远志主要化学部位特性的研究及其干燥热解过程的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
远志是传统的常用中药材之一,药用历史悠久,大规模的种植加工是远志中药材今后发展的方向。本课题主要针对远志有效成分现代提取技术,干燥炮制温度对远志化学成分的影响进行研究。研究结论对于提高远志有效成分提取率,降低干燥炮制过程对远志有效成分的影响具有重要理论意义和应用价值。
     选取山西、陕西、河北、内蒙、四川、甘肃六个产地的远志为研究对象,以山西远志为重点,系统研究了挥发油和远志总皂苷的现代提取工艺并对这些提取工艺的特点进行了分析总结;研究了远志多糖的结构特点及其抗氧化活性;在此基础上,考查了远志干燥过程对脂溶性和醇溶性成分的影响;基于中药炮制反应的特点,在模拟空气气氛条件下,采用热重方法研究了远志及其脂溶性和醇溶性成分的热解特性。得到以下主要结论:
     ①CO2超临界法萃取远志挥发油收率高,可有效避免水蒸气蒸馏法所造成的对有效成分的影响。GC/MS分析表明,远志挥发油中含有多种活性成分,如alpha-细辛醚、甲基丁香酚、棕榈酸等。通过CO2超临界萃取得到alpha-细辛醚这一抗抑郁活性成分,有力地证明了远志抗抑郁作用的化学物质基础。
     山西远志中脂溶性成分含量达24%,其中,Octadec-9-enoic acid含量为81.40%,活性成分棕榈酸含量为7.34%。这一研究结论,为拓展远志的新用途提供了物质基础。
     ②65%乙醇为溶媒,传统乙醇回流法提取远志总皂苷,连续索氏提取1h,提取率为1.11%;微波-酶法提取远志总皂苷,固液比为1:25,微波功率为255W,辐射时间为8min,远志总皂苷提取率达1.98%;而超声提取远志总皂苷,固液比1:25,超声时间20min时,远志总皂苷提取率为2.17%;超声波、微波-酶法现代提取方法可减少有机溶剂的使用量,两种方法的提取效率接近,为远志流浸膏的生产提供了新思路。
     ③远志多糖可以显著提高衰老小鼠的脏器系数、延缓衰老,具有抗氧化作用。山西远志总多糖含有50%以上以葡萄糖计的多糖。红外图谱分析表明,远志多糖在500-4000cm-1范围具有多糖的特征吸收峰;紫外图谱分析中260nm及280nm处无特征吸收峰,表明远志多糖不含蛋白质和核酸类物质;远志多糖在快速热解阶段由多个峰组成是逐级热解。
     ④6个不同产地远志超临界挥发油成分相似度在0.90以上。不同产地远志红外光谱分析表明,共有峰为2926.1cm-1,2856.7cm-1,1710.8cm-1,1647.8cm-1,1517.7cm-1,1458.7Cm-1;双指标系列分析表明,不同产地远志有明显差异。
     山西远志经50℃,70℃,90℃干燥后,超临界萃取物中挥发油成分发生了变化;红外光谱分析表明,共有峰相对强度受温度的影响较大,2926cm-1和2857cm-1处的甲基、、亚甲基的伸缩振动峰相对强度值始终大于1742cm-1处的羰基吸收峰的相对强度值;干燥温度对化学成分影响较大。远志干燥过程不仅有水分的挥发,同时存在脂溶性、醇溶性挥发分的析出。
     恒温干燥动力研究表明,不同产地远志药材在50℃、70℃和90℃恒温干燥过程符合Page模型。
     ⑤模拟空气气氛条件下,6个不同产地远志、脂溶性和醇溶性成分的热重分析显示,远志的脂溶性成分中主要含有不饱和脂肪酸,其起始分解温度在170℃,热解过程可分成四个阶段,其中第二、三阶段主要是脂溶性挥发分的析出与燃烧;远志醇溶性成分起始失重温度在90℃,当温度超过90℃即有醇溶性挥发分的析出,235℃即会造成远志皂苷元的分解。
     远志药材挥发分的最大析出速率温度在200℃附近。远志挥发分特性指数:
     r可用于判断远志在空气气氛下热解过程对化学成分的影响,为分析中药炮制这一加热过程提供了一个可以定量分析的指标
     升温速率是影响远志热解过程的重要因素之一,在不同的升温速度下,远志热解反应的机理和过程会有所改变。动力学分析表明中药远志的炮制温度在120-270℃范围符合一级反应模型,活化能均值为22.78kJ/mol。
Polygala, a traditional Chinese medicinal herd, has been commonly used for a long medicinal history. The large-scale cultivation and processing of Polygala should be the development direction of Chinese herbal medicines in the future. This study focuses on the extraction technology for the active ingredient of Polygala, the effect of temperature in drying and concocting process on the chemical ingredients of Polygala. The research conclusions have the important theoretical significance and application value to improving the utilization of traditional Chinese medicine active ingredients and reducing the effects of drying and concocting process of Polygala on active ingredients.
     The experimental samples are collected from Shan Xi, Shann Xi, He Bei, Inner Mongolia, Si Chuan and Gan Su regions in China, especially for the sample from Shan Xi province. The modern extraction technology of volatile oil and Polygala tenuifolia total saponins has been systematically researched and the features of these extraction technology were summarized. The structure features and anti-oxidation activity of Polygala tenuifolia polysaccharide and the effect of Polygala tenuifolia drying process on the lipid dissolved and alcohol dissolved components were also researched. Based on Chinese medicine processing reaction's features, the pyrolysis properties of crude radix polygalae, its lipid solubility and alcohol-soluble constituents by thermogravimetric method in simulation air atmosphere conditions. The following main conclusions have been drawn:
     ①CO2supercritical method has high extraction yield of volatile oil from radix polygalae, which can primely avoid the impact of distillation by steam on effective compositions. The results from GC/MS analysis show that the volatile oil from radix Polygalae has multiple active constituents, such as Alpha-ether, methyl eugenol, Palmitic acid of asarum. Alpha-ether, the antidepressant activity composition of as arum, from CO2supercritical extraction strongly proves the antidepressant components of Polygala.
     The content of lipid-soluble components in Polygala can reach to24%, in which the content of Octadec-9-enoic acid is81.4%and the content of active component of Palmitic acid is7.34%. This conclusion provides a material basis for expanding new uses of Polygala tenuifolia Willd..
     ②The extraction rate of Saponins from Polygala using traditional ethanol reflux by Soxhlet extraction1h in the65%ethanol solvent is1.11%. In the same ethanol solvent, extraction rate of total saponins of Polygala by microwave-enzyme under the conditions of the solid-liquid ratio of1:25, microwave power of255W and radiation time of8min is1.98%. The use of ultrasonic technique can make the extraction rate of total saponins of Polygala enhance to2.17%under the ultrasonic time of20min. Ultrasonic microwave-emzyme modern extraction can decrease the use level of organic solvents, which provides a new thought for the production of Polygala's extracts.
     ③Polysaccharides from Polygala can significantly improve the organ coefficients and present a remarkable anti-aging and antioxidant effects in aging mice. The content of polysaccharides calculated according to glucose from Shanxi Polygala is above50%. The polysaccharides from Polygala presents the features of carbohydrate infrared absorption peak in the range of500-4000cm-1. The lack of ultraviolet absorption peak feature at260and280nm shows that the protein and nucleic acid-containing substances is not included in the polysaccharides from Polygala. During the rapid pyrolysis, the presence of multiple peaks show that the polysaccharide from Polygala is decomposed step by step.
     ④The similarity of the composition of Polygala's volatile oil from different habitats is more than0.90. The infrared characterization results of Polygala from different habitats shows that there are six common peaks in the position of2926.1cm-1,2856.7cm-1,1710.8cm-1,1647.8cm-1,1517.7cm-1and1458.7cm-1. The dual-index sequence analysis suggests that there are a significant differences for the different origins'Polygala.
     Shanxi Polygala after drying at50℃,70℃,90℃, the volatile oil components from supercritical fluid extraction occur some changes. Their infrared spectrum indicates that the relative strength of common peak is greatly affected by temperature. The strength value of methyl, and methylene vibration peak (2926cm-1and2857cm-1) is always greater than carbonyl absorption peak (1742cm-1), which shows that the drying temperature has a evident effect on chemical components. Polygala's drying is not only the loss of water, but also the evolution of volatile's grease. The maximum loss temperature and the weight loss rate during the drying of six Polygala samples are different, the peak temperature in drying phase ranges from119℃to135℃and the maximum decomposition temperature of alcohol-soluble extract is90℃.
     Dynamic study of constant temperature drying of Polygala from different origins at50℃,70℃and90℃shows that this drying process is suited to the Page model.
     ⑤In the simulative air atmosphere, the liposoluble constituents and alcohol-soluble extract of six Polygala from different habitats have been analyzed by the thermogravimetric technique. Liposoluble constituent of Polygala mainly is fatty acid and its initial decomposition temperature is200℃. The pyrolysis process can be divided into four stages and its lipid-soluble volatiles are released and combusted in the second and third stages. The initial evoluted temperature of alcohol-soluble extracts of Polygala is90℃and the sapogenin start to decompose at235℃.
     Maximum emission temperature of volatiles from Polygala is near the temperature of200℃. The volatility characteristic index (r) of Polygala is: r can be used to determine the impact of the processing process on chemical constituents of Polygala, which provides a quantitative indicators to analyze the heating process of processing Chinese medicine.
     Heating rate is one of the important factors influencing the pyrolysis process of Polygala and it has a relation to the pyrolysis reaction mechanisms and processes. Based on the process of preparing Chinese medicine in the temperature range of120℃-270℃, the dynamics analysis shows that it meets the level model and its activation energy is22.78kJ/mol.
引文
[1]国家药典委员会编.《中国药典》2010版第一部[M].2010年1月第一版,中国医药科技出版社出版:146.
    [2]彭玮欣,吴志明,谢晓亮.远志的人工种植、鉴别及炮制研究进展[J].河北农业科学,2005,9(1):111-113.
    [3]陈昌民,杜国兴,蔡家斌.金银花中药材干燥技术研究[J]. 南京林业大学学报,1997.21(3):48-50.
    [4]熊艳,高慧敏,王智明,等.金银花不同干燥技术HPLC指纹图谱研究[J].中国中药杂志,2009,34(8):1015-1017.
    [5]Zhou Y. H., Jiang Y., Wen J., etc. Chemical constituents from the roots of Polygala sibirica L [J]. Journal of Chinese Pharmaceutical Sciences,2008,17 (2):148-152.
    [6]刘云宏,朱文学,马海乐.金银花真空远红外辐射干燥动力学模型[J].农业工程学报,2010,41(5):105-109.
    [7]张代佳,修志龙,林新华,等.鲜人参的干燥方法对提取平分离人参皂苷成分的影响[J].中西医结合学报,2004,2(4):292-294.
    [8]钱骅,赵伯涛,张卫明,等.人参冻干及对皂苷含量的影响[J].中成药,2007,29(2):238-241.
    [9]赵君,王安建,黄纪念.真空微波冻干法制备怀山药片的研究[J].食品科技,2007,32(5):89-91.
    [10]Wu H. W., Tao Z., Chen G. H., etc. Conjugate heat and mass transfer proeess within porous media with dielectric cores in microwave freeze drying [J]. Chemi Eng Sci,2004,59(14): 2921-2928.
    [11]Cui Z. W., Li C. Y., Song C. F., erc. Combined microwave-vacuum and freeze drying of carrot and apple chips [J]. Drying Technology,2008,26 (12):1517-1523.
    [12]Tao Z., Wu H. W., Chen G. H., etc. Numerical simulation of conjugate heat and mass transfer process within cylindrical porous media with dielectric cylindrical cores in microwave freeze-drying [J]. Inter J Heat Mass Transfer,2005,48 (3):561-572.
    [13]徐娓,赵义,J‘静,等.含挥发油类中药材低温吸附干燥新技术[J].中成药,2005,27(10):1135-1138
    [14]李伟,禹玉洪,邓玉林,等HPLC-DAD及HPLC-MS研究干燥工艺对中药粗榧化学成分的影响[J].精红化工,2007,24(4):350-354.
    [15]张志梅,杨太新,郭玉海, 等.干燥方法对白芷中香豆素类成分含量的影响[J].中国中药杂志,2005,30(21):1703-1704.
    [16]熊艳,高慧敏,王智明,等.金银花不同干燥技术HPLC (?)指纹图谱研究[J].中国中药杂志,2009,34(8):1015-1017.
    [17]刘伟,陈志红,刑志霞,等.菊花两种加工方法的干品中绿酸的含量比较[J].中国医院药学杂志,2007,27(3):352-353.
    [18]Qin S., Wen X. S., Shen T., Xiang L.. Thin layer drying characteristics and quality evaluation of steam blanched chrysanthemum [J]. Transactions of the CSAE,2011,27 (6):357-364.
    [19]刘振丽,宋志前,李淑莉.何首乌净选加工、切制和干燥方法对化学成分的影响[J].中草药,2004,35(4):404-406.
    [20]钱秋霞,丛晓东HPLC法测定不同干燥方法中贯叶连翘中黄酮类化合物的含量[J].中草药,2001,32(5):407-409.
    [21]何照范,张迪清.不同干燥条件银杏叶中活性成分含量的影响[J].中草药,2004,35(1):46-48.
    [22]鞠兴荣,汪海峰.微波干燥对银杏叶中有效成分的影响[J].食品科学,2002,23(12):56-58.
    [23]聂诗明,孙晓静,陈璇,许腊英.不同干燥方法对玄参品质的影响[J].中药材2010,33(1):33-35.
    [24]钟凤林,陈和荣, 陈敏.青蒿最佳采收时期、采收部位和干燥方式的实验研究[J].中国 中药杂志,1997,22(7):405-406.
    [25]曾令杰,梁晖,谢晓萍.穿心莲药材干燥前后穿心莲内酯和脱水穿心莲内酯的含量变化研究[J].中成药,2009,31(9):1399-1401.
    [26]徐娓,丁静,赵义,等.不同干燥条件下生姜挥发油成分的GC/MS分析[J].中成药,2008,30(3):399-401.
    [27]王亚君,郭巧生,杨秀伟,等.小毫及其硫磺熏制品挥发油成分的GC/MS分析[J].中国中药杂志,2007,32(9):808-813.
    [28]严茂伟,万军,楚亮,等.半夏干燥过程中褐变机制的研究[J].中草药,2011,42(5):877-880
    [29]边宝林,杨健,王宏清,等.不同干燥条件对鲜地黄中梓醇含量的影响[J].中国中药杂志,1996,21(6):346-347.
    [30]徐楚江.中药炮制学[M].(上海)上海科学技术出版社,1992,154.
    [31]张芙蓉.浅析淫羊蒂的炮制方法[J].光明中医,2006,21(1):26-27.
    [32]邓先瑜,李泉.不同炮制方法对吴茱英药理作用的影响[J].中成药,1999,21(5):236-238.
    [33]傅伟云,李景玲.浅谈延胡索的炮制[J].时珍国医国药,2001,12(10):900.
    [34]贾良栋.水蛭炮制研究进展[J].江苏中医药,2007,39(10):80-81.
    [35]徐自升,蔡宝吕,张弦.怀山药炮制前后TLC,UV及HPLC图谱的变化[J].中国中药杂志,2004,29(2):190.
    [36]Xu C. H., Sun S. Q., Guo C. Q., etc. Multi-steps infrared macro-fingerprint analysis for thermal processing of Fructus viticis [J]. Vibrational Spectroscopy,2006,41 (1):118-125.
    [37]高言明,王建科,李健,等.毛细管区带电泳法测定黄连、黄柏炮制前后小檗碱的含量[J].贵阳医学院学报,2008,33(4):371-373.
    [38]Liao P. Y., Wang D., Zhang Y. J.. Dammarane-type glycosides from steamed notoginseng [J]. J AgricFood Chem,2008,56 (5):1751-1756.
    [39]周莉莉,刘志强,吴国光,等.山菜黄炮制过程中环烯醚萜苷类成分的质谱研究[J].化学学报,2008,66(24):2712-2716.
    [40]Xie P. S., Chen S. B., Liang Y.Z., etc. Chromatographic fingerprint analysis:a rational approach for quality assessment of traditional Chinese herbal medicine[J]. J Chromatogr A,2006,1112 (1-2): 171-180.
    [41]陈林.生远志、甘草制远志炮制工艺及质量标准规范化研究[D].成都:成都中医药大学,2005.
    [42]吴晖晖.蜜炙远志减毒存效的工艺优选及相关实验研究[D].成都:成都中医药大学,2006.
    [43]朱舟.正交试验法优选蜜炙远志威迫干燥工艺[J].中国药业,2011(2):47-48.
    [44]姜勇,屠鹏飞.远志研究进展[J].中草药,2001,32(8):759-761.
    [45]李希.远志不同炮制工艺比较[J].四川中医,2002,20(3):19-20.
    [46]王光志,万德光,刘友平,等.不同炮制方法对远志质量的影响[J].中成药,2009,31(2):252-255.
    [47]夏厚林,董敏,盛燕,等.远志蜜炙前后化学成分的对比研究[J].时珍国医国药,2006,17(9):1620-1621.
    [48]夏厚林,董敏,吴希,等.远志蜜炙前后HPLC指纹图谱对比研究[J].中草药,2006,11(37):1657-1659.
    [49]冯向东,高光伟,黄海欣.远志炮制前后质量变化的比较研究[J].中药材,2008,6(31):818-820.
    [50]林敬开,闫小平,官仕杰,等.远志不同炮制品皂苷类成分含量的比较[J].中国实验方剂学杂志,2011,17(11):89-91.
    [51]房敏峰,付志玲,王相人,等.炮制对远志中皂苷元类成分的影响[J].药物分析杂志,2009,29(3):452-457.
    [52]李萍,阎明,卢丹,等.远志挥发油成分GC/MS的分析[J].特产研究,2003,25(4):43-45.
    [53]武子敬.远志挥发性成分的GC/MS分析[J].安徽农业科学,2010,38(9):4562-4574
    [54]李云峰.对药远,志-石菖蒲化学成分及药代动力学研究[D].陕西:西北大学.2008
    [55]李玲,陈志强,李修禄.超临界流体萃取法在中药材质量控制中的应用[J].药学学报,1995,30(2):133-137
    [56]章俊如,高家荣,汀永忠,等.远志超临界CO2萃取工艺研究[J].安徽医药,2009,13(7):740-741.
    [57]膀敏峰,王锐,张文娟,等.气相色谱-质谱联用法分析药对远志-石菖蒲的挥发油[J].中成药,2010,2(32):311-314.
    [58]吴惠勤,张桂英,曾莉,等.超临界CO2萃取菖蒲有效成分的GC/MS分析[J].分析测试学报,2000,19(6):70-71.
    [59]张文焕,陈健,黄惠华.水蒸气蒸馏和超临界CO2萃取对中药益智挥发油萃取的比较[J].现代食品科技,2007,8:43-45.
    [60]邱琴,杨厚玲,等.超临界CO2流体萃取法和水蒸气蒸馏法提取奈挥发油化学成分的研究 [J]. 山东大学学报(理学版),2006,6(41):119-128.
    [61]李桂生,刘岩,刘坷.水蒸气蒸馏法对当归挥发油提取过程中成分异构化的影响[J].中成药,2001,23(11):784-786.
    [62]房敏峰, 张文娟, 李云峰,等. GC/MS分析对药远志-石菖蒲脂溶性成分的[J].中国药业,2009,18(23):3-5.
    [63]孙晓飞,时素琴,杨国红.远志脂肪油成分分析[J].中草药,2000,23(1):35-37.
    [64]钟露苗,夏新华,李波.五种大孔吸附树脂对黄花倒水莲总皂苷吸附与脱吸附性能的初步考察[J].中成药,2004,26(6):446.
    [65]闫光军,陈建,邵明杰.渗漉法提取三七总皂苷莳的工艺研究[J].山东医药工业,2003,22(5):4-5.
    [66]周跃华,徐德生,冯怡,等.麦冬总皂苷提取工艺研究[J].中草药,2002,33(12):1076-1078.
    [67]高素莲,王雪梅.甘草中皂苷和黄酮类化合物的提取分离与测定[J].安徽大学学报(自然科学版),2000,24(4):70.
    [68]葛发欢,史庆龙,林香仙等.超临界CO2从黄山药中萃取薯蓣皂素的工艺研究[J].中草药.2000.31(3):181-183.
    [69]魏永春,张卫,李冲,等.皂苷的提取与纯化工艺研究进展[J].广东化工,2008,35(11):58-61.
    [70]陈瑞战,张守勤,王长征.止交试验优化超高压提取人参中人参皂苷的工艺研究[J].中草药.2005,36(3):365-368.
    [71]胡瑞君,车振明,徐丹,等.复合酶法提取麦冬总皂苷工艺条件的研究[J].食品研究与开发,2007,28(7):71-75.
    [72]张晓萍.远志总皂苷的提取分离及鉴定[J].黑龙江医药,2004,17(3):170-171.
    [73]梁戈亮,林书玉,刘东.超声提取远志总皂苷工艺研究[J].工艺技术—食品工业科技.2008,29(6):181-182.
    [74]龚盛昭,曾海宇,陈秋基.微波场协同提取远志皂苷的研究[J].广州食品工业科技,20(1):36-38.
    [75]刘友平,万德光,鄢丹,等.大孔吸附树脂纯化远志总皂苷工艺研究[J].中国实验方剂学杂志,2004,10(6):4-6.
    [76]孙磊,王玉蓉,李维峰.大孔吸附树脂吸附远,志总皂苷的吸附热力学与动力学研究[J].北京中医药大学学报,2006,29(11):772-775.
    [77]姜艳艳,段以以,刘洋,等. 远志化学成分分离与结构鉴定[J].北京中医药大学学报,2011,34(2):122-125.
    [78]吕刚.远志化学成分的研究[D].长春:长春中医药大学,2007.
    [79]张晓萍.远志总皂苷的提取分离及鉴定[J].黑龙江医药,2004,17(3):170-171.
    [80]刘明,徐伟,梁娜等.远志的化学成分研究[J].中国现代中药,2010,12(9):18-21.
    [81]孟庆勇,王亚飞,揭新明,等.粗江蓠多糖的提取及光谱分析[J].光谱学与光谱分析,2006,26(10):1903-1906.
    [82]李贵荣,杨胜圆.党参多糖的提取及其对活性氧自由基的清除作用[J].化学世界,2001,8:421-422.
    [83]叶明,李世艳,杨柳,等. 禾本科粒毛盘菌多糖提取及其抗氧化活性研究[J].浙江大学学报(农业与生命科学版),2009,35(2):153-157.
    [84]汀兴平,莫开菊,程超,等.微波在党参多糖的提取技术上的应用研究[J].农业工程学报,2004,20(增刊):206-209.
    [85]张明.复合酶法提取大青叶多糖的工艺研究[J].安徽农业科学,2010,38(26):14352-14353.
    [86]肖宝石,吕海涛.酶法提取浒苔多糖工艺优化的研究[J].食品与机械,2010,26(5):125-127.
    [87]罗娅君,肖新峰,王照丽.大叶金花草多糖的提取、分离纯化及结构分析[J].林产化学与工业,2009,29(1):68-72.
    [88]刘青梅,杨性民,邓红霞,等. 紫菜多糖提取分离及纯化技术研究[J].浙江大学学报(农业与生命科学版),2005,31(3):293-297.
    [89]何晋浙,邵平,倪慧东,等.灵芝多糖结构及其组成研究[J].光谱学与光谱分析,2010,30(1):123-127.
    [90]刘万水.马齿苋多糖的提取与精制[J].天津中医学院院报,2002,21(4):39.
    [91]丁琼,张俐娜,张志强.茯苓菌丝体多糖的分离及结构分析[J].高分子学报,2000,2:224-227.
    [92]Zou S., Zhang X., Yao W. B., etc. Structure characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L. [J]. Carbohydrate Polymers,2010, 80:1161-1167.
    [93]张俐娜,丁琼,张平义,等.茯苓菌核多糖的分离和结构分析[J].高等学校化学学报,1997,18(6):990-993.
    [94]Sun Y. X., Liu J. C., Yang X. D., etc. Purication, structural analysis and hydroxyl radical-scavenging capacity of a polysaccharide from the fruiting bodies of Russula virescens [J]. Process Biochemistry,2010,45:874-879.
    [95]Sun H. H., Mao W. J., Chen Y., etc. Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2 [J]. Carbohydrate Polymers, 2009,78:117-124.
    [96]郑德勇,安鑫南.植物抗氧化剂的研究概况与发展趋势[J].林产化学与工业,2004,24(3):113-118.
    [97]李平,王艳辉,马润宇.山菜萸多糖PEC AII抗氧化性能研究[J].北京化工大学学报,2003,30(3):35-38.
    [98]林桂兰,许学书,连文思.食用菇多糖提取物体外抗氧化性能研究[J].华东理工大学学报(自然科学版),2006,32(3):278-281.
    [1]药典委员会.中华人民共和国药典[M]一部.北京:化学工业出版社,2010,附录63.
    [1]房敏峰,张文娟,李云峰,等.GC/MS分析对药远志石菖蒲脂溶性成分的[J].中国药业,2009,18(23):3-5.
    [2]Lun C. M., Zhao X. L., Liu Z. Q., etc. Isolation and extraction of total flavonoids from Epimedium Koreanum Nakai by supercritical fluid extraction [J]. CHEM. RES. CHINESE U.,2004,20(6): 707-710.
    [3]Lun C. M., Zhao J. M., Li H. M., etc. Supercritical fluid extraction of total flavonoids from leaves of Acanthopanax Senticosus harms [J]. CHEM. RES. CHINESE U.,2007,23 (2):233-236.
    [4]Roynette C. E., Calder P. C., Dnpertnis Y. M., etc. n-3Po-lyunsaturated fatty acids and colon cancer prevention [J]. Clin Nutr,2004,23 (2):139.
    [5]黄昊,孙素琴,许锦文,等. 药用植物化学分类法与红外指纹图谱的相关性研究[J].光谱学与光谱分析,2003,23(2):253-257.
    [6]图雅,白金亮,周群,等.蒙草药乌红花及其提取物化学成的红外光谱法整体结构解析[J].分析化学,2011,39(4):481-485.
    [7]滕红梅,李金亭,胡正海.远志根的发育解剖学研究[J].西北植物,2008,28(1):90-96.
    [8]赵华,李会鹏,廖克俭.王交试验法优选微波提取远志皂苷的工艺[J].化学工业与工程,2011,28(6):35-38.
    [9]刘溪,潘庆华,丁洁,等.使用氟化钡作为固定相的薄层色谱-红外光谱联用研究.光谱学与光谱分析,2011,31(7):1767-1771.
    [10]梁戈亮.林书玉,刘东.超声提取远志总皂苷工艺研究[J].食品工业科技,2008,29(6):181-182.
    [11]张黎明,赵希.超声波辅助提取盾叶薯蓣皂苷元的工艺研究[J].林产化学与工业,2008,28(4):103-107.
    [12]赵云生,李占林,张丽萍,等.晋产远志种质资源皂苷元含量测定[J].世界科学技术-中医药现代化,2002,8(4);68-70.
    [13]万水吕,王志祥,乐龙,等.超声提取技术在中药及天然产物提取中的应用[J].2008,23(1):60-63.
    [14]桂本,郭嘉,池汝安,等.大孔树脂对葛根总黄酮吸附性能的研究[J].应用化工,2007,36 (5):451-453.
    [15]刘国庆,朱翠萍,王占生.大孔树脂对大豆乳清废水中异黄酮的吸附特性研究[J].离子交换与吸附,2003,19(3):229-234
    [16]丁轲,崔莹,袁其朋,等.SP700大孔树脂纯化酸枣仁中三萜总皂苷的研究[J].离子交换与吸附,2011,27(1):33-42.
    [17]姜勇,张娜,崔振,等.远志药材的HPLC指纹图谱[J].药学学报,2006,41(2):179-183.
    [1]张晓萍,远志总皂苷的提取分离及鉴定[J],黑龙江医药,2004,17(3):170-171.
    [2]张胜,李湘洲,吴志平,等.植物多糖分离纯化与含量测定方法研究进展[J],林产化学与工业,2009,29(增刊):238-242.
    [3]陈小强,叶阳,成浩,等.不同方法提制的茶叶粗多糖的光谱分析[J].光谱学与光谱分析,2009,29(4):1083-1087
    [4]裴瑾,万德光,杨林.苯酚-硫酸比色法测定远志及地上部分多糖的含量[J].华西药学杂志.2005,20(4):337-339.
    [5]宋学伟,任磊,韩泳平,等.大花红景天多糖RCPS分离纯化及单糖组成分析[J].光谱学与光谱分析,2008,28(3):642-644.
    [6]孙元琳,崔武卫,顾小红,等.傅里叶变换红外光谱法测定当归果胶多糖的酯化度[J].光谱学与光谱分析,2009,29(3):682-685.
    [7]罗娅君,肖新峰,王照丽.大叶金花草多糖的提取、分离纯化及结构分析[J],林产化学与工业,2009,29(1):68-72.
    [8]孟庆勇,王亚飞,揭新明,等.粗江蓠多糖的提取及光潜分析[J],光谱学与光谱分析,2006,26(10):1903-1906.
    [9]何晋浙,邵平,倪慧东,等.灵芝多糖结构及其组成研究[J],光谱学与光谱分析,1010,30(1):123-127.
    [10]周维芝, 中博玲,刘升波,等.南极海冰细菌胞外多糖的助凝作用及红外光谱分析[J], 光谱学与光谱分析,2009,29(9):2405-2408.
    [11]陈历水,马莺,刘天一,等.株抗氧化活性酵母菌产多糖的纯化与结构分析[J].分析化学研究简报.2010,38(3):409-412.
    [12]李江,宋国强,陈靠山等.南极适冷菌Pseudoalteromonas spS115-13胞外多糖的分离、纯化和结构分析[J].高等学校化学学报,2008,29(6):1149-1152.
    [13]Zou S., Zhang X., Gao X. D., etc. Structure characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L. [J]. Carbohydrate Polymers 2010,80:1161-1167.
    [14]Nabanita Chattopadhyay, Tuhin Ghosh, Bimalendu Ray. etc. Polysaccharides from Turbinaria conoides:Structural features and antioxidant capacity [J]. Food Chemistry,2010,118:823-829.
    [15]刘玉红;王凤山.核磁共振波谱法在多糖结构分析中的应用[J].食品与药品,2007,8:39-43.
    [16]罗娅君,肖新峰,王照丽.大叶金花草多糖的提取、分离纯化及结构分析[J].林产化学与工业,2009,29(1):68-72.
    [17]孟庆勇,刘志辉,徐美奕,等.半叶马尾藻多糖的提取和分析[J].光谱学与光谱分析,2004,24(12):1560-1562.
    [18]郎惠云,张秀军,中烨华,等.壳聚糖固定化亚铁Schiff碱配合物的研究[J]. 高等学校化学学报,2003,24(11):1937-1941.
    [19]鸟日娜,王同华,修志龙,等.生物质炭基固体酸催化剂的制备[J].催化学报,2009,30(12):1203-1208.
    [20]桂卉,文雅萍,邹龙,等.超微归脾丸对D-半乳糖衰老模型小鼠抗衰老作用的研究[J].时珍国医国药,2010,21(4):898-899.
    [21]羊雪芹,靳明亮,徐春兰,等.细菌富硒多糖对小鼠的免疫调节作用[J].农业生物技术学报,2009,17(5):815-819.
    [1]刘敬勇,孙水裕,龙来寿,等.金属化合物对工业污水污泥燃烧的催化作用及机制[J].中国电机工程学报,2009,29(23):51-60.
    [2]姜艳艳,段以以,刘洋,等.远志化学成分分离与结构鉴定[J].北京中医药大学学报,2011,34(2):122-125.
    [3]沙沂,李文,张艳.远志的镇静催眠作用活性成分提取工艺研究[J].中成药,2005,27(5):728-730.
    [4]傅旭峰,仲兆平,肖刚,等.儿种生物质热解特性及动力学的对比[J].农业工程学报,2009,25(1):199-202.
    [5]雷海民,毕葳,李强,等.虎杖药材指纹图谱研究[J].中草药,2006,37(7):1084-1086.
    [6]夏厚林,萤敏,吴希,等.远志蜜炙前后HPLC(?)指纹图谱对比研究[J].中草药,2006,11(37):1657-1659.
    [7]李萍,阎明,卢丹等.远志挥发油成分GC/MS的分析[J].特产研究,2003,25(4):43-45.
    [8]武子敬,远志挥发性成分的GC/MS分析[J].安徽农业科学,2010,38(9):4562-4574.
    [9]房敏峰,王锐,张文娟等.气象色谱-质谱联用法分析药对远志-石菖蒲的挥发油[J].中成药,2010.2(32):311-314.
    [10]孔德鑫,黄庶识,黄荣韶,等.基于双指标分析法和聚类分析法的鸡骨草红外图谱研究[J].光谱学与光潜分析,2010,30(1):45-49.
    [11]黄昊,李静,秦竹,等.中药配方颗粒红外指纹图谱研究[J].分析化学,2003,31(7):828-832.
    [12]黄昊,孙素琴,许锦文,等.药用植物化学分类法与红外指纹图谱的相关性研究[J].光谱学与光谱分析,2003,23(2):253-257.
    [13]图雅,白金亮,周群,孙素琴.蒙草药乌红花及其提取物化学成的红外光谱法整体结构解析[J].分析化学,2011,39(4):481-485.
    [14]郁露,孙素琴,周群,秦竹.白芥子炒制过程的红外及二维相关光谱研究[J].光谱学与 光谱分析,2006,26(12):2181-2185.
    [15]单呜秋,姚晓东,J‘安伟,等.侧柏叶红外指纹图谱共有峰率和变异峰率双指标序列分析法.光谱学与光谱分析,2009,29(8):2092-2095.
    [16]刘红,韩长日,刘红霞,等.益智红外指纹图谱研究[J].光谱学与光谱分析,2008,28(11):2257-2560.
    [17]高书燕,汀冬梅,张洪杰.羟基为核收敛的多醚树枝状大分子的红外与拉曼光谱分析[J].分析化学,2007,35(9):1314-1318.
    [18]Doymaz I.. Drying characteristics and kinetics of okra [J]. Journal of Food Engineering,2005, 69:275-279.
    [19]Singh G. D., Sharma R., Bawa A. S., etc. Drying and rehydration characteristics of water chestnut (Trapa natans) as a function of drying air temperature [J]. Journal of food Engineering, 2008,87:213-221.
    [20]Mandala I. G., Anagnostaras E. F., Oikonomou C. K.. Influence of osmotic dehydration conditions on apple air-drying kinetics and their quality characteristics [J]. Journal of Food Engineering,2005,69:307-316.
    [21]Kashaninejad M., Mortazavi A., Safekordi A., etc. Thin-layer drying characteristics and modeling of pistachio nuts [J]. Journal of Food Engineering,2007,78:98-108.
    [22]Doymaz I.. Air-drying characteristics of tomatoe [J]. Journal of Food Engineering,2007,78: 1291-1297.
    [1]陈祎,段佳,林鹏,等.氧量对典型生物质燃烧特性的影响[J].中国电机工程学报,2008,28(2):43-48.
    [2]武景丽,汪丛伟,阴秀丽,等.生物油重质组分热解特性研究[J].太阳能学报2010,31(1):113-117.
    [3]来永斌,陈秀.热重法研究棕榈油生物柴油的挥发性[J].石油与天然气化工,2011,40(5):448-450.
    [4]图雅,白金亮,周群,等.蒙草药乌红花及其提取物化学成的红外光谱法整体结构解析[J].分析化学,2011,39(4):481-485.
    [5]刘友平,万德光,刘涛,等.分光光度法测定不同产地远志总皂甙的含量[J].成都中医药大学学报,2000,23(2):46-47.
    [6]杨国红,孙晓飞.反相高效液相色谱法测定远志中远志皂苷元的含量[J].药物分析杂志,2001,21(4):260-263.
    [7]刘友平,万德光,宋英HPLC法测定远志中去羟基远志皂苷元含量[J].中草药,2001,32(9):786-787
    [8]徐国钧,何红贤,徐珞珊,等.中国药材学[M].北京:中医药科技出版社.1996.
    [9]傅旭峰,仲兆平,肖刚,等.儿种生物质热解特性及动力学的对比[J].农业工程学报,2009,25(1):199-202.
    [10]王爽,姜秀民,王宁等.海藻类生物质的热解和燃烧特性的研究[J].动力工程,2009.29(6):596-601.
    [11]蒋剑春,沈兆邦.生物质热解动力学的研究[J].林产化学与工业,2003,23(4):1-6.
    [12]Sanchez M., Otero M, Gomez X, etc. Thermogravimetric kinetic analysis of the combustion ofbiowastes [J]. Renewable Energy,2009,34:1622-1627.
    [13]Otero M, Gomez X, Garcia AI. Effects of sewage sludge blending on the coal combustion:A thermogravimetric assessment [J]. Chemosphere,2007,69:1740-1750.
    [14]Whitea J. E., Catallob W. J., Legendrea B.L.. Biomass pyrolysis kinetics:A comparative critical review with relevant agricultural residue case studies [J]. Journal of Analytical and Applied Pyrolysis,2011,91:1-33.
    [15]Brown M. E., Maciejewski M., Vyazovkin S., etc. Computational aspects of kinetic analysis PartA:The ICTAC kinetics project-data, methods and results [J]. Thermochimica Acta.2000, 355:125-143.
    [16]Vyazovkin S., Burnham A. K., Criad J. M., etc. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermalanalysis data [J]. Thermochimica Acta.2011, 520:1-19.
    [17]Damartzis T., Vamvuka D., Sfakiotakis S., etc. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA) [J]. Bioresource Technology,2001.102:6230-6238.
    [18]刘乃安,王海晖,夏敦,等.林木热解动力学模型研究[J].中国科技大学学报,1998,28(1):40-48.