小型化频率选择表面研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
频率选择表面(Frequency Selective Surface,FSS)是一种一维或二维周期结构,具有带通或带阻空间滤波特性,被广泛应用于雷达罩隐身中。小型化频率选择表面(MEFSS)是周期单元尺寸远小于工作波长的FSS的统称,是FSS发展的一个新方向。与传统的FSS相比,MEFSS具有更小的单元尺寸和更高的角度稳定性,在有限空间、局部小区域、非平面波照射等特殊环境下均能获得理想的滤波特性,在多频、宽频、可调谐FSS设计上具有很大的发展潜力。
     论文以MEFSS在末制导雷达罩上的应用为需求背景,围绕MEFSS的物理机制、设计原理和方法等关键问题进行了深入的理论研究、计算仿真和实验验证,拓展了MEFSS在宽通带和双通带设计中的应用。论文主要研究工作如下:
     1.首先采用电子运动理论从微观上研究了FSS的工作机制,其次采用“场”的观点和“路”的观点从宏观上研究了FSS的滤波机理。从“场”的观点出发,基于Floquet定律研究了FSS的传播波、凋落波和栅瓣的传播规律;利用FSS栅瓣图,推导了FSS具有稳定滤波特性的条件;基于周期单元谐振模式相关理论研究了周期单元上电场和电流的分布特征,为FSS单元图形设计提供理论依据。从“路”的观点出发,重点研究了FSS等效电路模型的建立与分析,采用对全波仿真曲线拟合的方法获取了复杂FSS结构的LC参数,并验证了参数的有效性和方法的可行性,为设计和优化阶段FSS传输特性的快速计算提供参考。
     2.研究了基于容性表面与感性表面耦合机制的MEFSS。选取三种典型MEFSS结构,开展了Ku波段带通MEFSS仿真设计研究,总结了耦合型MEFSS的设计规律和滤波特性。以半波壁和A夹层雷达罩结构作为应用平台,研究了MEFSS在隐身雷达罩上的应用。
     3.将耦合型互补双屏结构与Butterworth型对称双屏结构相结合,设计出具有宽通带特性的MEFSS。该结构由容性表面-感性表面-容性表面的三屏级联而成,采用Y形修正单元和正三角形(60°)布阵方式,具有小型化、宽通带和最平坦(Butterworth)响应滤波特性。论文设计了工作带宽涵盖整个X波段或Ku波段的MEFSS,分析了参数对滤波特性的影响,最后进行了实验验证,拓展了MEFSS在宽通带FSS设计中的应用。
     4.将耦合机制与谐振机制相结合,利用容性表面(内嵌谐振单元)-感性表面-容性表面(内嵌谐振单元)三屏级联结构设计了Ku/毫米波波段双通带MEFSS。以半波壁和A夹层结构雷达罩为背景,将该设计成功应用到Ku/Ka双波段MEFSS雷达罩中。这种MEFSS具有通带间隔较宽、相互独立的特点,拓展了MEFSS在多频FSS设计中的应用。
     5.为了进一步缩减FSS单元尺寸,论文研究了基于集总元件加载的MEFSS。集总元件包括无源器件和有源器件两大类。基于无源器件中的集总电容和集总电感加载设计了MEFSS,单元尺寸缩减至中心波长的1/28以下,具有优越的小型化特性,同时,通过优化还获得了极化分离特性。基于有源器件中的PIN二极管加载设计了可调谐MEFSS。该MEFSS在二极管工作频率允许的情况下,可以在保持Ku波段带通特性不变的同时,实现S波段通带开关功能。最后设计制备了在S波段具有通带开关特性的MEFSS结构。这种可调谐MEFSS在雷达罩带内隐身中具有广阔的发展前景。
     论文针对末制导雷达罩隐身的诸多需求(如多频、宽波段、可调谐等),开展MEFSS研究。不仅完善了MEFSS设计理论,还拓展了MEFSS实现途径和应用领域,为MEFSS隐身雷达罩的工程应用提供了理论和实验参考。
Frequency Selective Surface, which has been widely used in stealth radome, is aone-dimensional or two-dimensional periodic structure with band-pass or band-stopproperties. Miniaturized frequency selective surface (MEFSS) whose unit cell size ismuch smaller than its working wavelength is a new direction for FSS development.Compared with traditional FSS, MEFSS has miniaturized elements and stableresonance properties. It can be applied under special circumstances, such as in thelimited space, at a small local area, or non-plane wave illumination. MEFSS is ofgreat potential to design a structure with multiband, wideband and tunable properties,etc.
     On the back ground of the impending requirement of terminal guidance radome,this dissertation has discussed the physical mechanism, design principles andmethods of MEFSS based on in-depth theoretical analysis, numerical simulationsand practical experiments. And the main contents are as follows:
     1. According to the theory of electron movement, the operation mechanism ofthe FSS is analyzed on the view of microcosm. And from a macroscopic perspective,the filter mechanism of the FSS is studied based on the theory of field and circuit,respectively. Based on theory of field, the transmission properties of FSS, mainlyabout propagating wave, evanescent wave and grating lobes, are studied by using theFloquet modes. The necessary condition of getting stable filtering characteristics has been deduced from FSS’s grating lobe graph. And the influences of the mode on thetransmission properties of FSS are analyzed. Based on the theory of circuitry, it isstudied about how to establish equivalent circuit model of FSS and analyze thefiltering mechanism. This part unveils that it is feasible to analyze the complex FSSstructure by the equivalent circuit model based on curve-fitting process. It will givesome references for the quick calculation of FSS transmission characteristics duringdesign and optimization stages.
     2. The MEFSS which is based on the mechanism of coupling the capacitivesurface and the inductive surface is studied. Moreover, three typical MEFSSstructures are used to design Ku-band MEFSS. From that, the design principles andideas of MEFSS that work at Ku-band are obtained. Then MEFSSs with a pass-bandat Ku-band, which are applied to a solid wall radome and A-sandwiched radome, aredesigned and analyzed.
     3. Based on the studies of the complementary and symmetric structures, awideband MEFSS is presented. It is composed of three metallic layers with skewedarrays (60°) of modified tripoles. This MEFSS has the properties of miniaturizedelements, wider bandwidth and maximally flat (Butterworth) response. The MEFSSswith a desired wide pass-band at least at X or Ku-band are designed, and theprinciples of operation, the influences of the parameters, the experimental values ofthe fabricated prototype are presented and discussed. It is useful for designingwideband FSSs with flat top and sharp cut-off.
     4. The coupling and resonance mechanism are exploited to design MEFSS. Thedesigned structure is composed of three metallic layers, and can obtain twopass-bands at Ku-band and millimeter-wave region. Using it to design stealthradome, a MEFSS on the solid wall radome or A-sandwich radome substrate isdesigned and fabricated. The proposed radome structure with FSS can achieve twostable pass-bands at Ku-/Ka-band. It is useful for designing multi-band and wideband spacing FSS.
     5. In order to further reduce the unit size of the FSS that especially worked at low frequency, the MEFSS loading lumped components are studied. Using thepassive lumped components—capacitances and inductances, the unit size of thedesigned MEFSS can reduce to λ0/28, and by optimization, this structure has aproperty of polarization separation at the same time. Using the active lumpedcomponents—PIN diodes, as long as the diode working frequency allows, thedesigned MEFSS is electronically switchable between reflective and transparentstates at S-band by switching PIN diodes to ON and OFF state, and always has apass-band at Ku-band. It is useful for designing electronically switchable stealthradome.
     In this dissertation, the study of MEFSS is mainly prepared for the special needsof stealth radome, such as wideband, dual-band with wide band spacing,electronically switchable at crucial frenquency, etc. It not only improves the designtheory of MEFSS, but also expands the approaches and applications of MEFSStechnology. And it provides some theoretical and experimental references for theapplication of MEFSS in stealth radomes.
引文
[1]桑建华.飞行器隐身技术[M].北京:航空工业出版社,2013.1-196
    [2] D. Richardson著,魏志祥等译.现代隐身飞机[M].科学出版社出版,1991.10-68
    [3]薛成位,陈世年,吴兆宗,等.弹道导弹工程[M].北京:中国宇航出版社,2002.95-97
    [4] D. D. Lynch著,沈玉芳等译.射频隐身导论[M].西安:西北工业大学出版社,2009.41
    [5]张考,马东立.军用飞机生存力与隐身设计[M].北京:国防工业出版社,2002.7-14
    [6]阮颖铮.雷达截面与隐身技术[M].北京:国防工业出版社,1998.6-7
    [7]戴全辉,黄兴军,朱绪宝.隐身技术研讨会论文集[C].北京.2008.5-6
    [8]刑丽英.隐身材料[M].北京:化学工业出版社,2004.192
    [9]孙敏,于名讯.隐身材料技术[M].北京:国防工业出版社,2013,2013.98-115
    [10]孙连春.频率选择表面技术在导弹电子战中的应用[J].电子对抗,2002,2
    [11] M. Wahid, S. B. Morris. Band pass radomes for reduced RCS [C]. Antenna RadarCross-Section, IEE Colloquium on. IET,1991,4:1-9
    [12] B. A. Munk. Frequency selective surface: theory and design [M]. New York:Wiley,2000
    [13] C. A. Kyriazidou, H. F. Contopanagos, W. M. Merrill, et al. Artificial versusnatural crystals: effective wave impedance of printed photonic band-gap materials [J].IEEE Trans. on Antennas and Propagation,2000,48(1):95-106
    [14] T. K. Wu. Frequency selective surface and grid array [M]. New York: Wiley,1995
    [15] J. C. Vardaxoglou. Frequency selective surfaces analysis and design [M]. London:Research Studies Press,1997
    [16] B. A. Munk. FSS and finite antenna array [M]. New York: John Wiley&So ns,2003
    [17]李小秋.用于隐身雷达罩的带通频率选择表面(FSS)的应用研究[D]:[博士学位论文].长春:中国科学院光学精密机械与物理研究所,2008
    [18]贾宏燕.频率选择表面(FSS)特性研究及在导弹天线罩上的应用[D]:[博士学位论文].长春:中国科学院光学精密机械与物理研究所,2009
    [19] B. S. Haisty. Affordable stealth [N]. Lockheed Martin,2000(11)
    [20] AVIONICS MAGAZINE [N].1996(6):31
    [21] R. J. Martin, D. H. Martin. Quasi-optical antennas for radiometric remote–sensing[J]. Electronics communication engineering journal,1996,37-48
    [22] C. K. Lee, R. J. Langley, E. A. Parker. Compound reflector antennas [J]. IEEProceedings-H,1992,139(2):135-138
    [23] G. H. Schennum. Frequency selective surfaces for multiple frequency antennas [J].Microwave J,1973,16(5):55-57
    [24] Y. Rahmat-Samii, M. Gatti. Far-field patterns of spacebome antennas fromplane-polar near-field measurements [J]. IEEE Trans Antennas Propagat,1985(33):638-648
    [25] J. Bormemann. Computer-aided design of multilayered dielectric frequencyselective surfaces for circularly polarized millimeter-wave applications [J]. IEEETransactions on Antennas and Propagation,1993,41(11):1588-1591
    [26] J. A. Reed. Frequency selective surfaces with multiple periodic elements [D]:[Ph.D. Dissertation]. Dallas: The University of Texas at Dallas,1997
    [27] Y. Ming, A. K. Brown. A hybrid model for radio wave propagation throughfrequency selective structures [J]. IEEE transactions on antennas and propagation,2010,58(9):2961-2967
    [28] G. I. Kiani, A. Karlsson, L. Osslon, et al. Transmission of infrared and visiblewavelengths through energysaving glass due to etching of frequency selectivesurfaces [J]. IET Microwaves, Antennas and Propagation,2010,4(7):955-961
    [29] G. I. Kiani, K. L. Ford, K. P. Esselle, et al. Angle and polarization independentbandstop frequency selective surface for indoor wireless systems [J]. Microwave andOptical Technology Letters,2008,50(9):2315-2317
    [30] E. A. Parker, A. N. A. El Sheikh. Convoluted array elements and reduced sizeunit cells for frequency-selective surfaces [C]. Microwaves, Antennas andPropagation, IEE Proceedings H. IET,1991,138(1):19-22
    [31] E. A. Parker, A. N. A. El Sheikh. Convoluted dipole array elements [J].Electronics letters,1991,27(4):322-323
    [32] E. A. Parker, A. C. C. Lima. Convoluted frequency-selective array elementsderived from linear and crossed dipoles [C]. IEE Proceedings H (Microwaves,Antennas and Propagation). IET Digital Library,1993,140(5):378-380
    [33] A. C. C. Lima, E. A. Parker. Narrow bandpass single layer frequency selectivesurfaces [J]. Electronics Letters,1993,29(8):710-711
    [34] A. C. C. Lima, E. A. Parker, R. J. Langley. Tunable frequency selective surfaceusing liquid substrates [J]. Electronics Letters,1994,30(4):281-282
    [35] A. D. Chuprin, E. A. Parker, J. C. Batchelor. Convoluted double square: singlelayer FSS with close band spacings [J]. Electronics Letters,2000,36(22):1830-1831
    [36] C. K. Lee, P. T. Teo, L. Xing-Fang. Convoluted loop element for bandpassperiodic array [C]. Microwave and Millimeter Wave Technology,2004. ICMMT4thInternational Conference on, Proceedings. IEEE,2004:781-784
    [37] F. Huang, J. C. Batchelor, E. A. Parker. Interwoven convoluted elementfrequency selective surfaces with wide bandwidths [J]. Electronics Letters,2006,42(14):788-790
    [38] B. Sanz-Izquierdo, E. A. Parker, J. B. Robertson, et al. Singly and dual polarizedconvoluted frequency selective structures [J]. Antennas and Propagation, IEEETransactions on,2010,58(3):690-696
    [39] S. Barbagallo, A. Monorchio, G. Manara. Small periodicity FSS screens withenhanced bandwidth performance [J]. Electronics Letters,2006,42(7):382-384
    [40] J. C. Batchelor, E. A. Parker, Sanz-Izquierdo B, et al. Designing FSS for wirelesspropagation control within buildings [C]. Antennas&Propagation Conference,2009.LAPC2009. Loughborough. IEEE,2009:14-17
    [41] E. A. Parker, J. C. Batchelor, R. Chiang, et al. Frequency selectively screenedoffice incorporating convoluted FSS window [J]. Electronics letters,2010,46(5):317-318
    [42] B. Sanz-Izquierdo, E. A. Parker, J. B. Robertson, et al. Interwoven loops forelectromagnetic architecture of buildings [C]. Antennas and Propagation SocietyInternational Symposium (APSURSI),2010IEEE. IEEE,2010:1-4
    [43] N. Behdad, K. Sarabandi. A miniaturized band-pass frequency selective surface[C]. IEEE International Sym On Antennas and Prop,2006,1:4171-4174
    [44] K. Sarabandi. A Frequency Selective Surface With Miniaturized Elements [J].IEEE Transactions on Antennas and Propagation,2007,55(5):1239-1245
    [45] C. Chiu, K. Chang. A Novel Miniaturized-Element Frequency Selective SurfaceHaving a Stable Resonance [J]. IEEE Antennas Wireless Propag. Lett,2009(8):1175-1177
    [46] F. Bayatpur. Metamaterial-inspired frequency-slective surfaces [D]:[Ph. D.Dissertation]. Michigan: The University of Michigan,2009
    [47] F. Bayatpur, K. Sarabandi. Multi-layer miniaturized-element frequency selectivesurfaces [C]. Antennas and Propagation Society International Symposium,2008,1-4
    [48] F. Bayatpur, K. Sarabandi. Multipole spatial filters using metamaterial-basedminiaturized-element frequency-selective surfaces [J]. Microwave Theory andTechniques, IEEE Transactions on,2008,56(12):2742-2747
    [49] M. Al-Joumayly, N. Behdad. A new technique for design of low-profile,second-order, bandpass frequency selective surfaces [J]. Antennas and Propagation,IEEE Transactions on,2009,57(2):452-459
    [50] N. Behdad, M. Al-Joumayly, M. Salehi. A low-profile third-order bandpassfrequency selective surface [J]. Antennas and Propagation, IEEE Transactions on,2009,57(2):460-466
    [51] M. A. Al-Joumayly, N. Behdad. A generalized method for synthesizinglow-profile, band-pass frequency selective surfaces with non-resonant constitutingelements [J]. Antennas and Propagation, IEEE Transactions on,2010,58(12):4033-4041
    [52] M. Li, N. Behdad. Frequency selective surfaces for pulsed high-power microwaveapplications [J]. Antennas and Propagation, IEEE Transactions on,2013,61(2):677-687
    [53] M. Li, M. A. Al-Joumayly, N. Behdad. Broadband true-time-delay microwavelenses based on miniaturized element frequency selective surfaces [J]. Antennas andPropagation, IEEE Transactions on,2013,61(3):1166-1179
    [54] M. Salehi, N. Behdad. A second-order dual X-/Ka-band frequency selectivesurface [J]. Microwave and Wireless Components Letters, IEEE,2008,18(12):785-787
    [55] S. M. Amjadi, M. Soleimani. Narrow band-pass waveguide filter using frequencyselective surfaces loaded with surface mount capacitors [C]. Electromagnetics inAdvanced Applications,2007. ICEAA2007. International Conference on. IEEE,2007:173-176
    [56] H. Liu, K. L. Ford, R. J. Langley. Miniaturised bandpass frequency selectivesurface with lumped components [J]. Electron Lett,2008,44(18):1054-1055
    [57] H. Liu, K. L. Ford, R. J. Langley. Design methodology for a miniaturizedfrequency selective surface using lumped reactive components [J]. Antennas andPropagation, IEEE Transactions on,2009,57(9):2732-2738
    [58] H. Liu, K. L. Ford, R. J. Langley. Miniaturised bandpass frequency selectivesurface [C].3rd European Conference on Antennas and Propagation,2009,1900-1903
    [59] H. Liu, K. L. Ford, R. J. Langley. Miniaturised Frequency Selective Surface[C].Antennas and Propagation (EuCAP),2010Proceedings of the Fourth EuropeanConference,2010,1-4
    [60] F. Bayatpur. A Tunable, band-pass, miniaturized-element frequency selectivesurface:design and measurement [J]. IEEE antennas and propagation societyinternational sypposium2007,9(15):3964-3967
    [61] F. Bayatpur, K. Sarabandi. Single-layer high-order miniaturized-elementfrequency-selective surfaces [J]. Microwave Theory and Techniques, IEEETransactions on,2008,56(4):774-781
    [62] F. Bayatpur, K. Sarabandi. Tuning performance of metamaterial-based frequencyselective surfaces [J]. IEEE Trans. Antennas Propag.,2009,57(2):590-592
    [63] F. Bayatpur, K. Sarabandi. A tunable metamaterial frequency selective surfacewith variable modes of operation [J]. IEEE Transactions on Microwave Theory andTechniques,2009,57(6):1433-1438
    [64] F. Bayatpur, K. Sarabandi. Design and analysis of a tunable miniaturized-elementfrequency-selective surface without bias network [J]. Antennas and Propagation, IEEETransactions on,2010,58(4):1214-1219
    [65] S. Zheng, Y. Yin, X. Ren. Interdigitated hexagon loop unit cells for widebandminiaturized frequency selective surfaces [C]. Antennas Propagation and EM Theory(ISAPE),20109th International Symposium on. IEEE,2010:770-772
    [66]郑书峰.频率选择表面的小型化设计与优化技术研究[D]:[博士学位论文].西安:西安电子科技大学,2012
    [67]薛锦元.新型频率选择表面的研究[D]:[硕士学位论文].西安:西安电子科技大学,2011
    [68]李婧.新型频率选择表面的研究[D]:[硕士学位论文].西安:西安电子科技大学,2012
    [69] W. Li, G. Yang, T. Zhang, et al. A novel miniaturized band-pass frequencyselective surface [C]. Millimeter Waves (GSMM),5th Global Symposium on.2012,245-248
    [70] M. Hosseinipanah, Q. Wu. Miniaturised high-impedance surface with highangular stability of resonant frequency [J]. Electronics letters,2009,45(24):1204-1206
    [71] T. Zhang, G. Yang, W. Li, et al. A novel frequency selective surface withcompact structure and stable responses [C]. Antennas Propagation and EM Theory(ISAPE),20109th International Symposium on. IEEE,2010:932-935
    [72] G. Yang, T. Zhang, W. Li, et al. A novel stable miniaturized frequency selectivesurface [J]. Antennas and Wireless Propagation Letters, IEEE,2010,9:1018-1021
    [73] X. D. Hu, X. L. Zhou, L. S. Wu, et al. A miniaturized dual-band frequencyselective surface (FSS) with closed loop and its complementary pattern [J]. Antennasand Wireless Propagation Letters, IEEE,2009,8:1374-1377
    [74]胡晓冬.双通带频率选择表面的理论与设计[D]:[硕士学位论文].上海:上海交通大学,2009
    [75]徐念喜,高劲松,梁凤超,等.利用电场与磁场耦合制备微型化频率选择表面[J].光学精密工程,2011,19(10):2333-2341
    [76]徐念喜,冯晓国,王岩松,等.微型化频率选择表面的设计研究[J].物理学报,2011,60(11):11410201-11410207
    [77]徐念喜,高劲松,冯晓国,等.一种实现微型化频率选择表面通带开关的方法[J].微波学报,2011,27(4):1-5
    [78]徐念喜.频率选择表面滤波特性应用研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2012
    [79] N. Marcuvitz. Waveguide handbook [M]. New York: McGraw-Hill,1951
    [80] R. Ulrich. Far-infrared properties of metallic mesh and its complementarystructure [J]. Infrared Physics,1967(7):37-55
    [81] E. A. Parker, S. M. A. Hamdy. Rings as elements for frequency selective surfaces[J]. Electron Lett,1981,17(17):612-614
    [82] E. A. Parker, S. M. A. Hamdy, R. J. Langley. Arrays of concentric rings asfrequency selective surfaces [J]. Electron Lett,1981,17(23):880-881
    [83] S. M. A. Hamdy, E. A. Parker. Comparison of modal analysis and equivalentcircuit representation of E-plane arm of the Jerusalum cross [J]. Electron Lett,1982,18(2):94-95
    [84] R. J. Langley, E. A. Parker. Equivalent circuit model for arrays of square loops [J].Electron Lett,1982,18(7):294-296
    [85] R. Cahill, E. A. Parker. Concentric ring and Jerusalum cross arrays as frequencyselective surface for a45incidence diplexer [J]. Electron Lett,1982,18(8):313-314
    [86] R. J. Langley, E. A. Parker, Double square frequency selective surfaces and theirequivalent circuit [J]. IET Electron Lett,1983,19:675-677
    [87] P. W. B. Au, L. Musa, E. A. Parker, et al. Parametric study of tripole and tripoleloop arrays as frequency selective surfaces [J]. IEE Proc Pt H,1990,137(5):263-268
    [88] A. D. Chuprin, E. A. Parker, J. C. Batchelor. Resonant frequencies of open andclosed loop frequency selective surface arrays [J]. Electron Lett,2000,36(19):1601-1603
    [89] S. Savia, E. A. Parker. Equivalent circuit model for superdense linear dipole FSS[J]. IEEE Proc Microw. Antennas Propag,2003,150(1):37-42
    [90] R. F. Harrington. Field computation by moment methods [M]. Malabar, Florida:Krieger Publishing Company,1983.
    [91] E. K. Miller L. N. Medgyesi-Mitschang, E. H. Newman. Computationalelectromagneties: frequeney domain method of moments [M]. NewYork: IEEEPress,1992.
    [92] C. H. Tsao, R. Mittra. Spectral domain analysis of frequeney seleetive surfaeesvomvrised of periodic arrays of cross dipoles and jerusalem crosses [J]. IEEE TransAntennas Propagation,1984,32(5):478-486
    [93] C. C. Chen. Transmission through a conducting screen perforated periodicallywith apertures [J]. IEEE Trans Microwave Theory Tech, MTT-18,1970:627-632
    [94] C. C. Chen. Scattering by a two-dimensional periodic array of conducting plates[J]. IEEE Trans Antennas Propagation, AP-18,1970:660-665
    [95] J. R. Montgomery. Scattering by an infinite periodic array of thin conductors on adielectric sheet [J]. IEEE Trans Antennas Propag,1975,23(1):70-75
    [96] R. J. Luebbers, B. A. Munk. Some effects of dielectric loading on periodic slotarrays [J]. IEEE Trans Antennas Propag,1978,26(4):536-542
    [97] P. Callaghan, E. A. Parker, R. J. Langley. Influence of supporting dielectric layerson the transmission properties of frequency selective surfaces [C]. IEE Proc-H,1991,138(5):448-454
    [98] C. H. Tsao, R. Mittra. A spectral-iteration approach for analyzing scattering fromfrequency selective surfaces [J]. IEEE Trans Antennas Propag,1982,30(2):303-308
    [99] R. Mittra, C. H. Chan, T. Cwik. Techniques for analyzing frequency selectivesurfaces-a review [J]. IEEE Proc,1988,76(12):1593-1615
    [100] J. F. Ma, R. Mittra, N.T. Huang. Analysis of multiple FSS screens of unequalperiodicity using an efficient cascading technique [J]. IEEE Trans Antennas Propag,2005,53(4):1401-1414
    [101] L. H. Henderson. The scattering of planar arrays of arbitrary shaped slotand/or wire elements in a stratified dielectric medium [D]:[Ph. D. Dissertation]. Ohio:Ohio State University, Department of Electrical Engineering,1983
    [102]盛新庆.计算电磁学要论[M].北京:科学出版社,2004.76-106
    [103]谢拥军,刘莹,李磊,等.HFSS原理与工程应用[M].科学出版社,2009.25-27
    [104] M. Lambea, M. A. Gonzalez, J. A. Encinar, et al. Analysis of frequencyselective surfaces with arbitrarily shaped apertures by finite element method andgeneralized scattering matrix [J]. Antennas and Propagation Society InternationalSymposium, IEEE APS1995,3(18-23):1644-1647
    [105] E. A. Parker, A. D. Chuprin, R. J. Langley. Finite element analysis ofelectromagnetic wave diffraction from buildings incorporating frequency selectivewalls [C]. IEE Proc Microw Antennas Propagat,1999,146(5):319-323
    [106] I. Bardi, R. Remski, D. Perry, et al. Plane wave scattering fromfrequency-selective surfaces by the finite-element method [J]. IEEE Trans Magnetics,2002,38(2):641-644
    [107] E. A. Navarro, B. Gimeno, J. L. Crnz. Modelling of periodic structures usingthe finite difference time domain method combind with the Floquet theorem [J].Electron Lett,1993,29(5):446-447
    [108] W. J. Tsay, D. M. Pozar. Application of the FDTD technique to periodicproblem in scattering and radiation [J]. IEEE Microwave and Guided Wave Letters,1993,3(8):250-252
    [109] P. Harms, R. Mittra, K. Wai. Implementation of the periodic boundarycondition in the finite difference time domain algorithm for FSS structures [J]. IEEETrans. on Antennas and Propagation,1994,42(9):1317-1324
    [110] N. Farahat, R. Mittra. Analysis of frequency selective surfaces using thefinite difference time domain (FDTD) method [J]. IEEE Antennas and PropagationSociety International Symposium,2002,2(16-21):568-571
    [111] D. T. Prescott, N. V. Shuley. A technique for analyzing frequency selectivesurfaces using the finite difference time domain method [J]. Antennas andPropagation Society International Symposium, IEEE AP-S. Digest.1994,3(20-24):2152-2155.
    [112] M. K. Karkkainen, P. M. T. Ikonen. Finite difference time domain modelingof frequency selective surfaces using impedance sheet conditions [J]. IEEE Trans. onAntennas and Propagation,2005,53(9):2928-2937
    [113] B. Hooberman. Everything you ever wanted to know aboutfrequency–selective surface filters but were afraid to ask, May2005
    [114]李龙.广义电磁谐振与EBG电磁局域谐振研究及应用[D]:[博士学位论文].西安:西安电子科技大学,2005
    [115] R. F. Harrington. Time-harmonic electromagnetic fields [M]. New York:McGraw-Hill Book ComPany,Inc,1961
    [116] A. K. Bhattacharyya. Phased array antennas: Floquet analysis, synthesis,BFNs, and active array systems [M]. New York:Wiley,2005
    [117] J. A. Reed. Frequency selective surfaces with multiple periodic elements [D]:[Ph. D. Dissertation]. Dallas: The University of Texas at Dallas,1997
    [118]王秀芝,高劲松,徐念喜.Ku/Ka波段双通带频率选择表面设计研究[J].物理学报,2013,62(23):237302-237302
    [119] P. S. Taylor, J. C. Bathelor, E. A. Parker. A passively switched dual-bandcircular FSS slot array [C]. Antennas and Propagation in Wireless Communications(APWC),2011IEEE-APS Topical Conference on. IEEE,2011:648-651
    [120]王秀芝,高劲松,徐念喜.利用集总LC元件实现频率选择表面极化分离特性[J].物理学报,2013,62(14):428-432
    [121] H. Wakabayashi, M. Kominami, H. Kusaka, et al. Numerical simulations forfrequency-selective screens with complementary elements [J]. IEEProceedings-Microwaves, Antennas and Propagation,1994,141(6):477-482
    [122] R. Dubrovka, J. Vazquez, C. Parini, et al. Equivalent circuit method foranalysis and synthesis of frequency selective surfaces [J]. IEEProceedings-Microwaves, Antennas and Propagation,2006,153(3):213-220
    [123] de Siqueira Campos A L P, de Oliveira Moreira R C, Trindade J I A. Acomparison between the equivalent circuit model and moment method to analyze FSS[C]. Microwave and Optoelectronics Conference (IMOC),2009SBMO/IEEE MTT-SInternational. IEEE,2009:760-765
    [124] F. Costa, A. Monorchio, G. Manara. An equivalent-circuit modeling of highimpedance surfaces employing arbitrarily shaped FSS [C]. Electromagnetics inAdvanced Applications,2009. ICEAA'09. International Conference on. IEEE,2009:852-855
    [125] R. Dubrovka, J. Vazquez, C. Parini, et al. Multi-frequency and multi-layerfrequency selective surface analysis using modal decomposition equivalent circuitmethod [J]. Microwaves, Antennas&Propagation, IET,2009,3(3):492-500
    [126] M. A. Al-Joumayly, N. Behdad. Low-profile, highly-selective, dual-bandfrequency selective surfaces with closely spaced bands of operation [J]. Antennas andPropagation, IEEE Transactions on,2010,58(12):4042-4050
    [127] R. Dubrovka, R. Donnan. Equivalent circuit of FSS loaded with lumpedelements using modal decomposition equivalent circuit method [C]. Antennas andPropagation (EUCAP), Proceedings of the5th European Conference on. IEEE,2011:2250-2253
    [128] F. Mesa, F. Medina, M. Garcia-Vigueras, et al. Circuit approach for a generalstudy of frequency selective surfaces [C]. Electromagnetics in Advanced Applications(ICEAA),2011International Conference on. IEEE,2011:122-125
    [129]侯新宇,崔尧,张玉英,等.应用等效电路模型的频率选择表面有效分析[J].西北工业大学学报,2007,24(6):686-689
    [130]李学林,赵鹏超,宗志园.加载集总电容频率选择表面等效电路建模[J].南京理工大学学报:自然科学版,2011,35(4):539-542
    [131] S. W. Lee, G. Zarillo, C. L. Law. Simple formulas for transmission throughperiodic metal grids or plates [J]. IEEE Transactions on antennas and propagation,1982,30(5):904-909
    [132] R. J. Langley, A. J. Drinkwater. Improved empirical model for the Jerusalemcross [C]. IEE Proceedings H (Microwaves, Optics and Antennas). IET DigitalLibrary,1982,129(1):1-6
    [133] D. S. Lockyer, J. C. Vardaxoglou, R. A. Simpkin. Complementary frequencyselective surfaces [C]. Microwaves, Antennas and Propagation, IEE Proceedings. IET,2000,147(6):501-507
    [134] C. C. Njoku, J. C. Vardaxoglou, W. G. Whittow. Complementary frequencyselective surfaces in a waveguide simulator [C].7thEuropean Conference onAntennas and Propagation (EuCAP) Proc, Sweden,2013:2420-2422.
    [135] S. Li, L. Liu. A novel design methodology for bandpass frequency selectivesurfaces using complementary loading structure [C]. Microwave, Antenna,Propagation and EMC Technologies for Wireless Communications,20093rd IEEEInternational Symposium on. IEEE,2009:831-833
    [136]杜耀惟.天线罩电信设计方法[M].北京:国防工业出版社,1993
    [137]蒙志君,吕明云,武哲,等.频率选择表面A夹层雷达罩的传输特性[J].光学精密工程,2010,18(5):1175-1181
    [138]侯新宇.复杂介质加载频率选择表面的特性分析及雷达罩应用研究[D]:[博士学位论文].西安:西北工业大学,1998
    [139]徐念喜,冯晓国,梁凤超,等.对称双屏Butterworth型频率选择表面的设计[J].光学精密工程,2011,19(7):1486-1494
    [140] X. Z. Wang, J. S. Gao, N. X Xu, et al. A dual-band flexible FSS withminiaturized elements and maximally flat (butterworth) response [J]. Chinese PhysicsB,2014,23(4).(Accepted)
    [141] D. C. Kohlgraf. Design and testing of a frequency selective surface (FSS)based wide-band multiple antenna system [D].[Bachelor Thesis]. The Ohio StateUniversity,2005.
    [142] Z. Lu, R. Shen, X. Yan. A novel wideband frequency selective surfacecomposite structure [C]. Microwave Conference Proceedings (CJMW),2011China-Japan Joint. IEEE,2011:1-3
    [143] J. Romeu, Y. Rahamat-Samii. Dual band FSS with fractal elements [J]. IEEEElectronics Letters,1999,35(09):702-703
    [144] J. Romeu, Y. Rahmat-Samii. A fractal based FSS with dual bandcharaeteristics[J]. Proceedings of IEEE, Antennas and Propagation Soc Int.Symp,1999,3:1734-1737
    [145] J. P. Gianvittorio, Y Rahamat-Samii, Jordi Romeu. Fractal FSS:variousself-similar geometries used for dual-band and dual-polarized FSS [J]. Proc IEEEAntennas and Propagation Soc.Int.Symp,2001,640-643
    [146] J. P. Gianvittorio, Y. Rahmat-Samii. Fractal geometry in antenna systemdesign: miniaturized-multiband element, phased array and frequency selective surfacedesign [C]. Microwave and Millimeter Wave Technology,2002. Proceedings. ICMMT2002.20023rd International Conference on. IEEE,2002:508-511
    [147] J. P. Gianvittorio, J. Romeu, S. Blanch, et al. Self-similar prefractal frequeneyselective surface for multiband and dual-polarized application [J]. IEEE Transactionson Antennas and Propagation,2003,51(11):3088-3096
    [148] D. H. Werner, S. Ganguly. An overview of fractal antenna engineeringreaserch [J]. IEEE Antennas and Propagation Magazine,2003,45(01):38-57.
    [149] A. P. Raiva, F. J. Harackiewicz, I. J. Lindsey. Frequency selective surfaces:design of broadband elements and new frequency stabilization techniques [R].SOUTHERN ILLINOIS UNIV AT CARBONDALE SCHOOL OF TECHNOLOGY,2003
    [150] M. J. Huang, M. Y. Lv, J. Huang, et al. A new type of combined elementmultiband frequency selective surface [J]. Antennas and Propagation, IEEETransactions on,2009,57(6):1798-1803
    [151]许戎戎.基于集总元件加载和分形结构的多频频率选择表面研究[D]:[博士学位论文].南京:南京理工大学,2009
    [152]李小秋.用于隐身雷达罩的带通频率选择表面(FSS)的应用研究[D]:[博士学位论文].长春:中国科学院光学精密机械与物理研究所,2008
    [153]王珊珊.有限频率选择表面及混合雷达罩的电磁散射特性研究[D]:[博士学位论文].长春:中国科学院光学精密机械与物理研究所,2011
    [154]王秀芝,高劲松,徐念喜.Ku/Ka波段双通带频率选择表面雷达罩设计研究[J].物理学报,2013,62(23):237302-237302
    [155]高葆新.微波集成电路[M].北京:国防工业出版社,1995
    [156] P. Scheerz著,夏建生等译.实用电子元件与电路基础[M].北京:电子工业出版社,2009
    [157]王秀芝,高劲松,徐念喜.利用集总LC元件实现频率选择表面极化分离特性[J].物理学报,2013,62(14):428-432
    [158] J. Bornemann. Computer-aided design of multilayered dielectricfrequency-selective surfaces for circularly polarized millimeter-wave applications [J].Antennas and Propagation, IEEE Transactions on,1993,41(11):1588-1591
    [159] Reed J. A. Frequency Selective Surfaces with Multiple Periodic Elements[D].[Ph. D. Dissertation], The University of Texas at Dallas,1997
    [160] D. Schurig, J. J. Mock,D. R. Smith. Electric-field-coupled resonators fornegative permittivity metamaterials. Applied Physics Letters,2006,88(4):041109.1-041109.3
    [161]吴翔,裴志斌,屈绍波,等.具有极化选择特性的超材料频率选择表面的设计[J].物理学报,2011,60(11):271-275
    [162] B. Sanz-Izquierdo, E. A. Parker, J. B. Robertson, et al. Tuning patch-formFSS [J]. Electronics letters,2010,46(5):329-330
    [163] L. Zhang, W. Li, G. Yang, et al. A novel general structure of tunablefrequency selective surface without bias grid [C]. Signal Processing, Communicationsand Computing (ICSPCC),2011IEEE International Conference on. IEEE,2011:1-3
    [164] L. Zhang, W. Li, G. Yang, et al. Research on tunable general FSS structurewithout biasing network [C]. Cross Strait Quad-Regional Radio Science and WirelessTechnology Conference (CSQRWC),2011. IEEE,2011,1:148-151
    [165] Y. Che, X. Hou, Z. Gao. A tunable miniaturized-element frequency selectivesurfaces without bias network [C]. Microwave Technology&ComputationalElectromagnetics (ICMTCE),2011IEEE International Conference on. IEEE,2011:70-73
    [166] G. I. Kiani, K. P. Esselle, A. R. Weily, et al. Active frequency selectivesurface using PIN diodes [C]. Antennas and Propagation Society InternationalSymposium,2007IEEE. IEEE,2007:4525-4528
    [167] K. Chang, S. Kwak, Y. J. Yoon. Equivalent circuit modeling of activefrequency selective surfaces [C]. Radio and Wireless Symposium,2008IEEE. IEEE,2008:663-666
    [168] G. I. Kiani, K. L. Ford, K. P. Esselle, et al. Single-layer bandpass activefrequency selective surface [J]. Microwave and optical technology letters,2008,50(8):2149-2151
    [169] B. Sanz-Izquierdo, E. A. Parker, J. C. Batchelor. Dual-band tunable screenusing complementary split ring resonators [J]. Antennas and Propagation, IEEETransactions on,2010,58(11):3761-3765
    [170] G. I. Kiani, K. L. Ford, L. G. Olsson, et al. Switchable frequency selectivesurface for reconfigurable electromagnetic architecture of buildings [J]. Antennas andPropagation, IEEE Transactions on,2010,58(2):581-584
    [171] B. Sanz-Izquierdo, E. A. Parker, J. C. Batchelor. Switchable technique forfrequency selective slots [C]. Proc. IEEE International Symposium on Antennas andPropagation.2010:1-4
    [172] B. Sanz-Izquierdo, E. A. Parker, J. C. Batchelor. Switchable frequencyselective slot arrays [J]. Antennas and Propagation, IEEE Transactions on,2011,59(7):2728-2731