酰胺类除草剂分子印迹微球的制备、表征及固相萃取应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子印迹技术(Molecular imprinting technique, MIT)是一种集高分子化学、材料学、生物化学于一体的新兴技术,具备预定性、特异性和实用性的特点。由MIT制备的分子印迹聚合物(MIPs)是一种对模板分子具有特异选择性的材料,这种材料具有化学性质稳定,选择性和亲和性高,容易制备等优点,所以在很多领域被广泛应用,如模拟酶催化、药物手性分离、固相萃取、生物传感器等。实现模板分子的印迹一般都需要经过三个过程:先是模板与单体形成可逆的预聚体;再加入交联剂通过引发剂引发聚合形成高聚物;最后洗脱去除模板,使得模板在高聚物上留下一个印迹。
     分子印迹微球(Molecular imprinting microspheres)比表面积大,能使模板分子更易进入到识别位点,从而加速结合动力学,因此十分受到研究者的亲睐。近年来分子印迹微球已被广泛实际应用,如用作酶替代品,药物传递系统,抗体替代品,以及毛细管电泳和传感器。
     固相萃取(Solid-phase extraction,SPE)是一种高效的样品前处理技术,通过活化、上样、淋洗和洗脱四个过程,就能对样品进行富集和净化,减少样品前处理时间。与传统的液液分配相比,SPE具备操作简单、省时省力、对环境污染小等优点。但是传统的固相萃取材料(C8、C18、佛罗里硅土)选择性比较低,而分子印迹聚合物在三维空间里与目标分子的大小、形状都是特异性匹配,所以将分子印迹技术和固相萃取技术结合既可以对目标分子高度亲和,还可以对目标物高度富集,实现对目标分析物的特异性吸附,回收率满足固相萃取要求。
     氯代乙酰胺类除草剂是一类高选择性的触杀型除草剂,被广泛应用于水田和旱田。由于氯代乙酰胺类除草剂的大量使用,对土壤和水等环境造成一定的污染,危害人类健康。
     本论文的主旨是利用假模板法制备一种对氯代乙酰胺类除草剂有类特异性吸附的分子印迹固相萃取(MISPE)材料,并将该材料应用于氯代乙酰胺类除草剂的残留分析。本文主要阐述了氯代乙酰胺类除草剂分子印迹聚合物的制备,对聚合物的性能和识别机理进行表征和研究,将制备的聚合物应用于固相萃取实验,通过优化固相萃取条件,将MISPE应用于土壤样品的分析。
     本论文的第一章为文献综述,主要介绍了分子印迹技术的起源、发展和应用,简单介绍了分子印迹的最新进展;同时介绍了固相萃取技术。
     在本论文的第二章,利用沉淀聚合和本体聚合,分别以甲基丙烯酸(MAA)和4-乙烯基吡啶(4-VP)为功能单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,以乙腈、氯仿、甲醇为致孔剂在引发剂偶氮二异丁腈(AIBN)引发下合成了以丁草胺为模板的一系列印迹聚合物。并对聚合条件进行了优化,选择最优合成条件。实验结果表明:当以MAA为单体,乙腈为致孔剂,模板分子:功能单体:交联剂的摩尔比为1:4:20时,沉淀聚合制备的分子印迹微球对丁草胺具有较好的结合特性,结合量为8.98mg·g-1。
     在本论文的第三章,分别用红外光谱仪、粒径分布仪、扫描电镜来表征分子印迹聚合物的结构,粒径分布及形态。通过动力学、平衡吸附和选择性实验来研究MIPs的性能。实验结果表明:各组分都已成功聚合,沉淀聚合制备的微球粒径分布均匀,D50(MIPs)=0.80μm,聚合物呈微球状。动力学实验表明聚合物在60min内达到吸附平衡;平衡吸附法表明MIPs的吸附性能比非印迹聚合物(NIPs)的吸附性能高,在印迹聚合物内存在着特异性结合位点;通过Scatchard分析,证明MIPs内存在着一类特异性结合位点,结合位点的离解常数Kd=12.95mol/L,最大表观结合量Qmax=25.74mg/g,NIPs内存在着一类非特异性结合位点,结合位点的离解常数Kd=42.02mol/L,最大表观结合量Qmax=23.48mg/g;选择性实验表明,分子结构上的差异是造成吸附性差异的主要原因,MIPs对氯代乙酰胺类除草剂(丁草胺、丙草胺、乙草胺、甲草胺、异丙甲草胺)的结合主要发生在聚合物的识别位点上。MIPs对乙草胺有较好的选择性,选择因子α=0.79。
     在本论文的第四章,用聚合物作为固相萃取的填料,考察了它对丁草胺及其结构类似的氯代乙酰胺类除草剂的固相萃取,讨论了淋洗溶剂种类、洗脱溶剂的体积对萃取效果的影响,并对固相萃取条件进行优化。实验结果表明:以MIPs作为填料的固相萃取柱对氯代乙酰胺类除草剂表现了良好的吸附性,用1mL浓度为1μg/mL的丁草胺、丙草胺、乙草胺、甲草胺、异丙甲草胺的石油醚标准溶液上样,2mL正己烷为淋洗剂,15mL甲醇为洗脱剂时,回收率在90%左右,固相萃取效果最好。
     在本论文第五章,将农药残留分析与分子印迹固相萃取相结合,将添加丙草胺、乙草胺、甲草胺、异丙甲草胺的土壤样品经分子印迹固相萃取净化后,丙草胺、乙草胺、甲草胺、异丙甲草胺的平均添加回收率分别为85.6%、88.4%、85.6%、82.2%,均达到农药残留分析要求,净化效果良好。
     因此,本实验利用假模板法制备的分子印迹微球有望在氯代乙酰胺类除草剂残留分析中得到更广泛的实际应用。
Molecular imprinting technique is one of the emerging technologies containing polymerchemistry, materials science, biochemistry with predetermination, recognition, practicability.Molecular imprinting polymers (MIPs) prepared by molecular imprinting technique promiseunmatched selectivity for template molecules. MIPs have been widely used in enzyme mimicscatalysts, chiral separation, solid-phase exatraction and biosensors due to their high chemicalstability, high selectivity and affinity, easy availability. Imprinting process generally go throughthree steps: firstly, template and monomer form a reversible complex; then template-monomercomplex polymerized to form a crosslinked polymer; Subsequent elimination of the imprintedmolecule tailor a cavity in the polymer matrix that are complementary to the template.
     Molecular imprinting microspheres have higher surface area-to-volume ratios; thus,imprinted cavities are more easily accessible by the templates and the binding kinetics areimproved. They have already been used as enzyme substitutes drug delivery systems andantibody substitutes as well as in capillary electrophoresis and in sensors.
     Solid-phase extraction (SPE) is a time efficient technique of sample pretreatment whichcan enriched and purified sample via conditioning, loading, washing and eluting. SPE havebeen well accepted preconcentration technique with the advantages of simple, less cost andpollution compared with the traditional liquid-liquid distribution. Most common sorbents usedin SPE, for example C8, C18, Florisil, lack selectivity for the target compound. However, MIPspossess specific binding sites that are complementary to the template in terms of its shape, size,and functionality. Accordingly, the combination of molecular imprinting and solid-phaseextraction (MISPE) would inherit both advantages of well selectivity and high extractionefficiency.
     Chloroacetamide herbicides are a class of highly selective herbicide widely used in paddyand upland. Due to the extensive use of chloroacetamide herbicides, they cause a certain degreeof pollution on the environment and endanger human health.
     The objective of this paper is to prepare MISPE material which has class-specialadsorption to chloroacetamide herbicides using dummy template and this material can beapplied to chloroacetamide herbicides residue analysis. The preparation of chloroacetamideherbicides molecularly imprinted polymers are described in this paper. The performance andmechanism of recognition are researched. The prepared MIPs are used in solid-phase extractionexperiments and the conditions of solid-phase extraction are optimized. At last, the sample ofsoil is analyzed
     In chapter1, there is a literature review, we mainly introduce origin, development andapplication of molecular imprinting technology, the latest advances in molecular imprinting isalso introduced. Meanwhile, we describe the solid phase extraction techniques.
     In chapter2, a series of butachlor molecularly imprinted polymers are prepared viaprecipitation polymerization and bulk polymerization using MAA and4-VP as functionalmonomers, EDMA as crosslinker, AIBN as initiator agent,acetonitrile, chloroform andmethanol as porogen. The conditions of polymerization are discussed and the optimumsynthesis conditions are selected. The results indicate that the MIPs prepared by precipitationpolymerization employing MAA as functional monomer, acetonitrile as porogen with the molarratio of1:4:20(template: functional monomer: crosslinker) show good binding property, theamount of binding is8.98mg·g-1.
     In chapter3, the structure, particle size distribution and morphology are characterized byinfrared spectrometry, zetasizer and scanning electron microscopy. The kinetics, equilibriumadsorption and selectivity of MIPs are also studied. The results indicate that all componentshave been successfully polymerized, the particles of precipitation polymerization distributeuniformly, D50(MIPs)=0.80μm, the shape of MIPs is microsphere. Kinetic experiments showthat the adsorption of polymer attain equilibrium within60min; Equilibrium adsorption showthat MIPs have better adsorption capacity than NIPs, because there are many specific bindingsites in MIPs; Scatchard analysis prove one specific binding site exist in MIPs, the Kd andQmax are found to be12.95mol/L and25.74mg/g, respectively. One non-specific binding siteexists in NIPs, the Kd and Qmax are found to be42.02mol/L and23.48mg/g, respectively.Selective experiments show that the difference of adsorption are caused by molecular structure,the adsorption of MIPs to chloroacetamide herbicides (butachlor, pretilachlor, acetochlor,alachlor, metolachlor) are occurred in specific binding site of MIPs. MIPs have betterselectivity for acetochlor, α is calculated to be0.79.
     In chapter4, an annalyticl procedure based MISPE to butachlor and its structuralanalogues is developed. The types of washing solvent and volume of eluting solvent are discussed, and the conditions of solid-phase extraction are optimized. The experimental resultsindicate that MISPE for chloroacetamide herbicides show good adsorption, using1mL of1μg/mL butachlor, pretilachlor, acetochlor, alachlor,metolachlor petroleum ether solution asloading solvent,2mL hexane as washing solvent,15mLmethanol as eluent, the recoveries ofsolid-phase exactration are about90%.
     In chapter5, the sample of soil spiked with pretilachlor, acetochlor, alachlor,metolachloris analysed. The average spiked recoveries are85.6%88.4%,85.6%and82.2%, respectively.The results meet the requirement of pesticide residue analysis.
     Therefore, the present study of the molecular imprinted polymers using dummy template isexpected to be used in chloroacetamide herbicides residues of the practical application.
引文
[1] CHEN L X, XU S F, LI J H. Recent advances in molecular imprinting technology: currentstatus, challenges and highlighted applications [J]. Chem. Soc. Rev.,2011,40:2922-2942.
    [2] PAULING L. A theory of the structure and process of formation of antibodies [J]. J.Am.Chem.Soc.,1940,62:2643-2657.
    [3] DICKEY F H. The preparation of specific adsorbents [J]. Proc. Natl. Acad. Sci. USA.,1949,35:227-229.
    [4] WULFF G, SARCHAN A, ZABROCKI K. Enryme analogue built polyers and their use forthe resolution of racements [J].Tetrahedron Lett.,1973,14:4329-4332
    [5] WULFF G, SARHAN A. Uber die anwendung von enzymanalog egbauten polymeren zurracematter-nnung [J]. Angew. Chem.1972,84:364-371.
    [6] VLATAHIS G, ANDERSSON L I, MILLER R. et al. Drug assay using antibody mimicsmade molecular imprinting [J]. Nature,1993,361:645-647.
    [7] GU L, JIANG X Y, LIANG Y. et al. Double recognition of dopamine based on a boronicacidfunctionalized poly(aniline-co-anthranilic acid)-molecularly imprinted polymer composite[J]. Analyst,2013,138:5461-5469.
    [8] LAHSINI R, LOUHAICHI M R, ADHOUM N. et al. Preparation and application of amolecularly imprinted polymer for determination of glibenclamide residues [J]. Acta Pharm.,2013,63:265-275
    [9] SELLERGREN B, ANDERSSON L. Molecular recognition in macroporous polymersprepared by a substrate analog imprinting strategy [J]. J. Org. Chem.,1990,55:3381-3383.
    [10] WHITCOMBE M J, RODRIGUEZ M. E, VILLAR P. et al. A new method for theintroduction of recognition site functionality into polymers prepared by molecularimprinting: synthesis and characterization of polymeric receptors for cholesterol [J]. J. Am.Gem. SOC.,1995,117:7105-7111.
    [11] ZHAN J, FANG G Z, YAN Z. et al. Preparation of a semicovalent, molecularly surfaceimprinted polymer for the rapid determination of trace acid orange II in food andenvironmental samples [J]. Anal. Bioanal. Chem.,2013,405:6353-6363.
    [12] LIAN H X, HU Y L, LI G K. Novel metal-ion-mediated, complex-imprinted solid-phasemicroextraction fiber for the selective recognition of thiabendazole in citrus and soilsamples [J]. J. Sep. Sci.,2013,00:1-8.
    [13] KHAJEH M, SANCHOOLI E. Development of a selective molecularly imprintedpolymer-based solid-phase extraction for copper from food samples [J]. Biol. Trace Elem.Res.,2010,135:325-333.
    [14] CHEN H C, KONG J, YUAN D Y, et al. Synthesis of surface molecularly imprintednanoparticles for recognition of lysozyme using a metal coordination monomer [J]. Biosens.Bioelectron.,2014,54:5-11.
    [15] FU X W, WU Y J, QU J R. et al. Preparation and utilization of molecularly imprintedpolymer for chlorsulfuron extraction from water, soil, and wheat plant [J]. Environ. Monit.Assess.,2012,184:4161-4170.
    [16] KOC I, BAYDEMIR G, BAYRAM E. et al. Selective removal of17β-estradiol withmolecularly imprinted particle-embedded cryogel systems [J]. J. Hazard. Mater.,2011,192:1819-1826.
    [17] QUESADA-MOLINA C, CLAUDE B, GARCIA-CAMPANA A M. et al. Convenientsolid phase extraction of cephalosporins in milk using a molecularly imprinted polymer[J]. Food Chem.,2012,135:775-779.
    [18] YASUYAMA T, MATSUNAGA H, ANDO S. et al. A study of the variousfactors thataffect the properties of molecularly imprinted polymers [J]. Chem. Pharm. Bull.,2013,61:546-550.
    [19] ANDAC M, GALAEV I Y, DENIZLI A. Molecularly imprinted poly (hydroxyethylmethacrylate) based cryogel for albumin depletion from human serum [J]. Colloids Surf.B Biointerfaces,2013,109:259-265.
    [20] YIN Y M, CHEN Y P, WANG X F. et al. Dummy molecularly imprinted polymers onsilica particles for selective solid-phase extraction of tetrabromobisphenol A from watersamples [J]. J. Chromatogr. A,2012,1220:7-13.
    [21]赵毅,沈艳梅.分子印迹型CO2吸附剂的改性及吸附性能研究[J].华北电力大学学报,2013,40:107-112.
    [22] SOARES DA SILVA M, VIVEIROS R, MORGADO P I. et al. Development of2-(dimethylamino)ethyl methacrylate-based molecular recognition devices for controlleddrug delivery using supercritical fluid technology [J]. Int. J. Pharm.,2011,416:61-68.
    [23] SHI X Z, SONG S Q, SU A L. et al. Characterisation and application of molecularlyimprinted polymers for group-selective recognition of antibiotics in food samples [J].Analyst,2012,137:3381-3389.
    [24] LV Y Q, LIN Z X, TAN T W. et al. Application of molecular dynamics modeling for theprediction of selective adsorption properties of dimethoate imprinting polymer [J]. Sens.Actuators B Chem.,2008,133:15-23.
    [25] WU S Q, TAN L, WANG G Q. et al. Binding characteristics of homogeneous molecularlyimprinted polymers for acyclovir using an(acceptor-donor-donor)-(donor-acceptor-acceptor) hydrogen-bond strategy, and analyticalapplications for serum samples [J]. J. Chromatogr. A,2013,1285:124-131.
    [26] MANESIOTIS P, BORRELLI C, AURELIANO C S. A. et al. Water-compatible imprintedpolymers for selective depletion of riboflavine from beverages [J]. J. Mater. Chem.,2009,19:6185-6193.
    [27] YANG H H, LU K H, LIN Y F. et al. Depletion of albumin and immunoglobulin G fromhuman serum using epitope-imprinted polymers as artificial antibodies [J]. J. Appl.Biomater.,2013,101:1935-1942.
    [28] INOUE Y, KUWAHARA A, OHMORI K. et al. Fluorescen tmolecularly imprinted polymerthin films for specific protein detection prepared with dansyl ethylenediamine-conjugatedO-acryloyl L-hydroxyproline [J]. Biosens. Bioelectron.,2013,48:113-119.
    [29] WANG L Q, LIN F Y, YU L P. A molecularly imprinted photonic polymer sensor with highselectivity for tetracyclines analysis in food [J]. Analyst,2012,137:3502-3509.
    [30] WANG P, ChEN S S, ZHU X Y. et al. Daidzein-imprinted membranes using co-functionalmonomers [J]. J. Chromatogr. A,2009,1216:7639-7644.
    [31] KITABATAKE T, TABO H, MATAUNAGA H. et al. Preparation of monodispersecurcumin-imprinted polymer by precipitation polymerization and its application for theextraction of curcuminoids from Curcuma longa L.[J]. Anal. Bioanal. Chem.,2013,405:6555-6561.
    [32] MUHAMMAD T, NUR Z, PILETSKA E V. et al. Rational design of molecularly imprintedpolymer: the choice of cross-linker [J]. Analyst,2012,137:2623-2628.
    [33] KEMPE M. Antibody-Mimicking Polymers as Chiral Stationary Phases in HPLC [J]. Anal.Chem.,1996,68:1948-1953.
    [34] SIMON R, HOUCK S, SPIVAK D A. Comparison of particle size and flow rateoptimization for chromatography using one-monomer molecularly imprinted polymersversus traditional non-covalent molecularly imprinted polymers [J]. Anal. Chim. Acta,2005,542:104-110.
    [35] WULFF, G. Enryme-like catalysis by molecularly imprinted polymers [J]. Chem. Rev.,2002,102:1-27.
    [36] SELLERGREN B. Imprinted chiral stationary phases in high-performance liquidchromatography [J]. J. Chromatogr. A,2001,906:227-252.
    [37] WHITCOMBE M J, RODRIGUEZ M E, VILLAS P. et al. A new method for theintroduction of recognition site functionality into polymers prepared by molecularimprinting [J]. J. Am. Chem. Soc.,1995,117:7105-7111.
    [38] WANG J F, CORMACK P A G, SHERRINGTON D C. et al. Monodisperse, molecularlyimprinted polymer microspheres prepared by precipitation polymerization for affinityseparation applications. Angew. Chem. Int. Ed.,2003,42:5336-5338
    [39] TURIEL E, TADEO J L, CORMACK P A G, et al. HPLC imprinted-stationary phaseprepared by precipitation polymerization for the determination of thiabendazole in fruit [J].Analyst,2005,130:1601-1607.
    [40] JIN Y, JIANG M, SHI Y. et al. Narrowly dispersed molecularly imprinted microspheresprepared by a modified precipitation polymerization method [J]. Anal. Chim. Acta,2008,612:105-113
    [41] VALERO-NAVARRO A,, FERNANDEZ-SANCHEZ J F. et al. Synthesis of caffeic acidmolecularly imprinted polymer microspheres and high-performance liquidchromatography evaluation of their sorption properties [J]. J. Chromatogr. A,2011,1218:7289-7296.
    [42] XU Z X, FANG G Z, WANG S. Molecularly imprinted solid phase extraction coupled tohigh-performance liquid chromatography for determination of trace dichlorvos residues invegetables [J]. Food chem.,2010,119:845-850.
    [43] O'SHANNESSY D J, EKBERG B, MOSBACH K. Molecular imprinting of amino acidderivatives at low temperature (0°C) using photolytic homolysis of azobisnitriles [J]. Anal.Biochem.,1989,177:144-149.
    [44] CUI Y, LIU S, LIAN W J. et al. A molecularly-imprinted electrochemical sensor based on agrapheme-Prussian blue composite-modified glassy carbon electrode for the detection ofbutylated hydroxyanisole in foodstuffs [J]. Analyst,2013,138:5949-5955.
    [45] SILVA H D, PACHECO J G, MAGALHAES J M. et al. MIP-graphene-modified glassycarbon electrode for the determination of trimethoprim [J]. Biosens. Bioelectron.,2014,52:56-61.
    [46] TURNER N W, HOLDSWORTH C I, DONNE S W. et al. Microwave induced MIPsynthesis: comparative analysis of thermal and microwaveinduced polymerisation of caffeine imprinted polymers [J]. New J. Chem.,2010,34:686-692
    [47] JI S L, ZHANG F F, LUO X. et al. Synthesis of molecularly imprinted polymer sorbentsand application for the determination of aminoglycosides antibiotics in honey [J]. J.Chromatogr. A,2013,1313:113-118.
    [48] LI J M, ZHAI H Y, CHEN Z G. et al. Preparation and evaluation of a novel molecularlyimprinted SPE monolithic capillary column for the determination of auramine O in shrimp[J]. J. Sep. Sci.,2013,36:3608-3614.
    [49] SU Z H, ZHAI H Y, CHEN Z G. et al. Molecularly imprinted solid-phase extractionmonolithiccapillary column for selective extraction and sensitive determination of safranineT in wolfberry [J]. Anal. Bioanal. Chem.,2014,406:1551-1556.
    [50] MATSUI J, OKADA M, TSURUOKA M. et al. Solid phase extraction of a triazineherbicide using a molecularly imprinted synthetic receptor [J]. Anal. Comm.,1997,34:85-87.
    [51] MAYES A G, MOSBACH K. Molecularly imprinted polymer beads: suspensionpolymerization using a liquid perfluorocarbon as the dispersing phase [J]. Anal. Chem.,1996,68:3769-3774.
    [52] BAGGIANI C, ANFOSSI L, BARAVALLE P. et al. Determination of banned Sudan dyesin food samples by molecularly imprinted solid phase extraction-high performance liquidchromatography [J]. J. Sep. Sci.,2009,32:3292-3300.
    [53] HU Y L, LIU R J, ZHANG Y. et al. Improvement of extraction capability of magneticmolecularly imprinted polymer beads in aqueous media via dual-phase solvent system [J].Talanta,2009,79:576-582.
    [54] YE L, CORMACK P A G, MOSBACH K. Molecularly imprinted monodispersemicrospheres for competitive radioassay. Anal. Commun.,1999,36:35-38.
    [55] SU Q L, ZENG C Y, TANG Y W. et al. Evaluation of diazepam-molecularly imprintedmicrospheres for the separation of diazepam and its main metabolite from body fluidsamples [J]. J. Chromatogr. Sci.,2012,50:608-614.
    [56] ASADI E, AZODI-DEILAMI S, ABDOUSS M. et al. Cyproterone synthesis, recognitionand controlled release by molecularly imprinted nanoparticle [J]. Appl. Biochem.Biotechnol.,2012,167:2076-2087.
    [57] GRANADO V L V, RUDNITSKAYA A, OLIVEIRA J A P B. et al. Design of molecularlyimprinted polymers for diphenylamine sensing [J]. Talanta,2012,94:133-139.
    [58] TAMAYO F G, CASILLAS J L, MARTIN-ESTEBAN A. Clean up of phenylureaherbicides in plant sample extracts using molecularly imprinted polymers [J]. Anal. Bioanal.Chem.,2005,381:1234-1240.
    [59] WANG S, LI Y, WU X L. et al. Construction of uniformly sized pseudo template imprintedpolymers coupled with HPLC–UV for the selective extraction and determination of traceestrogens in chicken tissue samples [J]. J. Hazard. Mater.,2011,186:1513-1519.
    [60] LOPEZ-NOGUEROLES M, LORDEL-MADELEINE S, CHISVERT A. et al.Development of a selective solid phase extraction method for nitro musk compounds inenvironmental waters using a molecularly imprinted sorbent [J]. Talanta,2013,110:128-134.
    [61] LIU R Y, GUANG G J, WANG S H. et al. Core-shell nanostructured molecular imprintingfluorescent chemosensor for selective detection of atrazine herbicide [J]. Analyst,2011,136:184-190.
    [62] SONG X L, LI J H, XU H F. et al. Determination of16polycyclic aromatic hydrocarbonsin seawater using molecularly imprinted solid-phase extraction coupled with gaschromatography-mass spectrometry [J]. Talanta,2012,99:75-82.
    [63] XIAO D L, DRAMOU P, XIONG N Q. et al. Development of novel molecularly imprintedmagnetic solid-phase extraction materials based on magnetic carbon nanotubes and theirapplication for the determination of gatifloxacin in serum samples coupled with highperformance liquid chromatography [J]. J. Chromatogr. A,2013,1274:44-53.
    [64] XIAO D L, DRAMOU P, XIONG N Q. Preparation of molecularly imprinted polymers onthe surface of magnetic carbon nanotubes with a pseudo template for rapid simultaneousextraction of four fluoroquinolones in egg samples [J]. Analyst,2013,138:3287-3296.
    [65] PRASAD B B, PRASAD A, TIWARI M P. et al. Multiwalled carbon nanotubes bearing‘terminal monomeric unit’ for the fabrication of epinephrine imprinted polymer-basedelectrochemical sensor [J]. Biosens. Bioelectron.,2013,45:114-122.
    [66] DENG Q L, WU J H, ZHAI X R. et al. Highly Selective Fluorescent Sensing of ProteinsBased on a Fluorescent Molecularly Imprinted Nanosensor [J]. sensors,2013,13:12994-13004.
    [67] SUN S, ZHANG M Q, LI Y J. et al. A molecularly imprinted polymer with incorporatedgraphene oxide for electrochemical determination of quercetin [J]. sensors,2013,13:5493-5506.
    [68] LIU H L, FANG G Z, ZHU H D. et al. A novel ionic liquid stabilized molecularlyimprinted optosensing material based on quantum dots and graphene oxide for specificrecognition of vitamin E [J]. Biosens. Bioelectron.,2013,47:127-132.
    [69] ZENG Y B, ZHOU Y, KONG Y. et al. A novel composite of SiO2-coated graphene oxideand molecularly imprinted polymers for electrochemical sensing dopamine [J]. Biosens.Bioelectron.,2013,45:25-33.
    [70] QIU H M, FAN L L, LI X J. et al. Determination sulfamethoxazole basedchemiluminescence and chitosan/graphene oxide-molecularly imprinted polymers [J].Carbohydr. Polym.,2013,92:394-399.
    [71] ZHANG Z H, LUO L J, CAI R. et al. A sensitive and selective molecularly imprintedsensor combined with magnetic molecularly imprinted solid phase extraction fordetermination of dibutyl phthalate [J]. Biosens. Bioelectron.,2013,49:367-373.
    [72] AFKHAMI A, GHAEDI H, MADRAKIAN T. et al. Fabrication of a new electrochemicalsensor based on a new nano-molecularly imprinted polymer for highly selective andsensitive determination of tramadol in human urine samples [J]. Biosens. Bioelectron.,2013,44,34-40.
    [73] ZHU L L, CAO H Y, CAO G Q. Electrochemical sensor based on magnetic molecularlyimprinted nanoparticles at surfactant modified magnetic electrode for determination ofbisphenol A [J]. Biosens. Bioelectron.,2014,54:258-261.
    [74] XIA X L, LAI E P C, RMECI B. Duo-molecularly imprinted polymer-coated magneticparticles for class-selective removal of endocrine-disrupting compounds from aqueousenvironment [J]. Environ. Sci. Pollut. Res.,2013,20:3331-3339.
    [75] UEZU K, NAKAMURA H, GOTO M. et al. Novel metal ion-imprinted resins prepared bysurface template polymerization with W/O emulsion [J]. J. Chem. Eng. Jap.,1994,27:436-441.
    [76] PEREZ N, WHITCOMBE M J, VULFSON E N. Molecularly imprinted nanoparticlesprepared by core-shell emulsion polymerization [J]. J. Appl. Polym. Sci.,2000,77:1851-1859.
    [77] DVORAKOVA G, HASCHICK R, CHIAD K. et al. Molecularly imprinted nanospheresby nonaqueous emulsion polymerization [J]. Macromol. Rapid Commun.,2010,31:2035-2040.
    [78] TAN C J, TONG Y W. The effect of protein structural conformation on nanoparticlemolecular imprinting of ribonuclease A using miniemulsion polymerization [J]. Langmuir,2007,23:2722-2730.
    [79] CURCIO P, ZANDANEL C, WAGNER A. et al. Semi-covalent surface molecularimprinting of polymers by one-stage mini-emulsion polymerization: glucopyranoside as amodel analyte [J]. Macromol. Biosci.2009,9:596-604.
    [80] ZHANG H, DRAMOU P, HE H. et al. Molecularly imprinted stationary phase prepared byreverse micro-emulsion polymerization for selective recognition of gatifloxacin in aqueousmedia [J]. J. Chromatogr. Sci.,2012,50:499-508.
    [81] ESFANDYARI-MANESH M, JAVANBAKHT M, DINARVAND R. et al. Molecularlyimprinted nanoparticles prepared by miniemulsion polymerization as selective receptorsand new carriers for the sustained release of carbamazepine [J]. J. Mater. Sci. Mater.Med.,2012,23:963-972.
    [82] HOSOYA K, YOSHIZAKO K, SHIRASU Y. et al. Molecularly imprinted uniform-sizepolymer-based stationary phase for high-performance liquid chromatography structuralcontribution of cross-linked polymer network on specific molecular recognition [J]. J.Chromatogr. A.1996,728:139-147.
    [83] HAGINAKA J, TAKEHIRA H, HOSOYA K. et al. Uniform-sized molecularly imprintedpolymer for (S)-naproxen selectively modified with hydrophilic external layer [J]. J.Chromatogr. A,1999,849:331-339.
    [84] HAGINAKA J, KAGAWA C. Uniformly sized molecularly imprinted polymer ford-chlorpheniramine: evaluation of retention and molecular recognition properties in anaqueous mobile phase [J]. J. Chromatogr. A,2002,948:77-84
    [85] SABOURIN L, ANSELL R J, MOSBACH K. et al. Molecularly imprinted polymercombinatorial libraries for multiple simultaneous chiral separations [J]. Anal. Commun.,1998,35:285-287.
    [86] LIAO S L, WANG X C, LIN X C. et al. A molecularly imprinted monolith for the fastchiral separation of antiparasitic drugs by pressurized CEC [J]. J. Sep. Sci.2010,33:1-8.
    [87] HUANG B Y, CHEN Y C, WANG G R. et al. Preparation and evaluation of a monolithicmolecularly imprinted polymer for the chiral separation of neurotransmitters and theiranalogues by capillary electrochromatography [J]. J. Chromatogr. A,2011,1218:849-855.
    [88] BAI L H, CHEN X X, HUANG Y P. et al. Chiral separation of racemic mandelic acids byuse of an ionic liquid-mediated imprinted monolith with a metal ion as self-assembly pivot[J]. Anal. Bioanal. Chem.2013,405:8935-8943.
    [89] CAO J L, KONG W J, ZHOU S J. et al. Molecularly imprinted polymer-based solid phaseclean-up for analysis of ochratoxin A in beer, red wine, and grape juice [J]. J. Sep. Sci.,2013,36:1291-1297.
    [90] NICOLUCCI C, ROSSI S, MENALE C. et al. A high selective and sensitive liquidchromatography–tandem mass spectrometry method for quantization of BPA urinary levelsin children [J]. Anal. Bioanal. Chem.,2013,405:9139-9148.
    [91] SADOWSKI R, GADZALA-KOPCIUCH R. Isolation and determination of estrogens inwater samples by solid-phase extraction using molecularly imprinted polymers and HPLC[J]. J. Sep. Sci.,2013,36:2299-2305
    [92] SCHIRMER C, MEISEL H. Chromatographic evaluation of polymers imprinted withanalogs of chloramphenicol and application to selective solid-phase extraction [J]. Anal.Bioanal. Chem.,2009,394:2249-2255.
    [93] HONG C C, CHANG P H, LIN C C. et al. A disposable microfluidic biochip with on-chipmolecularly imprinted biosensors for optical detection of anesthetic propofol [J]. Biosens.Bioelectron.,2010,25:2058-2064.
    [94] CHEN P Y, VITTAL R, NIEN P C. et al. A novel molecularly imprinted polymer thin filmas biosensor for uric acid [J]. Talanta,2010,80:1145-1151.
    [95] WANG C Y, JAVADI A, GHAFFARI M. et al. A pH-sensitive molecularly imprintednanospheres/hydrogel composite as a coating for implantable biosensors [J]. Biomaterials,2010,31:4944-4951.
    [96] STRINGER R C, GANGOPADHYAY S, GRANT S A. Detection of nitroaromaticexplosives using a fluorescent-labeled imprinted polymer [J]. Anal. Chem.,2010,82:4015-4019.
    [97] WULFF G. Enzyme-like catalysis bymolecularly imprinted polymers [J]. Chem. Rev.,2002,102:1-27.
    [98] TOORISAKA E, UEZU K, GOTO M. et al. A molecularly imprinted polymer that showsenzymatic activity [J]. Biochem. Eng. J,2003,14:85-91.
    [99] TAKEUCHI T, UGATA S, MASUDA S. et al. Atrazine transformation using syntheticenzymes prepared by molecular imprinting [J]. Org. Biomol. Chem.,2004,2:2563-2566.
    [100] LIU X C, MOSBACH K. Catalysis of benzisoxazole isomerization by molecularlyimprinted polymers [J]. Macromol. Rapid Commun.,1998,19:671-674.
    [101] TALANCE V L D, MASSINON O, BAATI R. et al. First steps towards conformationallyselective artificial lectins: the chair-boat discrimination by molecularly imprintedpolymers [J]. Chem. Commun.,2012,48:10684-10686.
    [102] CIRILLO G, IEMMA F, PUOCI F. et al. Imprinted hydrophilic nanospheres as drugdelivery systems for5-fluorouracil sustained release [J]. J. Drug Target.,2009,17:72-77.
    [103] SUEDEE R, JANTARAT C, LINDNER W. et al. Development of a pH-responsive drugdelivery system for enantioselective-controlled delivery of racemic drugs [J]. J. Control.Release,2010,142:122-131.
    [104] MOHAJERI S A, MALAEKEH-NIKOUEI B, SADEGH H. Development of apH-responsive imprinted polymer for diclofenac and study of its binding properties inorganic and aqueous media [J]. Drug. Dev. Ind. Pharm.,2012,38:616-622.
    [105] SELLERGREN B. Direct Drug Determination by Selective Sample Enrichment on anImprinted Polymer [J]. Anal. Chem.,1994,66:1578-1582.
    [106] WULFF G, VESPER W, GROBE-EINSLER R. et al. Enzyme-analogue built polymers,4.On the synthesis of polymers containing chiral cavities and their use for the resolution ofracemates [J]. Makromol. Chem.,1977,178:2799-2816.
    [107] WULFF G, GROBE-EINSLER R, VESPER W. et al. Enzyme-analogue built polymers,5.On the specificity distribution of chiral cavities prepared in synthetic polymers [J].Makromol. Chem.,1977,178:2817-2825.
    [108] LV Y Q, MEI D P, PAN X X. et al. Preparation of novel β-cyclodextrin functionalizedmonolith and its application in chiral separation [J]. J. Chromatogr. B,2010,878:2461-2464.
    [109] TSERMENTSELI S K, MANESIOTIS P, ASSIMOPOULOU A N. et al. Molecularlyimprinted polymers for the isolation of bioactive naphthoquinones from plant extracts[J].J. Chromatogr. A,2013,1315:15-20.
    [110] WANG Y, TANG J, LUO X Y. et al. Development of a sensitive and selective kojic acidsensor based on molecularly imprinted polymer modified electrode in the lab-on-valvesystem [J]. Talanta,2011,85:2522-2527.
    [111] XIE C G, GAO S, ZHOU H K. et al. Chemiluminescence sensor for sulfonylureaherbicide using molecular imprinted microspheres as recognition element [J].Luminescence,2011,26:271-279.
    [112] PRASAD B B, TIWARI M P, MADHURI R. et al. Development of a highly sensitive andselective hyphenated technique (molecularly imprinted micro-solid phase extractionfiber–molecularly imprinted polymer fiber sensor) for ultratrace analysis of folic acid [J].Anal Chim Acta.,2010,662:14-22.
    [113] LIU J Q, WULFF G. Functional mimicry of carboxypeptidase A by a combination oftransition state stabilization and a defined orientation of catalytic moieties in molecularlyimprinted polymers [J]. J. Am. Chem. Soc.,2008,130:8044-8054.
    [114] YAMAZAKI T, YILMAZ E, MOSBACH K, et al. Towards the use of molecularlyimprinted polymers containing imidazoles and bivalent metal complexes for the detectionand degradation of organophosphotriester pesticides [J]. Anal. Chim. Acta.,2001,435:209-214.
    [115] BARDE L N. GHULE M M. ROY A A. et al. Development of molecularly imprintedpolymer as sustain release drug carrier for propranolol HCL [J]. Drug Dev. Ind. Pharm.,2013,39:1247-1253.
    [116] MATHEW-KTOTZ J, SHEA K J. Imprinted polymer membranes for the selectivetransport of targeted neutral molecules [J]. J. Am. Chem. Soc.,1996,118:8154-8155.
    [117] BIESEN G V, WISEMAN J M, LI J. et al. Desorption electrospray ionization-massspectrometry for the detection of analytes extracted by thin-film molecularly imprintedpolymers [J]. Analyst,2010,135:2237-2240.
    [118] ZANG D J, YAN M, GE S G. et al. A disposable simultaneous electrochemical sensorarray based on a molecularly imprintedfilm at a NH2-graphene modified screen-printedelectrode for determination of psychotropic drugs [J]. Analyst,2013,138:2704-2711.
    [119] DONG J W, PENG Y, GAO N. et al. A novel polymerization of ultrathin sensitiveimprinted film on surface plasmon resonance sensor [J]. Analyst,2012,137:4571-4576.
    [120] ANTWI-BOAMPONG S, MANI K S, CARLAN J. et al. A selective molecularlyimprinted polymercarbon nanotube sensor for cotinine sensing [J]. J. Mol. Recognit.,2014,27:57-63.
    [121] PRASAD B B, SRIVASTAVA A, TIWARI M P. Highly selective and sensitive analysisof dopamine by molecularly imprinted stir bar sorptive extraction technique coupled withcomplementary molecularly imprinted polymer sensor [J]. J. Colloid Interface Sci.,2013,396:234-241.
    [122] HU Y L, LI J W, HU Y F. et al. Development of selective and chemically stable coatingfor stir bar sorptive extraction by molecularly imprinted technique [J]. Talanta,2010,82:464-470.
    [123] MATSUI J, MIYOSHI Y, DOBLHOFF-DIER O. et al. A molecularly imprinted syntheticpolymer receptor selective for atrazine [J]. Anal. Chem.,1995,67:4404-4408.
    [124] BAGGIANI C, GIRAUDI G, GIOVANNOLI C. et al. A molecularly imprinted polymerfor the pesticide bentazone [J]. Anal. Commun.,1999,36:263-266.
    [125] LV Y Q, LIN Z X, FENG W. et al. Selective recognition and large enrichment ofdimethoate from tea leaves by molecularly imprinted polymers [J]. Biochem. Eng.J.,2007,36:221-229.
    [126] DE BARROS L A, MARTINS I, RATH S. A selective molecularly imprintedpolymer-solid phase extraction for the determination of fenitrothion in tomatoes [J]. Anal.Bioanal. Chem.,2010,397:1355-1361.
    [127] WANG X, TANG Q, WANG Q. et al. Study on a molecularly imprinted solid-phaseextraction coupling with high performance liquid chromatography for simultaneousdetermination of trace trichlorfon and monocrotophos residues in vegetables [J]. J. Sci.Food Agric.,2013. Epub ahead of print.
    [128] ALIZADEH T, GANJALI M R, NOUROZI P. et al. Multivariate optimization ofmolecularly imprinted polymer solid-hase extraction applied to parathion determination indifferent wate samples [J]. Anal. Chim. Acta.,2009,638:154-161.
    [129] LU Q, CHEN X M, NIE L. et al. Tuning of the vinyl groups’ spacing at surface ofmodified silica in preparation of high density imprinted layer-coated silica nanoparticles:A dispersive solid-phase extraction materials for chlorpyrifos [J]. Talanta,2010,81:959-966.
    [130] SANCHEZ-BARRAGAN I, KARIM K, COSTA-FERNANDEZ J M. et al. Amolecularly imprinted polymer for carbaryl determination in water [J]. Sens. Actuators BChem.,2007,123:798-804.
    [131] MENA M L, MARTINEZ-RUIZ P, REVIEJO A J. et al. Molecularly imprinted polymersfor on-line preconcentration by solid phase extraction of pirimicarb in water samples [J].Anal. Chim. Acta.,2002,451:297-304.
    [132] SHE Y X, CAO W Q, SHI X M. et al. Class-specific molecularly imprinted polymers forthe selective extraction and determination of sulfonylurea herbicides in maize samples byhigh-performance liquid chromatography–tandem mass spectrometry [J]. J. Chromatogr.B,2010,878:2047-2053.
    [133] TANG K J, GU X H, LUO Q S. et al. Preparation of molecularly imprinted polymer foruse as SPE adsorbent for the simultaneous determination of five sulphonylurea herbicidesby HPLC [J]. Food Chem.,2014,150:106-112.
    [134] TAMAYO F G, CASILLAS J L, MARTIN-ESTEBAN A. Clean up of phenylureaherbicides in plant sample extracts using molecularly imprinted polymers [J]. Anal.Bioanal. Chem.,2005,381:1234-1240.
    [135] CACHO C, TURIEL E, MARTIN–ESTEBAN A. et al. Clean-up of triazines in vegetableextracts by molecularly-imprinted solid-phase extraction using a propazine-imprintedpolymer [J]. Anal. Bioanal. Chem.,2003,376:491-496.
    [136] HAUPT K, DZGOEV A, MOSBACH K. Assay system for the herbicide2,4-dichlorophenoxyacetic acid using a molecularly imprinted polymer as an artificialrecognition element [J]. Anal. Chem.1998,70:628-631.
    [137] BAGGIANI C, ANFOSSI L, GIOVANNOLI C. et al. Binding properties of2,4,5-trichlorophenoxyacetic acid-imprinted polymers prepared with different molar ratiosbetween template and functional monomer [J]. Talanta,2004,62:1029-1034.
    [138] ANFOSSI L, BAGGIANI C, BARAVALLE P. et al. Molecular recognition of thefungicide carbendazim by a molecular imprinted polymer obtained through a mimictemplate approach [J]. Anal. Lett.,2009,42:807-820.
    [139] LI H, Li Y, CHENG J. Molecularly imprinted silica nanospheres embedded CdSe quantumdots for highly selective and sensitive optosensing of pyrethroids [J]. Chem. Mater.,2010,22,2451-2457.
    [140] YE L, WEISS R, MOSBACH K. Synthesis and characterization of molecularlyimprinted microspheres [J]. Macromolecules,2000,33:8239-8245.
    [141] LI P, RONG F, YUAN C Y. Morphologies and binding characteristics of molecularlyimprinted polymers prepared by precipitation polymerization [J]. Polym. Int.,2003,52:1799-1806.
    [142] YANG K G. BERG M M, ZHAO C S. et al. One-pot synthesis of hydrophilic molecularlyimprinted nanoparticles [J]. Macromolecules,2009,42:8739-8746.
    [143] YOSHIMATSU K. REIMHULT K, KROZER A. et al. Uniform molecularly imprintedmicrospheres and nanoparticles prepared by precipitation polymerization: the control ofparticle size suitable for different analytical applications [J]. Anal. Chim. Acta,2007,584,112-121.
    [144] YE L, MOSBACH K. Polymers recognizing biomolecules based on a combination ofmolecular imprinting and proximity scintillation: a new sensor concept [J]. J. Am. Chem.Soc.,2001,123,2901-2902.
    [145] HOSHINO Y, KODAMA T, OKAHATA Y. et al. Peptide imprinted polymernanoparticles: a plastic antibody [J]. J. Am. Chem. Soc.,2008,130:15242-15243.
    [146] HOSHINO Y, KOIDE H, URAKAMI T. et al. Recognition, neutralization, andclearance of target peptides in the bloodstream of living mice by molecularly imprintedpolymer nanoparticles: a plastic antibody [J]. J. Am. Chem. Soc.,2010,132:6644-6645.
    [147] SCHIRHAGL R, LIEBERZEIT P A, DICKERT F L. Chemosensors for viruses based onartificial immunoglobulin copies [J]. Adv. Mater.,2010,22:2078-2081.
    [148] CIRILLO G, IEMMA F, PUOCI F. et al. Imprinted hydrophilic nanospheres as drugdelivery systems for5-fluorouracil sustained release [J]. J. Drug Target.,2009,17:72-77.
    [149] ZAIDI S A. Dual-templates molecularly imprinted monolithic columns for the evaluationof serotonin and histamine in capillary electrochromatography [J]. Electrophoresis,2013,34:1375-1382.
    [150] DUAN Y P, DAI C M, ZHANG Y L. et al. Selective trace enrichment of acidicpharmaceuticals in real water and sediment samples based on solid-phase extraction usingmulti-templates molecularly imprinted polymers [J]. Anal. Chim. Acta.,2013,758:93-100.
    [151] YAN H Y, LIU S T, GAO M M. et al. Ionic liquids modified dummy molecularlyimprinted microspheres as solid phase extraction materials for the determination ofclenbuterol and clorprenaline in urine [J]. J. Chromatogr. A,2013,1294:10-16.
    [152] KADHIRVEL P, AZENHA M, SHINDE S. et al. Imidazolium-based functional monomersfor the imprinting of the anti-inflammatory drug naproxen: Comparison of acrylic andsol-gel approaches [J]. J. Chromatogr. A,2013,1314:115-125.
    [153] DEL BLANCO S G, DONATO L, DRIOLI E. Development of molecularly improntemembranes for selective recognition of primary amines in organic medium [J]. Sep. Purif.Technol.,2012,87:40-46.
    [154] LIU X X, BAI L H, WANG H. et al. Preparation and characterization ofenrofloxacin-imprinted monolith prepared with crowding agents [J]. J. Chromatogr. A,2012,1251:141-147.
    [155] TSAI H A, SYU M J. Preparation of imprinted poly(tetraethoxysilanol) sol–gel for thespecific uptake of creatinine [J]. Chem. Eng. J.2011,168:1369-1376.
    [156] YANG T, MA C, CHEN H X. et al. A molecularly imprinted organic–inorganic hybridmonolithic column for the selective extraction and HPLC determination of isoprocarbresidues in rice [J]. J. Sep. Sci.,2013.
    [157] YANG X, WANG R L, WANG W H. et al. Synthesis of a novel molecularly imprintedorganic–inorganic hybrid polymer for the selective isolation and determination offluoroquinolones in tilapia [J]. J. Chromatogr. B,2014,945-946:127-134.
    [158] XU Z F, KUANG D Z, FENG L Y. et al. Combination of hydrophobic effect andelectrostatic interaction in imprinting for achieving efficient recognition in aqueous media[J]. Carbohydr. Polym.,2010,79:642-647.
    [159] WANG Y, WANG E L, WU Z M. et al. Synthesis of chitosan molecularly imprintedpolymers for solid-phaseextraction of methandrostenolone [J]. Carbohydr. Polym.,2014,101:517-523.
    [160] DA SILVA M S, VIVEIROS R, MORGADO P I. et al. Development of2-(dimethylamino)ethyl methacrylate-based molecular recognition devices for controlleddrug delivery using supercritical fluid technology [J]. Int. J. Pharm.,2011,416:61-68.
    [161] SERGEYEVA T A, PILETSKY S A, BROVKO A A. et al. Selective recognition ofatrazineby molecularly imprinted polymer membranes. Development of conductometric sensorforherbicides detection [J]. Anal. Chim. Acta,1999,392:105-111.
    [162] BAKAS I, OUJJI N B, MOCZKO E. et al. Computational and experimental investigationof molecular imprinted polymers for selective extraction of dimethoate and its metaboliteomethoate from olive oil [J]. J. Chromatogr. A,2013,1274:13-18.
    [163] AZENHA M, SZEFCZYK B, LOUREIRO D. et al. Computational and experimentalstudy of the effect of PEG in the preparation of damascenone-imprinted xerogels [J].Langmuir,2013,29:2024-2032.
    [164] AHMADI F, REZAEI H, TAHVILIAN R. Computational-aided design of molecularlyimprinted polymer for selective extraction of methadone from plasma and saliv anddetermination by gas chromatography [J]. J. Chromatogr. A,2012,1270:9-19.
    [165] MEIER F, SCHOTT B, RIEDEL D. et al. Computational and experimental study on theinfluence of the porogen on the selectivity of4-nitrophenol molecularly imprintedpolymers [J]. Anal. Chim. Acta,2012,744:68-74.
    [166] GHOLIVAND M B, KARIMIAN N, MALEKZADEH G. Computational design andsynthesis of a high selective molecularly imprinted polymer for voltammetric sensing ofpropazine in food samples [J]. Talanta,2012,89:513-520.
    [167] ATTA N F, HAMED M M, ABDEL-MAGEED A M. Computational investigation andsynthesis of a sol–gel imprinted material for sensing application of some biologicallyactive molecules [J]. Anal. Chim. Acta,2010,667:63-70.
    [168] GHOLIVAND M B, KHODADADIAN M, AHMADI F. Computer aided-moleculardesign and synthesis of a high selective molecularly imprinted polymer for solid-phaseextraction of furosemide from human plasma [J]. Anal. Chim. Acta,2010,658:225-232
    [169] MERGOLA L, SCORRANO S, SOLE R D. et al. Developments in the synthesis of awater compatible molecularly imprinted polymer as artificial receptor for detection of3-nitro-L-tyrosine in neurological diseases [J]. Biosens. Bioelectron.,2013,40:336-341.
    [170] MENG L, MENG P J, ZHANG Q Q. et al. Fast screening of ketamine in biologicalsamples based on molecularly imprinted photonic hydrogels [J]. Anal. Chim. Acta,2013,771:86-94.
    [171] XIA Z W, LIN Z A, XIAO Y. et al. Facile synthesis of polydopamine-coated molecularlyimprinted silica nanoparticles for protein recognition and separation [J]. Biosens.Bioelectron.,2013,47:120-126.
    [172] BAKAS I, OUJJIN B, MOCZKO E. et al. Molecular imprinting solid phase extraction forselective detection of methidathion in olive oil [J]. Anal. Chim. Acta,2012,734:99-105.
    [173] DUAN Z J, YI J G, FANG G Z. et al. A sensitive and selective imprinted solid phaseextraction coupled to HPLC for simultaneous detection of trace quinoxaline-2-carboxylicacid and methyl-3-quinoxaline-2-carboxylic acid in animal muscles [J]. Food Chem.,2013,139:274-280.
    [174] YANG H H, LU K H, LIN Y F. et al. Depletion of albumin and immunoglobulin G fromhuman serum using epitope-imprinted polymers as artificial antibodies [J]. J. Biomed.Mater. Res. A,2013,101:1935-1942.
    [175] LIAN Z R, WANG J T. Determination of crystal violet in seawater and seafood samplesthrough off-line molecularly imprinted SPE followed by HPLC with diode-array detection[J]. J. Sep. Sci.,2013,36:980-985.
    [176] KITABATAKE T, TABO H, MATSUNAGA H. Preparation of monodispersecurcumin-imprinted polymer by precipitation polymerization and its application for theextraction of curcuminoids from Curcuma longa L[J]. Anal. Bioanal. Chem.,2013,405:6555-6561.
    [177] BALDIM I M, SOUA J C, FIGUEIREDO E C. et al. Application of the molecularlyimprinted solid-phase extraction to the organophosphate residues determination instrawberries [J]. Anal. Bioanal. Chem.,2012,404:1959-1966.
    [178] GILART N, MARCE R M, FONTANALS N. et al. A rapid determination of acidicpharmaceuticals in environmental waters by molecularly imprinted solid-phase extractioncoupled to tandem mass spectrometry without chromatography [J]. Talanta,2013,110:196-201.
    [179] ANDERSSON L L, PAPRICA A, ARVIDSSON T. A highly selective solid phaseextraction sorbent for pre-concentration of sameridine made by molecular imprinting [J].Chromatographia,1997,46:57-62.
    [180] CAMEL V. Recent extraction techniques for solid matrices-supercriticalfluid extraction,pressurized fluid extraction and microwave-assisted extraction: their potential and pitfalls[J]. Analyst,2001,126:1182-1193.
    [181] SHAKULASHVILI N, REVIA R, STEINER F. et al. Simultaneous determination ofvarious classes of pesticides using micellar electrokinetic capillary chromatography incombination with solid-phase extraction [J]. Chromatpgraphia,2004,60:145-150.
    [183] SALVADOR A, JAIME M A, BECERRA G. et al. Supercritical fluid chromatography indrug analysis: a literature survey [J]. Fresenius. J. Anal. Chem.,1996,356:109-122.
    [184] RAMAUTAR R, SOMSEN G W, DE JONG G J. Developments in coupled solid-phaseextraction–capillary electrophoresis [J]. Electrophoresis,2014,35:128-137.
    [185] ZAREI M, SPRENGER A, GRETZMEIER C. et al. Rapid combinatorial ERLIC-SCXsolid-phase extraction for in-depth phosphoproteome analysis [J]. J. Proteome. Res.,2013,12:5989-5995.
    [186] HASHIM S N, SCHWARZ L J, BOYSEN R I. et al. Rapid solid-phase extraction andanalysis of resveratrol and other polyphenols in red wine [J]. J. Chromatogr. A.2013,1313:284-290.
    [187] QING L S, XUE Y, LIU Y M. et al. Rapid magnetic solid-phase extraction for theselective determination of isoflavones in soymilk using baicalin-functionalized magneticnanoparticles [J]. J. Agric. Food Chem.,2013,61:8072-8078.
    [188] EUTERPIO M A, PAGANO I, PICCINELLI A L. et al. Development and validation of amethod for the determination of (E)-resveratrol and related phenolic compounds inbeverages using molecularly imprinted solid phase extraction [J]. J. Agric. Food Chem.,2013,61:1640-1645.
    [189] O’MAHONY J, MOLONEY M, MCCORMACK M. et al. Design and implementation ofan imprinted material for the extraction of the endocrine disruptor bisphenol A frommilk [J]. J. Chromatogr. A,2013,931:164-169.
    [190] QUESADA-MOLINA C, CLAUDE B, GARCIA-CAMPANA A M. et al. Convenientsolid phase extraction of cephalosporins in milk using a molecularly imprinted polymer[J]. Food Chem.,2012,135:775-779.
    [191] JENKINS A L, YIN Y, JENSEN J L. Molecularly imprinted polymer sensors for pesticideand insecticide detection in water [J]. Analyst,2001,126:798-802.
    [192] NICHOLLS C, KARIM K, PILETSKY S. et al. Displacement imprinted polymer receptoranalysis (DIPRA) for chlorophenolic contaminants in drinking water and packagingmaterials [J]. Biosens. Bioelectron.,2006,21:1171-1177.
    [193] KOCHKODAN V, WEIGEL W, ULBRICHT M. Molecularly imprinted compositemembranes for selective binding of desmetryn from aqueous solutions [J]. Desalination,2002,149:323-328.
    [194] MENA M L, MARTINEZ-RUIZ P, REVIEJO A J. et al. Molecularly imprinted polymersfor on-line preconcentration by solid phase extraction of pirimicarb in water samples [J].Anal. Chim. Acta,2002,451:297-304.
    [195] ZHU Q Z, DEGELMANN P, NIESSNER R. Selective trace analysis of sulfonylureaherbicides in water and soil samples based on solid-phase extraction using a molecularlyimprinted polymer [J]. Environ. Sci. Technol.,2002,36:5411-5420.
    [196] CACHO C, TURIEL E, MARTIN-ESTEBAN A. et al. Semi-covalent imprinted polymerusing propazine methacrylate as template molecule for the clean-up of triazines in soil andvegetable samples [J]. J. Chromatogr. A,2006,1114:255-262.
    [197] DONG X C, WANG N, WANG S L. et al. Synthesis and application of molecularlyimprinted polymer on selective solid-phase extraction for the determination ofmonosulfuron residue in soil [J]. J. Chromatogr. A,2004,1057:13-19.
    [198] XU S F, CHEN L X, LI J H. et al. Preparation of hollow porous molecularly imprintedpolymers and their applications to solid-phase extraction of triazines in soil samples [J]. J.Mater. Chem.,2011,21:12047-12053.
    [199] TAMAYO F G, CASILLAS J L, MARTIN-ESTEBAN A. Highly selectivefenuron-imprinted polymer with a homogeneous binding site distribution prepared byprecipitation polymerization and its application to the clean-up of fenuron in plantsamples [J]. Anal. Chim. Acta,2003,482:165-173.
    [200] TAMAYO F G, MARTIN-ESTEBAN A. Selective high performance liquidchromatography imprinted-stationary phases for the screening of phenylurea herbicidesin vegetable samples [J]. J. Chromatogr. A,2005,1098:116-122.
    [201] RAWA-ADKONIS M, WOLSKA L, NAMIESNIK J. Modern techniques of extractionoforganic analytes from environmental matrices [J]. Crit. Rev. Anal. Chem.,2003,33:199-248.
    [202] MORALES-MUNOZ S, LUQUE-GARCIA J L, DE CASTRO M D L. Approaches foraccelerating sample preparation in environmental analysis [J].2003,33:391-421.