生长规律的初步研究[J].浙江林业科技,2004,24(2):30~32.
    [140]张木青,陈如凯.作物抗旱分子生理与遗传改良[M].北京:高等教育出版社,2005.
    [141]张鹏,孙明高,宋尚文,等.干旱胁迫对板栗幼苗保护酶活性的影响[J].山东农业大学学报,2010,41(1):6-10.
    [142]张睿鹂,贾茵,张启翔.滇北球花报春天然群体表型变异研究[J].生物多样性,2008,16(4):362-368.
    [143]张慎鹏.山东省主要耐干旱树种资源和部分经济林树种抗旱性评价的研究[D].泰安:山东农业大学,2009.
    [144]张双进,汪有奎,杨全生,等.祁连山林木种质资源保护与开发利用对策[J].甘肃林业科技,2007,32(1):62~65.
    [145]张香凝,孙向阳,王保平,等.土壤水分含量对Larrea tridentata苗木光合生理特性的影响[J].北京林业大学学报,2008,30(2):95-101.
    [146]张志良,瞿伟菁.植物生理学实验指导(3版)[M].北京:高等教育出版社,2003.123-124,127-128.
    [147]张治安,张美善,蔚荣海.植物生理学实验指导[M].北京:中国农业科学技术出版社,2004.
    [148]赵纪东,傅华,吴彩霞.水分胁迫对白刺幼苗生物量和渗透调节物质积累的影响[J].西北植物学报,2006,26(9):1788-1793.
    [149]赵世杰,刘华山,董新纯.植物生理实验指导[M].北京:中国农业出版社,1997:152~154:161~163.
    [150]邹绮.植物生理学实验指导[M].北京:中国农业出版社,2000.
    [151]Amy K G,Keith F W,Megan M L.Population status of Eucalypt trees on the river murry floodplin,south austrian[J].River Researchand Application,2005,21:271-282.
    [152]Andrej Kormutak,Peter Manka,Jan Salaj.Abortive embryogenesis in hybrid swarm populations of Pinus sylvestris L. and Pinus muga[J].Turra.Trees,2008,22:657-662.
    [153]Apel K,Hirt H. Reaetive oxygens Peeies:Metabolism,oxidative stress and signal transduetion. Annu[J].Rev.Plant Biol.,2004,55:373-399.
    [154]Arora A, Sairam R K, Srivastava G C. Oxidative stress and antioxidative system in plants[J], Current Science,2002,82:1227-1238.
    [155]Atsuko Miyagi,Hideyuki Takahashi,Kentaro Takahara.Principal component and hierarchical clustering analysis of metabolitesin destructive weeds;polygonaceous plants[J]. Metabolomics, 2010,6:146-155.
    [156]Attipalli RR,Kolluru VC,Munusamy V.Drought indueed responses of photosynthesis and antioxidant metabolism in higher plants[J].Joumal of Plant Physiology,2004,161(11):1189-1202.
    [157]B.J.Fu,S.L.Liu,K.M. Ma.Relationships between soil characteristics,topography and plant diversity in a heterogeneous deciduous broadleaved forest near Beijing,China[J].Plant and Soil,2004, 261:47-54.
    [158]Bohnert H J,Nelson D E,Jense R G.Adaptations to environment stress[J].Plant Cell,1995,7: 1099-1111.
    [159]Bowler C,Van Montagu M,Hize D.Superoxide dismutase and stress toleranee[J].Annu Rev Plant Mol Biol.1992,43:83-116.
    [160]Cao L. M, Xia N. H, Deng Y. F.Embryology of Handeliodendron bodinieri (Sapindaceae) and its systematic value:development of male and female gametophytes[J].Plant Syst Evol,2008,274: 17-23.
    [161]Colom M R,Vaazzana C.Photosynthesis and PS Ⅱ functionality of drought resistant and drought sensitive weeping lovegrass plants[J].Environ.Exp.Bot,2003,49:135-144.
    [162]Dunn C P.Keeping taxonomy based inmorphology[J].Trends in Ecology and Evolution,2003, 18(6):270-271.
    [163]Endler J A.Geographic Variation,Speciation,and Clines.Princeton University Press,Princeton,NJ, 1977.
    [164]Endler J A.Natural Selection in the Wild. Princeton University Press, Princeton, NJ,1986.
    [165]Farquhar G D,Sharkey T D. Stomatal conductance and photosynthesis. Annu Rev plantphysiol, 1982,33:317-345.
    [166]W H Guo, B Li, X S Zhang.Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedlings to simulated water stress[J].Journal of Arid Environments,2007,69,385-399.
    [167]H.Huang,J.Harding.Quantitative analysis of correlations among gerbera hybrida compositae.III. Genetic variability and structure of principal component traits[J].Theor Appl Genet,1998,97: 31-63.
    [168]Hanson A D,Neison C F, Peersen A R,el al.Capaeity for proline acumulation duringwater dress in barley and its inrplication for breeding for drought resistance.CropSci,1979,19:489-493.
    [169]Harding J,Huang H,Byrne T.Quantitative analysis of correlation among flower traits 1.Genetic and environmental correlation[J].Theor Appl Genet,]990,80:552-558.
    [170]Hayashi Y.On the microsporogenesis and pollen morphology in the family magnoliaceae[J]. Sci.Rep.Tohoku Univ.Ser.IV(Biol.),1960,26:45-52.
    [171]Heitholt J J.Water use efficiency and dry matter distribution in nitrogen and water stressed winter wheat[J].Agron J,1989,81:464-469.
    [172]Hiroshi Tobe. Embryology of Japonolirion (Petrosaviaceae, Petrosaviales):a comparison with other monocots[J].J Plant Res,2008,121:407-416.
    [173]Hisao T C.Stress metabolism:water stress,growth,and osmotie adjustment[J].Phil.Trans.R.soe. Lond.B,1976,273:479-500.
    [174]Hisao T C.Water and Plant life[M].Aeademie Press,New York,1973,281-303.
    [175]Iqbal M,Ashraf M.Changes in growth,photosynthetic capacity and ionic relations in spring wheat (Triticum aestivumL.) due to presowing seed treatment with polyamines[J].Plant Growth Regulation,2005,46,19-30.
    [176]Linhart Y, Grant M C.Evoluti onary significance of local genetic differentiati on in plantsfJ]. Annual Review of Ecology and Systematics,1996,27:237-277.
    [177]Liu J, Zhu J K. Proline accumulation and salt-tress-induced gene expression in asalt hypersensitive mutant of Arubidnp[J],Sisplum Phy,Sinl,1997,114:591-596.
    [178]Lobstein A.Seasonal variations of flavonoid content from Ginkgo biloba leaves[J].Planta Med, 1991,57:430-433.
    [179]Massal R,Remorini D,Tattini M.Gas exchange,water relations and osmotic adjustment in two scion/rootstock combinations of Prunusunder various salinity concentrations[J].Plant and Soil, 2004,259,153-162.
    [180]Matsui M,Imaichi R,Kato M.Ovular development and morphology in some Magnoliceae species[J].Journal of Plant Research,1993,106:297-304.
    [181]Menzel C M,Simpson D R.Plant water relations in lynches:diurnal variations in leaf conductance and water potential [J]. Agricultural and Forest Meteorology,1986,37:267-277.
    [182]Monneveyx P,Rekika D,Acevedo E,et al.Effect of drought on leaf gas exchange, carbon isotope discrimination,transpiration efficiency and productivity in field grown durumwheat genotypes[J]. Plant Science,2006,170:867-872.
    [183]Munne B S,Penuelas J.Drought indueed oxidative stress in strawberry tree (ArbutusunedoL.) growing in meditenrranean field conditions[J].Plant Sci,2004,166(4):1105-1110.
    [184]Placer Z A,Cushman L L,Johnson B C.Estimation of SOD product of lipidperoxidatim (malony dialdehyde)in biochemical system[J].Annual Biochem,1966,16:359-364
    [185]Sanita T L,Gabbrielli R.Response to cadmium in higher plants[J].Environ Exp Bot,1999,41:105-130.
    [186]Schaal B A, Okane S L,Rogstad S H.DNA variation in plant populations[J].Trends in Ecology and Evolution,1991,6,329-333.
    [187]Smiimoff N.The role of active oxygen in the response of plants to water deficit and desicedation [J].New Phytol,1998,125:27-58
    [188]Soltis P S,Soltis D E.Genetic variation in endemic and widespread plant species:examples from Saxifragaceae and Polystichum(Dryopteridaceae) [J].Aliso,1991,13,215-223.
    [189]Stebbins G L. Variati on and evoluti on in plant [M].New York:Columbia University Press,1950.
    [190]Stermeijer J G B,Luijten S H,Dennijs J C M.Integrating demographic andgenetic approaches in plant conservation[J].Biological Conservation,2003,113:389-398.
    [191]Taylor C B.Proline and water defieit:ups,downs,ins and outs[J].Plant Cell,1996,8:1221-1224.
    [192]V.Rouhi,R.Samson,R.Lemeur,et al.Photosynthetic gas exchange characteristics in three diferent almond species during drought stress and subsequent recovery [J].Environmental and Experimental Botany,Available online 20 December 2005.
    [193]Virginia S,Pilar C,Richard J.Seasonal carbon storage and growth inMediterranean tree seedlings under different water conditions[J].Tree Physiology,2001,29:1105-1116.
    [194]Westgate M E,Boyer T S.Osmotie adjusment and the inhibition of leaf,root and silk growth at low water potentials in maize[J].Planta,1985,164:540-549.