自适应光学波前处理机高速数据传输和信号与电源完整性技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着自适应光学系统子孔径和校正单元数的不断增多、系统采样频率的逐步提高,对波前处理机的性能,尤其是系统中数据吞吐能力与延迟提出了更加严格的要求。但由于现有波前处理平台的数据传输结构为基于紧耦合并行总线互连结构,传输延迟较高,且无法实现传感器和监控数据的远距离传输,同时不利于今后大规模的扩展。因此,研究新的波前处理机互连结构,高速数据传输的工程实现,以及引入高速互连所带来的电气性能影响对波前处理机的发展具有重要意义,也是本文的核心内容。
     在广泛总结与提炼前人工作成果的基础上,讨论了波前处理机中数据传输的各个重点环节。阐明了波前处理机中各数据处理单元的数据特征,将其间传递的数据划分为实时数据与非实时数据,并以此为线索,分析了现有平台中数据传输结构在未来应用的局限性。为解决现有平台中数据传输结构的缺陷,提出了一种以FPGA为核心的点对点松耦合数据传输架构,与原有传输架构相比,该结构具有硬件接口资源占用少、无总线竞争、传输延迟低、噪声抑制能力强的特点。
     对波前处理机中实时图像数据对远距离、高速、低延迟传输要求的实现难题上,提出了一种基于数据流格式的实时图像数据传输方法,并设计了与其相应的基于光纤接口的自定义实时图像数据传输协议,该方法具有传输距离远、延迟低、硬件资源消耗低的特点。制作了实物板卡进行验证,结果表明其传输与协议处理延迟仅为413.5纳秒,有效传输带宽达到2.5Gbps,误码率低于10-12,该方法已在实际工程中得到应用。
     在斜率与复原运算单元的互连结构上,讨论了基于并行总线和分布式互连结构对斜率运算与复原运算单元间数据交互的影响,结合波前处理任务流程,分别实现了针对单板卡与多板卡分布式互连结构中数据传输接口的设计,制作了实物板进行了验证,其中多板卡数据传输延迟仅为198纳秒,单板卡有效传输带宽达到2Gbps,误码率低于10-12,单板卡波前数据传输方法已在实际工程中得到应用。
     在监控计算机与波前处理机远距离监控技术的研究上,对原有的基于CPCI紧耦合互连方式架构进行了改进,结合千兆位数据传输技术与嵌入式系统技术,实现了基于UDP与TCP/IP协议的千兆以太网远距离监控数据传输,并建立了实物板卡进行验证,结果表明在TCP/IP协议下传输速度达到220Mbps,UDP协议下达到600Mbps,满足监控数据的远距离传输要求。与原有基于标准PCI接口的监控数据传输方案相比,该方案能实现远距离数据交互,且无需额外的协议解析芯片,降低了硬件资源消耗,节省了成本,利于工程实现。
     系统的研究了波前处理机中由于高频、高速器件引入而引起的信号完整性问题,采用场路混合建模的方法进行了系统级高速链路进行建模、仿真及优化。引入了基于DOE方法,分析并优化了实际处理机中高速串行链路,该方法在实际的处理机板卡研制中得到应用,经过实测,在该方法下设计出的高速链路在6.5Gbps速度下达到10-12误码率,满足波前处理机对高速串行链路的需求。
     对波前处理机中电源同步开关噪声的来源进行了深入的分析,讨论了多种同步开关噪声抑制方法在波前处理机应用中的优缺点。在此基础上研究了电磁带隙结构在波前处理机电源噪声抑制中的应用,提出了一种基于螺旋谐振环结构的新型电源平面,制作了实物板卡与UC-EBG、Planar-EBG和传统电源平面进行了性能对比,结果表明新型电源平面获得了更高的同步开关噪声抑制带宽,在-40dB抑制深度下其阻带范围覆盖110MHz-5.8GHz,对比前两种电源平面噪声抑制性能分别提升95%与160%。此外,由于本结构保持了地平面的连续性,可以在保证抑制宽频电源噪声的情况下获得良好的信号质量,信号眼图的眼宽、眼高、抖动分别为281.6ps,494mV和44.5ps,与完整参考平面相比,信号质量几乎无畸变。
     本文提出的波前处理机中高速数据传输和信号与电源完整性分析、设计方法大多已在工程中得到应用,为今后大规模自适应光学波前处理机中多单元互连及高速数据传输的设计与工程实现提供了有益的参考和帮助。
With the subaperture, correction units and sampling frequency of adaptiveoptics(AO) system increase, a more stringent requirement brought in datatransmission throughput and latency of wavefront processor. However, due to theexisting structure of the wavefront processing platform is a tightly coupled parallelbus-based interconnection structure which cannot achieve long distance sensor andmonitoring data transmission, and also go against large-scale expansion of AOsystem in the future. Therefore, the study of new interconnect structure, engineeringrealization of high-speed data transmission, as well as the electrical performanceimpact caused by the high-speed interconnect in wavefront processor is of greatsignificance to the development of wavefront processor in future and is also the corecontent of this thesis.
     Arious key aspects of the wavefront processor in data transmission werediscussed based on summarizing the previous work. Illustrates the characteristics ofthe data in each wavefront data processing unit, the data transfer there between isdivided into real-time data and non real-time data, and as a clue to analyze thelimitations of existing data transmission structure in future applications. In order tosolve the deficiencies in the existing data transfer structures, a FPGA based point topoint loosely data transfer structure is proposed. Compared with the originaltransmission structure, the new structure has a feature of smaller hardware interface,no bus contention, low propagation delay and strong noise suppression.
     For long-distance, high-speed and low-latency real-time image datatransmission of the wavefront processor, an image data stream based method isproposed. The corresponding fiber based custom real-time image data transferprotocol is designed, which has a characteristic of long transmission distance,low-latency and low resource consumption. The results show that the transmissionand protocol processing delay is only413.5ns, the effective transmission bandwidthis2.5Gbps, the error rate is less than10-12, and the method has been applied in theactual project.
     The impact of distributed and parallel bus based interconnects structure for dataexchange between the slope and reconstruction unit is discussed. Single and multi board data transfer interface are achieved, the results show that multi board datatransfer delay is only198ns, single board effective transmission bandwidth is2Gbps,the error rate is less than10-12, and signal board data transfer method has beenapplied in the actual project.
     Remote monitoring technology of wavefront processor has been researched, theoriginal CPCI tightly coupled based interconnect architecture has been improved.Combining gigabit data transmission and embedded systems technology, UDP andTCP/IP protocol based gigabit Ethernet remote monitoring data transfer realized. Theresults show that under the TCP/IP and UDP protocol the transmission speeds is220Mbps,600Mbps, respectively, the requirement of long distance monitoring datatransmission is met. Compared with the original scheme, the new one can achievelong-distance data exchange, and without additional protocol parsing chip, reducinghardware resource consumption, which will help the project implementation.
     Hybrid Field-Circuit approach which incorporated3D full-wave EM andsystem simulation is adopted to analyze the signal integrity problems in wavefrontprocessor. DOE method is introduced to analyze and optimize the high-speed seriallinks in wavefront processor, the method has been applied in the development of theactual processor board, under this method, the measure results show that thetransmission speeds up to6.25Gbps, the error rate is less than10-12, the systemrequirements is met.
     The sources of simultaneous switching noise in wavefront processor have beendiscussed in detail, a novel uniplanar electromagnetic band-gap structure is proposedfor suppression of simultaneous switching noise (SSN) in high-speed circuits on thisbasis. The new power plane mounted the features of spiral resonator, which cansuppress the SSN at lower and higher frequencies, respectively. Then full-wave andsystem simulation were applied to analyze the signal integrity (SI) performance. Thesimulated results display a good consistency with measured results and show theSSN suppression bandwidth is broadened from110MHz to5.97GHz under a noisesuppression margin of40dB, the SSN suppression characteristics are greatlyimproved in lower frequencies, approximately95%and160%of stopbandbandwidth improvement over the conventional UC-EBG and planar EBG powerplane is achieved, respectively, the SI of traces keep a good quality, eye open, eyeheight and jitter of SR-EBG board is281.6ps,494mV and44.5ps, respectively,which almost no distortion compared to the reference board.
     Most of the proposed design methods of high-speed data transmission andsignal and power integrity analysis in wavefront processor have been practicalapplied in projects; it provides a useful reference and help for the large-scaleadaptive optics wavefront processor in high-speed data transmission interconnectiondesign and engineering implementation.
引文
[1] R.K.Tyson.Principles of adaptive optics[M].Adademic Press Inc, New York,1991
    [2]周仁忠,阎吉祥.自适应光学理论[M],北京:北京理工大学出版社,1996
    [3] Babcock H.W. The possibility of compensating astronomical seeing[J]. Publ.Astron. Soc.Pac,1953,65(386):229-236.
    [4] M.C.Roggemann, B.M.Welsh, et al. Imaging through turbulence [M]. USA:CRC Press,1996,1-11.
    [5]姜文汉.自适应光学技术[J].自然杂志,2005,28(1):7-13.
    [6]姜文汉.自适应光学望远镜技术,感知天地——信息获取与处理技术[M],北京:科学出版社,2000:132-167.
    [7] J W Hardy. Adaptive optics: a progress review[J]. Proc. SPIE,1991,1542:2-17.
    [8] J.W.Hardy. Active optics: A new technology for the control of light[J]. Proc. IEEE,1978,66(6):651-697.
    [9] David Dayton, Bob Pierson, Brian Spielbusch, John Gonglewski. Atmospheric structurefunction measurements with a Shack-Hartmann wave-front sensor[J]. Optics Letters,1992,17(24):737-1739.
    [10]颜召军.自适应光学系统预测控制及多层共轭技术研究[D].成都:中国科学院大学光电技术研究所,2013.
    [11]张兰强,顾乃庭,饶长辉.大气湍流三维波前探测模式层析算法分析[J].物理学报,2013,62(16).
    [12] Guzman.H.D. Technologies for Astronomical Wide-Field Adaptive Optics[D],Durhamtheses: Durham University,2010.
    [13] Racine, René.The Strehl Efficiency of Adaptive Optics Systems[J]. Publ.Astron. Soc. Pac,118(845):1066-1075.
    [14] Dicke, R. H. Phase-Contrast Detection Of Telescope Seeing Errors And Their Correction[J].ApJ,1975,198:605-615.
    [15] Beckers, J. M. Increasing the size of the isoplanatic patch size with multiconjugate adaptiveoptics[C]. Germany: European Southern Observatory,1988.
    [16] Schaller, R.R. Moore's law: past, present and future[J]. IEEE Spectrum,1997,34(6):52-59.
    [17] V.I.Tatarski.湍流大气中的波传输理论[M].北京:科学出版社,1987.
    [18] J.C.Wyant. White light extendend source shearing interferometer [J]. Apple. Opt,1974,13(200).
    [19] D.P.Greenwood, C.A.Primmerman. Adaptive optics research at Lincoln Laboratory [J].Lincoln Laboratory Journal5,1,3,1992.
    [20]黄林海.惯性约束聚变装置中自适应光学系统的性能和波前控制方法研究[D].成都:中国科学院光电技术研究所,2009.
    [21]樊志华,王春鸿.一种无需乘法器的光斑质心定位方法[J].光电工程,2012,37(12):17-24.
    [22]马晓燠,樊志华,饶长辉等.基于哈特曼波前传感器的非制冷红外成像光学读出系统[J].光学学报,2009,29(2):490-495.
    [23]侯静.自适应光学波前探测新概念研究[D].长沙:中国人民解放军国防科学技术大学,2002.
    [24]林旭东,薛陈,刘欣悦等.自适应光学波前校正器技术发展现状[J].中国光学,2012,5(4):337-351.
    [25]姜文汉,饶学军,杨泽平,凌宁.哈特曼-夏克波前传感器在光学测量中的应用[C].第十届全国光学测试学术讨论会论文,河南:中国光学学会光学测试专业委员会,2004.
    [26]凌宁.自适应光学波前校正器[J].光学技术,1998,3:12-17.
    [27] Peng Xiaofeng,Li Mei,Rao Changhui. A Kind of FPGA-Based CorrelatingShack-Hartmann Wave-frontProcessor[C]. Fourth International Symposium on PrecisionMechanical Measurements. Proc. of SPIE,2008,7130.
    [28] Wenhan Jiang, Changhui Rao, Yudong Zhang, et. al. Adaptive Optics in IOE, CAS[C].MEMS Adaptive Optics III, Proc. of SPIE,2009,7209.
    [29] Kai Wei, Changhui Rao, Yong Bo. A sodium guide star adaptive optics system for the1.8meter telescope[C]. Adaptive Optics Systems III, Proc. of SPIE,2012,8447.
    [30] Lifang Ma, Shanqiu Chen, Yuan Liu, et. al. An ARM-based Wavefront Processor forAdaptive Optical System[C]. Electronic Imaging and Multimedia Technology V, Proc. ofSPIE,2007,6833.
    [31] Changhui Raoa, Lei Zhu, Naiting Gua, et. al. An Updated37-Element Low-order SolarAdaptive Optics System for1-m New Vacuum Solar Telescope at Full-shine LakeSolarObservatory[C]. Adaptive Optics Systems III, Proc. of SPIE,2012,8447.
    [32] Luchun Zhou, Chunhong Wang, Mei Li, Wenhan Jiang. Design and Analysis of Real-TimeWavefront Processor[C]. Adaptive Optics and Applications III, Proc. of SPIE,2004,5639.
    [33] Changhui Rao, Kai Wei, Xuejun Zhang, et. al. First observations on the127-elementadaptive optical system for1.8m telescope[C].5th International Symposium on AdvancedOptical Manufacturing and Testing Technologies:Large Mirrors and Telescopes, Proc. ofSPIE,2010,7654.
    [34] Caixia Wang, Xinyang Li, Mei Lia, et. al. High Speed SPGD Wavefront Controller for anAdaptive Optics System without Wavefront Sensor[C].5th International Symposium onAdvanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials andDevices for Detector, Imager, Display, and Energy Conversion Technology, Proc. of SPIE,2010,7658.
    [35] Shaobai WANG, Chunhong WANG, Changhui RAO. Pipeline structure for real-timecentroid calculation of Hartmann wavefront sensor with horizontal multi-channel pixeloutput[C]. International Symposium on Photo electronic Detection and Imaging2011:Advances in Imaging Detectors and Applications, Proc. of SPIE,2011,8194.
    [36] Lei Zhu, Naiting Gu, Shanqiu Chen, et. al. Real Time Controller for37-Element Low-orderSolar Adaptive Optics System at1m New Vacuum Solar Telescope[C].6th InternationalSymposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrorsand Telescopes, Proc. of SPIE,2012,8415.
    [37] Caixia Wang, Mei Li, Chunhong Wang, et. al. Real time implementing wavefrontreconstruction for adaptive optics[C]. Adaptive Optics and Applications III, Proc. of SPIE,2004,5639.
    [38] Jie Mu, Wenjia Zheng, Mei Li, Changhui Rao. Real Time Processor Based on FPGA andDSP for Atmospheric Parameters Evaluation from Closed-loop Data of Adaptive OpticalSystem[C].6th International Symposium on Advanced Optical Manufacturing and TestingTechnologies: Design, Manufacturing, and Testing of Smart Structures, Micro-andNano-Optical Devices, and Systems, Proc. of SPIE,2012,8418.
    [39] Zhou Han, Zhou Lu-chun. Real-time processor based on GPU for on-line performanceevaluation of the127-element adaptive optics system[C]. International Symposium onPhoto electronic Detection and Imaging2013: Laser Communication Technologies andSystems, Proc. of SPIE,2013,8906.
    [40]母杰,饶长辉,李梅,郑文佳.基于FPGA和DSP的自适应光学系统在线性能评估的嵌入式处理平台设计[J].光电工程,2012,39(6):34-40.
    [41]母杰,郑文佳,李梅,饶长辉.基于FPGA和DSP技术的自适应光学系统在线大气湍流参数测量平台[J].红外与激光工程,2013,42(3):703-708.
    [42]郑文佳,王春洪,姜文汉等.基于脉动阵列的自适应光学实时波前处理机设计[J].光电工程,2008,35(5):44-49.
    [43]郑文佳,王春洪,姜文汉等.基于脉动阵列的自适应光学实时波前处理机设计[J].光电工程,2008,35(5):44-49.
    [44]费玮玮,王长清,刘濮鲲等.应用于低对比度扩展目标观测的大型阵列太阳自适应光学电子系统的设计与实现[J].电子与信息学报,2010,32(12):2987-2992.
    [45]贾建禄,王建立,赵金宇等.961单元自适应光学系统波前处理器[J].光学精密工程,2013,21(6):1387-1393.
    [46]贾建禄,王建立,赵金宇等.基于FPGA的自适应光学系统波前处理机[J].光学精密工程,2011,19(8):1716-1722.
    [47]贾建禄,王建立,赵金宇等.自适应光学系统波前处理算法的优化[J].光学精密工程,2013,21(4):1026-1031.
    [48]贾建禄,王建立,赵金宇等.可扩展式自适应光学系统波前处理器的硬件设计[J].液晶与显示,2011,26(3):370-373.
    [49] Kit Richards. Adaptive Optics Real Time Processing Design for the Advanced TechnologySolar Telescope[C]. Adaptive Optics Systems III, Proc. of SPIE,2012,8447.
    [50] Deqing Ren, Matt Penn, Haimin Wang. A Portable Solar Adaptive Optics System[C]. SolarPhysics and Space Weather Instrumentation III, Proc. of SPIE,2009,7438.
    [51] Deqing Ren, Bing Dong. Demonstration of portable solar adaptive optics system[J]. OpticalEngineering,2012,51(10):
    [52]王春鸿.61单元自适应光学系统实时波前处理技术研究[D].成都:电子科学技术大学,2008.
    [53]周璐春.自适应光学并行波前处理机的设计及性能评价研究[D].成都:中国科学院光电技术研究所,2008.
    [54]郑文佳.基于脉动阵列的波前处理方法研究[D].成都:中国科学院光电技术研究所,2008.
    [55]彭晓峰.基于绝对差分算法的太阳自适应光学实时波前处理技术研究[D].成都:中国科学院光电技术研究所,2009.
    [56]周维超.太阳自适应光学系统中低对比度扩展目标相关跟踪系统研究[D].成都:中国科学院光电技术研究所,2003.
    [57]母杰.自适应光学系统在线性能评价实现技术研究[D].成都:中国科学院光电技术研究所,2012.
    [58]王彩霞.基于随机并行梯度下降算法的自适应光学实时波前处理技术[D].成都:中国科学院光电技术研究所,2010.
    [59]吴碧琳.高分辨力成像自适应光学系统中倾斜跟踪回路性能研究[D].成都:中国科学院光电技术研究所,2007.
    [60]樊志华.典型信标自适应光学波前实时探测方法及处理技术研究[D].成都:中国科学院光电技术研究所,2011.
    [61] R.J.Sasiela and J.G.Mooney. An Optical Phase Reconstructor Based on Using aMultiplier-Accumulator Approach[C], Proc. SPIE,1985,551-170.
    [62] P.Johnson, R. Trissel. Real time wavefront reconstruction for a512subaperture adaptiveoptical system[C], Proc. SPIE,1991,1543:460-463.
    [63] J.M.Spinhirne, The Starfire Optical Range3.5m Telescope Adaptive Optical System[C].Proc. of SPIE,1998,3353:22-20.
    [64] Ray Du Varney, Charlie Bleau, Garry Motter. EEV CCD39wavefront sensor cameras forAO and interferometry[C], Proc. of SPIE,2000,4007:481-492.
    [65]王春鸿,李梅,李安娜.帧频838Hz的高速实时波前处理机[J].量子电子学报,1998,15(2):212-217.
    [66]王春鸿,李梅,李安娜.高帧频Shack-Hartmann探测的波前处理技术研究[J].强激光与粒子束,1999,11(5):579-583.
    [67]王春鸿,荣志钧,李梅.37单元自适应光学系统实时波前处理[J].光电工程,1995,22(1):46-50.
    [68]王春鸿,李梅,李安娜,帧频2900Hz的高速实时波前处理机[J].光电工程,1998,22:25-29.
    [69]陈严,孔铁生,梁甸农.高速自适应光学波前处理器-流水式多SIMD结构[J].电子学报,1998,3(3):100-102.
    [70]蒋咏梅,陈严,孔铁生.自适应光学波前实时处理机结构设计[J].国防科技大学学报,1996,18(3):90-94.
    [71]胡新奇,曹根瑞,俞信.用于21单元H-S波前传感器的自适应光学波前信号处理机[J].光电工程,1996,23(6):37-43.
    [72] Deli Geng, Stephen J. Goodsell, Alastair G. Basden, et. al. FPGA Cluster for HighPerformance AO Real-time Control System[C]. Advances in Adaptive Optics II, Proc. ofSPIE,2006,6272.
    [73] C.D.Saunter, G.D.Lovea, M.Johnsc, J.Holmesc. FPGA Technology for High Speed, LowCost Adaptive Optics[C].5th International Workshop on Adaptive Optics for Industry andMedicine, Proc. of SPIE,2005,6018.
    [74] Terry S. Duncan, Joshua K. Voas. Low-latency adaptive optical system processingelectronics[C]. Proc. of SPIE,2003,4839:923-934.
    [75] Enrico Fedrigo, Robert Donaldson, et al. SPARTA, the ESO Standard Platform for Adaptiveoptics Real Time Applications[C]. Advances in Adaptive Optics II, Proc, SPIE,2006,62721:1-10.
    [76] S.J.Goodsell, E. Fedrigo. FPGA developments for the SPARTA project[C]. AstronomicalAdaptive Optics Systems and Applications II, Proc, SPIE,2005, Vol.5903:1-12.
    [77] S.J.Goodsell, D.Geng, et al. FPGA developments for the SPARTA project: Part2[C].Advances in Adaptive Optics II, Proc, SPIE,2006,6272:1-12.
    [78] Enrico Fedrigo, Reynald Bourtembourga, Robert Donaldsona, et. al. SPARTA for the VLT:status and plans[C]. Adaptive Optics Systems II, Proc. of SPIE,2010,7736.
    [79] J.M.Brase, J.An, K.Avicola, et al. Adaptive optics at Lick Observatory: System architectureand operations[C], Proc. SPIE,1994,2201:474-488.
    [80] Leslie K. Saddlemyer, Glen Herriot, Design and current status of the reconstructor for Altair:the Gemini North adaptive optics system[C], Proc SPIE,2000,4007:649-658.
    [81] G.B. Scharmer, M. Shand, M.G. Lofdahl, et. al.Workstation-based solar/stellar adaptiveoptics system[C]. Proc. of SPIE,2000,4007:239-250.
    [82] Basden A,Geng D,Myers R,et al,Durham adaptive optics real-time controller[J]. Appliedoptics,2010,49(32):6354-6363.
    [83] Terry S.D,Joshua K.V,et al,Real-time control for Keck Observatory next-generationadaptive optics[C]. Proc. of SPIE,2003,4839.
    [84] Leslie Saddlemyer, Jennifer Dunna, Malcolm Smith, et. al. A Extendable COTSMulti-Computer/CPU Design for an MCAO Control System[C]. Adaptive Optical SystemTechnologies II, Proc. of SPIE,2003,4839.
    [85] Matthieu Beca, Francois J. Rigauta, Ramon Galvez, et. al. The Gemini MCAO bench:system overview and lab integration[C]. Adaptive Optics Systems, Proc. of SPIE,2008,7015.
    [86] Tuan N. Truong, Antonin H. Bouchez, Rick S. Burruss, et.al. Design and Implementation ofthe PALM-3000Real-Time Control System[C]. Adaptive Optics Systems III, Proc. of SPIE,2012,8447.
    [87] Tuan N. Truong, Antonin H. Bouchez, Richard G. Dekany, et.al. Real-Time WavefrontControl for the PALM-3000High Order Adaptive Optics System[C]. Adaptive OpticsSystems, Proc. of SPIE,2008,7015.
    [88] Erik M. Johansson, Marcos A. van Dama, Paul J. Stomskia, et. al. Upgrading the Keck AOwavefront controllers[C]. Adaptive Optics Systems, Proc. of SPIE,2008,7015.
    [89] Marc Reinig, Donald Gavel, Ehsan Ardestani, Jose Renaub. Real-time control for KeckObservatory next-generation adaptive optics[C].Adaptive Optics Systems II, Proc. of SPIE,2010,7736.
    [90] Alastair Basden, Nigel Dipper, Richard Myers. A COTS high performance real-time controlsystem for adaptive optics[C]. Adaptive Optics Systems II, Proc. of SPIE,2010,7736.
    [91] Lianqi Wang, Brent Ellerbroek. Computer simulations and real-time control of ELT AOsystems using graphical processing units[C]. Adaptive Optics Systems III. Proc. of SPIE,2012,8447.
    [92] R. Arsenault, P.-Y. Madec, N. Hubin, et. al. Manufacturing of the ESO Adaptive OpticsFacility[C]. Adaptive Optics Systems II, Proc. of SPIE,2010,7736.
    [93] Alastair Basden, Deli Geng, Richard Myers, Eddy Younger. The Durham adaptive opticsreal-time controller[J]. Applied Optics,2010,49(32):6354-6363.
    [94] A. G. Basden, R. M. Myers. The Durham adaptive optics real-time controller: capability andExtremely Large Telescope suitability[J]. Monthly Notices of the Royal AstronomicalSociety,2012,424(2):1483-1494.
    [95] Marcos Suárez Valles, Enrico Fedrigoa, Robert H. Donaldsona, et. al. SPARTA for the VLT:status and plans2[C].Adaptive Optics Systems III, Proc. of SPIE,2012,8447.
    [96]孙科林.基于多核DSP的实时图像处理平台研究[D].成都:电子科学技术大学,2012.
    [97]张浩田.基于多核DSP的实时波前复原研究[D].成都:中国科学院大学光电技术研究所,2013.
    [98] H.I. Campbell, A.H. Greenaway. WAVEFRONT SENSING: FROM HISTORICAL ROOTSTO THE STATE-OF-THE-ART[J].Astronomy with High Contrast Imaging III,2006,22:165-185.
    [99]黄继鹏.高速高可靠小型数字视频存储系统的设计与实现[D].长春:中国科学院长春光学精密机械与物理研究所,2012.
    [100] Xilinx. Virtex-5Family Overview[EB/OL]. www.xilinx.com: Xilinx Incorporated,June18,2008.
    [101] Xilinx. Virtex-5FPGA User Guide[EB/OL]. www.xilinx.com: Xilinx Incorporated, March30,2008.
    [102] Xilinx. Virtex-5FPGA RocketIO GTP Transceiver User Guide[EB/OL]. www.Xilinx.com:Xilinx Incorporated, February11,2008.
    [103] Xilinx. Virtex-5FPGA RocketIO GTX Transceiver User Guide[EB/OL]. www.Xilinx.com:Xilinx Incorporated, February11,2008.
    [104] T. Instruments. Serial RapidIO Peripheral Overview TMS320C6678[EB/OL]. www.ti.com:Texas Instruments Incorporated, November30,2008.
    [105]杨靖文,陈善球,熊耀恒,饶长辉.基于PCl-Express高速图像采集卡对扩展源大气倾斜量的实时补偿[J].天文研究与技术,2011,8(2):185-191.
    [106]张军,程东年,黄万伟,杨乾斌.同步RocketIO/O通道绑定解决方法[J].计算机工程,34(16),2008:111-113.
    [107]陈国良.并行算法的设计与分析[M].北京:高等教育出版社,2009.
    [108]屈玉贵,梁晓雯.并行处理系统结构[M].合肥:中国科学技术大学出版社,1999.
    [109] Tuan Truong, Gary L. Brack, Mitchell Troy, et. al. Real-time wavefront processors for thenext generation of adaptive optics systems: a design and analysis[C]. Adaptive OpticalSystem Technologies II, Proc. SPIE,2003,4839.
    [110]苏涛.并行处理技术在雷达信号处理中的应用研究[D].西安:西安电子科技大学,1999.
    [111] Xilinx. LogiCORE IP SerialRapidIO v5.6User Guide [EB/OL]. www.Xilinx.com: XilinxIncorporated, March1,2011.
    [112] Xilinx. Virtex-5FPGA Embedded Tri-Mode Ethernet MAC User Guide [EB/OL].www.Xilinx.com: Xilinx Incorporated, February14,2011.
    [113] Adam Dunkels. Design and Implementation of the LwIP TCP/IP Stack[M]. Swedish:Swedish Institute of Computer Science,2001.
    [114]杨海峰,李梅,周睿.槽缝型缺陷参考平面对高速信号的影响研究[J].半导体光电,2013,34(5):876-883.
    [115]杨海峰,李梅,周睿.高速波前处理机中信号完整性分析[J].半导体光电,2013,34(3):510-520.
    [116]杨海峰,饶长辉,李梅,周睿.实时波前处理机中同步开关噪声抑制研究[J].西安电子科技大学学报,2014,41(3):215-222.
    [117]张华.高速互连系统的信号完整性研究[D].东南大学,2005.
    [118] Swaminathan M, Chung D, Grivet-Talocia S, et al. Designing and Modeling for PowerIntegrity [J]. IEEE Transactions On Electromagnetic Compatibility,2010,52(2):288-310.
    [119] Swaminathan M, Engin E. Power Integrity Modeling and Design for Semiconductors andSystems [M]. Boston, MA, Prentice-Hall,2007: Chapter3.
    [120] B.Young. Digital Signal Integrity: Modeling and Simulation with Interconnects andPackages[M]. Upper Saddle River, NJ:Prentice Hall,2000:103-104.
    [121] E.Bogatin. Signal and Power Integrity-Simplified.Second Edition[M]. Upper SaddleRiver, NJ: Prentice-Hall,2009:241-248.
    [122] H. Johnson, M. Graham. High-Speed Digital Design[M].Upper Saddle River, NJ:Prentice-Hall,1993:Chapter5.
    [123] S. Caniggia, F. Maradei. Signal Integrity And Radiated Emission of High-Speed DigitalSystems[M].United Kingdom: John Wiley and Sons,2008:485-486.
    [124] Greg Pitner, Daniel N. de Araujo, Mi Min-hong, et al. Mode Conversion Effects inMulti-Gbps Telecommunications Blade System [C], IEEE International Symposium onElectromagnetic Compatibility, USA,2009,268-273.
    [125] David E. Bockelman, William R. Eisenstadt. Combined Differential and Common-ModeScattering Parameters: Theory and Simulation [J]. IEEE Transactions on Microwave TheoryAnd Techniques,1995,43(7):1530-1539.
    [126] S. Hall, H. HECK. Advanced Signal Integrity For High-Speed Digital Designs[M]. NewJersey: John Wiley and Sons,2009:422-424.
    [127] E.Bogatin. Signal and Power Integrity-Simplified.Second Edition[M]. Upper SaddleRiver, NJ: Prentice-Hall,2009:241-248.
    [128] S.Hall, G. W. Hall, and J. A. McCall. High-Speed Digital System Design: A Handbook ofInterconnect Theory and Design Practices[M]. New York:John Wiley and Sons,2000:Chapter6.
    [129]张木水,李玉山.信号完整性分析与设计[M].北京:电子工业出版社,2010:80-85.
    [130] Lin Biao Wang, Kye Yak See, Wei-Shan Soh et al. Study Of Signal Integrity And RadiatedEmission Of Single Ended And Differential High Speed Digital Signals Crossing A Slot[C].2012Asia-Pacific Symposium on Electromagnetic Compatibility,2012:261-264.
    [131] Li Peng. Jitter, Noise, And Signal Integrity At High-Speed[M]. Boston:Prentice-Hall,2007:5-18.
    [132] Janesick J R. Scientific Charge-Coupled Devices [M]. Bellingham, SPIE Press,2001:714-715.
    [133] Ding Tonghao, Li Yushan. Efficient Method for Modeling of SSN Using Time-DomainImpedance Function and Noise Suppression Analysis [J]. IEEE Transactions onComponents, Packaging and Manufacturing Technology,2012,2(3):510-520.
    [134] Swaminathan M, Chung D, Grivet Talocia S, et al. Designing and Modeling for PowerIntegrity [J]. IEEE Transactions on Electromagnetic Compatibility,2010,52(2):288-310.
    [135]路宏敏,余志勇,赵益民等.一种具有新颖电磁带隙结构的印刷电路板电源平面[J].西安电子科技大学学报,2011,38(3):20-23.
    [136] Lin Peng, Cheng Liruan, Jiang Xiong. Compact EBG for Multi-Band Applications [J].IEEE Transactions on Antennas and Propagation,2012,60(9):4440:4444.
    [137] Wu T L, Chuang H H, Wang T K. Overview of Power Integrity Solutions on Package andPCB: Decoupling and EBG Isolation [J]. IEEE Transactions on ElectromagneticCompatibility,2010,52(2):346-356.
    [138] Wang C D, Yu Y M, Paulis F D, et al. Bandwidth Enhancement Based on Optimized ViaLocation for Multiple Vias EBG Power/Ground Planes [J]. IEEE Transactions onComponents, Packaging and Manufacturing Technology,2012,2(2):332-341.
    [139] Zhang Mushui, Mao Junfa, Long Yunliang. Power Noise Suppression UsingPower-and-Ground Via Pairs in Multilayered Printed Circuit Boards [J]. IEEE Transactionson Components, Packaging, and Manufacturing Technology,2011,1(3):374-385.
    [140] Chuen-De Wang, Yi-Min Yu, Francesco de Paulis. Bandwidth Enhancement Based onOptimized Via Location for Multiple Vias EBG Power/Ground Planes[J]. IEEE Trans. Adv.Packag.,2012,2(2):332-341.
    [141] Long Li, Qiang Chen, Qiaowei Yuan, et.al. Ultrawideband Suppression of Ground BounceNoise in Multilayer PCB Using Locally Embedded Planar Electromagnetic Band-GapStructures[J]. IEEE Trans. Antennas Propag.,2009,8:740-743.
    [142] V. Ricchiuti. Power-supply decoupling on fully populated high-speed digital PCBs[J].IEEE Trans. Electromagn. Compat.,2001,43:671–676.
    [143] W. Cui, J. Fan, Y. Ren, H. Shi, J. L. Drewniak, and R. E. Du Broff. DC power-bus noiseisolation with power-plane segmentation[J]. IEEE Trans. Electromagn. Compat.,2003,45(2):436–443.
    [144] T.-L. Wu, S.-T. Chen, J.-N. Hwang, and Y.-H. Lin. Numerical and experimentalinvestigation of radiation caused by the switching noise on the partitioned DC referenceplanes of high speed digital PCB[J]. IEEE Trans. Electromagn. Compat.,2004,46(1):33–45.
    [145] P. Muthana, K. Srinivasan, A. E. Engin, et.al. Improvements in noise suppression for I/Ocircuits using embedded planar capacitors[J]. IEEE Trans. Adv. Packag.,2008,31(2):234–245.
    [146] Mu-Shui Zhang, Hong-Zhou Tan, Jun-Fa Mao. Worst Case Power Noise Estimation andCompensation Design for Zero Coupling with Multiple Switching I/Os[J]. IEEE Trans.Electromagn. Compat.,201254(5)
    [147] Tzong-Lin Wu, Yen-Hui Lin, Sin-Ting Chen. A Novel Power Planes With Low Radiationand Broadband Suppression of Ground Bounce Noise Using Photonic BandgapStructures[J]. IEEE Microwave Wireless Comp. Lett.,2004,14(7):337–339.
    [148] Leo Raimondo, Francesco De Paulis, Antonio Orlandi. A Simple and Efficient DesignProcedure for Planar Electromagnetic Bandgap Structures on Printed Circuit Boards[J].IEEE Trans. Electromagn. Compat.,2011,53(2):482–490.
    [149] R. K. Shobak. Modeling of spiral inductors and transformers[D]. Dept. Elect. Eng., Kansasstate Univ., Kansas,2001.
    [150] K. H. Kim and J. E. schutt-Aine. Analysis and modeling of hybrid planar-typeelectromagnetic-bandgap structures and feasibility study on power distribution networkapplications[J]. IEEE Trans. Microw. Theory Tech,2008,56(1):178–186.
    [151] R. P. Clayton. Analysis of Multiconductor Transmission Lines(2nd)[M]. New York: Wiley,2008.
    [152]波扎.微波工程.北京:电子工业出版社,2010.
    [153] Shahrooz Shahparnia. Electromagnetic Bandgapstructures For Broadband switching NoiseMitigation In high-Speed Packages[D]. Graduate School of the University of Maryland,2005.
    [154] Teny S. Duncana, Joshua K. Voas, Robert J. Eagerb, et. al. Low-latency adaptive opticalsystem processing electronics[C]. Adaptive Optical System Technologies II, Proc. of SPIE,2003,4839.
    [155]张木水.高速电路电源分配网络设计与电源完整性分析[D].西安:西安电子科技大学,2009.
    [156] Luis F. Rodríguez-Ramos, Teodora Viera, Guillermo Herrera. Testing FPGAs for real-timecontrol of adaptive optics in giant telescopes[C]. Advances in Adaptive Optics II, Proc. ofSPIE,2006,6272.
    [157]王岩,隋思涟.试验设计与Matlab数据分析[M].北京:清华大学出版社,2012.
    [158]李志西,杜双奎.试验优化设计与统计分析[M].北京:科学出版社,2012.
    [159] Erdem Matoglu, Nam Pham, Daniel N. de Araujo, et. al. Statistical Signal IntegrityAnalysis and Diagnosis Methodology for High-Speed Systems[J]. IEEE Transactions onAdvanced Packaging,2004,27(4):611-629.
    [160] Wendem T. Beyene. Application of Artificial Neural Networks to Statistical Analysis andNonlinear Modeling of High-Speed Interconnect Systems[J]. IEEE Transactions onComputer-Aided Design Of Integrated Circuits And Systems,2007,26(1):166-176.
    [161] Agilent. Using Statistical Design[EB/CD]. http://www.home.agilent.com/: AgilentIncorporated.
    [162] Tuan Truong, Gary L. Brack, Mitchell Troy, et. al. Real-time wavefront processors for thenext generation of adaptive optics systems: a design and analysis[J]. Adaptive OpticalSystem Technologies II, Proc. of SPIE,2003,4839.