固本健脑法对MCI大鼠学习记忆能力及海马Caveolin-1的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     从中医学对老年记忆的生理病理认识探讨老年人轻度认知障碍的发病机理为脾肾亏虚,脑失所养。遵循中医“虚则补之”“未病先防,既病防变”的治疗原则,提出固本健脑法治疗MCI。用东莨菪碱、NaNO2、40%乙醇腹腔注射制备学习记忆获得障碍、巩固障碍、再现障碍小鼠模型,观察固本健脑法对学习记忆获得障碍、巩固障碍、再现障碍模型小鼠学习记忆能力的影响,探讨固本健脑法对学习记忆获得、巩固、再现各反面障碍的治疗效果;用D-gal与NaNO2腹腔注射制备MCI大鼠模型,通过观察固本健脑法对MCI模型大鼠学习记忆能力、海马组织病理形态、Cav-1、Syn、SNAP-25表达等相关指标的影响,探讨固本健脑法对MCI模型大鼠的治疗作用机理,为中医药治疗中老年人轻度认知障碍提供理论和实验依据。
     方法
     1.将3月龄昆明种小鼠90只,随机分成3组,每组又分为3个亚组,即正常组(A组)30只,其中A1、A2、A3每组各10只;固本健脑液组(B组)30只,其中B1、B2、B3每组各10只;模型组(C组)30只,其中C1、C2、C3各10只。适应性喂养一周后,各组小鼠均每日1次按10ml/kg·d-1的剂量灌胃,正常组和模型组小鼠灌服0.9%的生理盐水,固本健脑液组则灌服含生药1g/m1的固本健脑液。10天后B1、C1组腹腔注射东莨菪碱制备记忆获得障碍模型,B2、C2组腹腔注射亚硝酸钠制备记忆巩固障碍模型,B3、C3组腹腔注射40%乙醇制备记忆再现障碍模型,A1、A2、A3组腹腔注射等容量生理盐水,用跳台法实验观察实验小鼠的学习记忆能力。
     2.将用Morris水迷宫法筛选出记忆能力相当的84只3月龄SD大鼠随机分为6组,即正常组、模型组、脑复康治疗组(简称脑康组)、固本健脑液低剂量组(简称固低组)、固本健脑液中剂量组(简称固中组)、固本健脑液高剂量组(简称固高组),每组14只。各组大鼠适应性喂养一周后,每日上午正常组大鼠腹腔注射生理盐水,固高组、固中组、固低组、脑康组、模型组大鼠腹腔注射D-ga1和NaNO2,连续40天以复制MCI模型,从造模13天起每日下午加以正常组、模型组大鼠灌服生理盐水,固高组、固中组、固低组、脑康组大鼠分别灌服相应药物进行预防,连续28天。40天后用水迷宫行为学试验观察各组大鼠学习记忆能力,光镜、电镜下观察各组大鼠海马组织病理形态学改变,免疫组化法检测各组大鼠海马组织Cav-1的表达,实时荧光定量PCR方法检测各组大鼠海马组织Cav-1、SNAP-25的表达,免疫印迹法检测各组大鼠血清Cav-1、Syn的表达。
     结果
     1.与学习记忆获得障碍、巩固障碍、再现障碍模型各组小鼠相比较,正常组潜伏期明显高于各模型组(P<0.01)、5分钟内错误次数明显低于各模型组(P<0.01);固本健脑液治疗组潜伏期高于各模型组(P<0.05)、5分钟内错误次数低于各模型组(P<0.05)。
     2.与正常组相比,固高组、固中组、固低组、脑康组、模型组大鼠精神倦怠,均不同程度的表现出饮水量、进食量、活动量减少,皮毛干枯、稀疏、脱落。
     3. Morris水迷宫行为学实验,定位航行实验中各组大鼠的平均潜伏期、平台所在象限百分比,空间探索实验中各组大鼠的平均潜伏期、跨越原平台位置的次数、平台所在象限百分比的结果,正常组、固高组、固中组与模型组比较均有显著性差异(P<0.01),固低组、脑康组与模型组比较均有差异(P<0.05),固高组、固中组与脑康组比较均有差异(P<0.05),固低组与脑康组比较没有统计学意义(P>0.05)。
     4.光镜、电镜病理形态上观察,正常组主要表现为海马神经元细胞饱满,细胞层数及细胞数目较多,大小一致,排列紧密、整齐,胞膜完整,突触结构丰富;模型组大鼠海马神经细胞数目明显减少,细胞排列混乱,层数减少甚至单层,胞膜、核膜界限不清,胞核空泡变性,核仁变小、裂解,胞质增多,突触数目明显减少;各治疗组介于正常组和模型组之间,与模型组相比均有不同程度的改善,以固高组、固中组的改善最为显著。
     5.免疫组化检测各组大鼠海马组织Cav-1蛋白的表达,结果正常组大鼠海马内Cav-1蛋白阳性免疫产物表现最多,模型组最少,各治疗组介于正常和模型组之间,与模型组相比均有不同程度的改善,以固高组、固中组的改善最为显著。
     6.实时荧光定量PCR方法检测各组大鼠海马组织Cav-1、SNAP-25的表达,结果二者在各组大鼠海马内的表达具有高度的正相关性。正常组大鼠海马内Cav-1、SNAP-25的表达明显高于模型组(P<0.01);各治疗组大鼠海马内Cav-1、SNAP-25的表达介于正常组和模型组之间,与模型组比较均有显著性差异(P<0.01);固高组、固中组与脑康组大鼠海马内Cav-1、SNAP-25的表达比较均有差异(P<0.05),固低组与脑康组比较没有统计学意义(P>0.05)。
     7.免疫印迹法检测各组大鼠血清Cav-1、Syn的表达,结果二者在各组大鼠海马内的表达显示出高度的正相关性。正常组大鼠海马内Cav-1、Syn的表达明显优于模型组(P<0.01);各治疗组大鼠海马内Cav-1、Syn的表达介于正常组和模型组之间,与模型组比较均有明显提高(P<0.01);固高组、固中组大鼠海马内Cav-1、Syn的表达高于脑康组(P<0.05),固低组与脑康组大鼠海马内Cav-1、Syn的表达比较没有统计学意义(P>0.05)。
     结论
     1.脾肾亏虚,脑失所养是轻度认知障碍的基本病机,固本健脑法是防治MCI的有效可行方法。
     2.固本健脑法能明显改善学习记忆获得、巩固、再现障碍模型大鼠学习记忆能力。
     3.联合使用D-gal和NaNO2腹腔注射,可以较好地复制MCI模型,重复性高。
     4.固本健脑法能有效改善MCI模型大鼠学习记忆能力;减轻MCI模型大鼠病理形态学的改变;提高MCI模型大鼠海马组织内Cav-1、Syn、SNAP-25的表达。
     5.固本健脑法可能是通过作用于Cav-1蛋白,提高突触前Syn、SNAP-25蛋白表达水平,调节海马神经可塑性,从而改善年龄相关性神经可塑性下降而发挥神经保护作用,提高学习记忆能力延缓衰老。
Objective
     From the theory of chinese medical science, to explore the etiological factor of Mild Cognitive Impairment (MCI) is the deficiency of spleen and kidney. Follows the chinese medical principle of "treating the asthenia-syndrome by therapy of invigoration" and "protecting the healthy body, preventing the transmission of the disease", we propose the therapy of Gubenjiannao Methods is operative on treating MCI. In the experiments, To built the three mouse models of the impairment of memory acquisition, consolidated memory disorder and recovered memory disorder caused respectively by scopolamine, NaNO2 and 40% ethanol. To built MCI model of rats by the way of intra-peritoneal injection of D-galactose and NaN02. To observe the effects of Gubenjiannao Methods on learning memory, pathological, the hippocamPal levels of Caveolin-1 (Cav-1), Synaptophysin(Syn) and Synaptosomal Associated Protein of 25 kD (SNAP-25). To provide traditional Chinese medicine with experimental accordance and clinical guidance.
     Methods
     1. The normal 90 3-month-old Kunming rats were randomly divided into three groups:normal group (A group), Gubenjinnao liquid group (B guoup)and model group(C group). there are 15 rats in every group. and each group was divided into three sub-groups (10 rats in every sub-groups). After feeding in ordinary ways for one week, the normal group and model group were fed with 0.9% physiological saline, the Gubenjiannao group were fed with the Gubenjinnao liquid (containing crude drug 1g/ml). Then 10 days later, the B1 and C1 group were prepared by injection of scopolamine model of memory deficits, B2 and C2 preparation of intraperitoneal injection of sodium nitrite memory consolidation Disorder, B3 and C3 intraperitoneal injection of 40% ethanol prepared by the memory representation Disorder. A1, A2, A3 groups with intraperitoneal injection of physiological saline of equal dosage. Test the method of learning and memory abilities of mice with step-down method experiment.
     2. Filtering 84 3-month-old SD rats of memory with Morris water maze(MWM), randomly dividing into six groups:normal group, MCI model group, piracetam treated group, high-dose of Gubenjiannao Liquid group (HGG for short), medium-dose of Gubenjiannao Liquid group (MGG for short), low-dose of Gubenjiannao Liquid group (LGG for short), there are 14 rats in every group. After adaptively feeding all rats for one week, injecting physiological saline into abdomen cavity of mormal guoup every morning, injecting D-galactose and NaNO2 into abdomen cavity of model group, piracetam treated group, HGG, MGG and LGG every morning,40 days continuous to copy the MCI model. From the 13th model-copying days on, Filling physiological saline with normal group and model group every afternoon, piracetam treated group, HGG, MGG and LGG of rats fed with the appropriate drugs prevention every afternoon, for consecutively 28 days. Furthermore Morris water maze(MWM) was used to observing the ability of space learning memory of each group. Use the light microscope and electron microscope to observe the changes of morphology and structure in the hippocampus. Test Cav-1 expression by immunohistochemical staining, real-time PCR method was used to detect the hippocampus Cav-1, SNAP-25 expression, hippocampus Cav-1, Syn expression was detected by Western blot.
     Results
     1. Compared with rat in the model groups of learning and memory disorder acquisition, disorder strengthening and disorder representation, the level of incubation period of the rats in the normal group are higher than that of the rest groups (P<0.01), while their level of making mistakes within 5 minutes are lower than that of the model groups (P<0.01); incubation period level of the Gubenjiannao Liquor group is higher than the other moder groups (P<0.05) and their mistake-making rate within 5 minutes is lower the rest groups (P<0.05).
     2. Compared with normal group, the test 5 group all show different degrees characterized by decline in water intake, food intake and activition, and fur dry shriveling, thinning and falling.
     3. In the Morris water maze behavior experiment, the average incubation period, percentage of quadrant in the learning ability gain, the average incubation period, percentage of quadrant, the frequency in span of platform localization in space research. The results show that has significant differences between the model group and normal group, HGG and MGG(p<0.01), compared with model guoup, LGG and piracctam treated group (p<0.05), there aren't differences between the LGG and piracctam treated group(p>0.05); there are significant differences between the HGG and piracctam treated group (p<0.01).
     4. By the light microscopy and electrical microscopy observation, the neuron of model group was less than that of normal group, death cell could be seen clearly, the neuron decreased and deformed in model group rats, pellet vacuole denaturation, cell nucleus lessen, the mitochondria swelling and vacuole, the endoplasmic reticulum dilatation, amount of synapse decrease, the HGG can ameliorate this pathological changes obviously, there are significant differences between the HGG and piracctam treated group.
     5. The results of immunohistochemical staining, the hippocampus of rats treated Cav-1 expression between the normal group and model group, which shows different signs of improvements, the HGG and the MGG being the most remarkable.
     6. In testing the hippocampal Cav-1, SNAP-25 expression by the Real-time quantitative PCR method, the results is that in each group they show high positive revelance. The results of the normal group is significantly higher that that of the model group (P<0.01); the hippocampus of rats treated Cav-1, SNAP-25 expression between the normal group and model group, with a notable difference over the model group (P<0.01); there is a difference between the piracctam treated group and the HGG as welll as the MGG(P<0.05); while the comparison between the LGG and the piracctam treated group has no statistical meaning (P>0.05).
     7. In testing the blood serum Cav-1, Syn by the Western blotting, the results is that in each group they show high positive revelance. The result of the normal group is better than that of the model group(P<0.01); the hippocampus of rats treated Cav-1, Syn expression between the normal and model groups, with a notable improvement over the model group(P<0.01); there is a difference between the piracctam treated group and the HGG as welll as the MGG(P<0.05); while the comparison between the LGG and the piracctam treated group has no statistical meaning (P>0.05).
     Conclusion
     1. Spleen and kidney deficiency is the basic etiological factor for MCI, the therapy of Gubenjiannao Method is a effective and feasible cure.
     2. The Gubenjiannao Method can notably improve the modeling rats' learning and memorizing ability in the learning and memory acquisition, strengthening and representation disorder.
     3. By combining the D-gal intraperitoneal injection and NaNO2 intraperitoneal injection, the MCI model is comparatively easier, and better to make, with a high repetition..
     4. The Gubenjiannao Method can effectively improve the learning and memorizing ability of the MCI rats, lighten the pathomorphological changes of the MCI rats and better the Cav-1, Syn, SNAP-25 expression in the hippocampal sections of the MCI rats.
     5. The Gubenjiannao Method may increased levels of presynaptic proteins such as Syn and SNAP-25 expression, regulating neuronal plasticity by working on the Cav-1 protein, thus to lower the decline of the age-related nerve formation, to protect the nerves, better the learning and memorizing ability and to delay senility.
引文
[1]叶宁,尹文耀.我国人口发展趋势及对社会经济的影响.武汉大学学报(哲学社会科学版),2006,59(6):755-761.
    [2]Celsis P. Aged-related cognitive decline, mild cognitive impairment or preclinical Alzheimer's disease. Ann Med,2000, 32:6-14.
    [3]盛树力.老年性痴呆及相关疾病.北京:科学技术文献出版社,2006,1:43,288.
    [4]Fillit H, Evans D, Butler R, et al. Achieving and maintai-ning cognitive vitality with aging. Mayo Clin Proc,2002,77 (7): 681-967.
    [5]Petersen RC, Smith GE, Waring SC, et al.Mild cognitive impairment:Clinical characterization and outcome. Arch Neurol, 1999,56(3):303-308.
    [6]Chertkow H, Bergman H, Schipper HM, et al. Assessment of suspected dementia. Can J Neurol Sci,2001,28(suppl 1):28-41.
    [7]Petersen RC, Stevens JC, Ganguli M, et al. Practice parameter: Early detection of dementia:Mild cognitive impairment (an evidence-based review).Neurology,2001,56 (9):1133-1142.
    [8]Petersen RC, Doody R, Kurz A, et al.Current concepts in mild cognitive impairment. Arch Neurol,2001,58(12):1985-1992.
    [9]范冬辉.严重影响健康的老年痴呆症.中国检验检疫,2006,12(6):64.
    [10]王德生,张守信.老年性痴呆.北京:人民卫生出版社,2001,1:380
    [11]贾建平.重视轻度认知障碍与老年性痴呆关系的研究.中华神经科杂志,2002,35(6):324-326.
    [12]袁德培,王平.固本健脑液对38例衰老证候的疗效观察.湖北民族学 院学报(医学版),1999,16(2):17-18.
    [13]袁德培,王平,赵敬华,等.固本健脑液对大鼠全血粘度、红细胞SOD活力的影响.时珍国药研究,1996,7(5):268.
    [14]袁德培,王平,赵敬华,等.固本健脑液对小鼠免疫功能的影响.时珍国药研究,1995,6(4):23-24.
    [15]吴洁荣,尹文仲,吴瑞云.恩施板桥党参的质量特征与产地自然条件.中南民族大学学报,2009,28(2):57-60马作峰,姜瑞雪.固本健脑方改善记忆障碍动物模型记忆功能的实验研究.江苏中医药,2005,26(2):47-50.
    [16]王岚,张帆,王艳,等.甘肃党参水提物对D-半乳糖所致衰老小鼠脑组织SOD、MDA影响的实验研究.中国中医药科技,2010,2(17):148-149.
    [17]张帆,王岚,车敏等,甘肃党参水提物对衰老模型小鼠脑细胞凋亡及相关基因表达的影响.中国老年学杂志,2010,(30)19:2807-2809.
    [18]王丽娟,李晓蓉,胡小敏,等.党参、绿茶及二者合用对苯基异丙腺苷所致小鼠学习记忆障碍的影响.中国药理与临床,2007,23(1):45-46.
    [19]Singh B, Song H, Liu XD, et al. Dangshen (Codonopsis pilosula) and Bai guo (Gingko biloba) enhance learning and memory. Altern Ther Health Med,2004,10(4):52.
    [20]孙耀贵,程佳,温伟业,党参总皂苷抗氧化作用研究.中兽医医药杂志,2010,3:37-39.
    [21]侯家玉.中药药理学.北京:中国中医药出版社,2005:230.
    [22]杨瑞欣.枸杞多糖提取工艺及抗氧化活性的研究与探讨.化学工程与装备2010.(9):42-43.
    [23]蔡天革,蔡宇,余绍蕾.枸杞多糖对染铅小鼠学习记忆及海马区PKC影响.中国公共卫生,2010,26(1):38-39.
    [24]刘梅.枸杞提取物对果蝇寿命及SOD和MDA的影响.安徽农业科学, 2010,38(4):1860-1861.
    [25]侯安继,陈腾云,彭施萍,等.茯苓多糖抗衰老作用研究.中药药理与临床,2004,20(3):10-11.
    [26]沈思,李孚杰,梅光明等茯苓皮三萜类物质含量的测定及其抑菌活性的研究.食品科学,2009,30(1):95-98.
    [27]唐万侠,朱吕会,王金兰茯苓的化学成分及生理活性研究.2009年中国药学大会暨第九届中国药师周论文集,2006-2009.
    [28]侯建平,张恩户,胡悦,等.酸枣仁对小鼠学习记忆能力的影响.广西中医学院学报,2002,5(3):11-13.
    [29]李宝莉,夏传涛,袁秉祥.不同提取工艺的酸枣仁油对小鼠镇静催眠作用的影响.西安交通大学学报(医学版),2008,29(2):227-229.
    [30]马琦,袁其朋,丁轲.酸枣仁抗氧化成分提取及其活性.过程工程学报,2010,10(4):756-761.
    [31]郝东方,杨芮平,周玉枝,等.山楂叶的化学成分.沈阳药科大学学报,2009,26(4):282-284.
    [32]刘全亮,杨中林.不同纯度山楂叶总黄酮降血脂作用的比较研究.海峡药学,2008,20(2):32-52.
    [33]谢伟华,孙超,刘淑敏,等.山楂黄酮对高脂血模型小鼠血脂及生脂基因转录表达的影响.中国中药杂志,2009,34(2):224-229.
    [34]曾锦旗,董为伟.记忆障碍动物模型研究进展现代康复.现代康复.2001,5(10):74-75.
    [35]徐叔云,卞如濂,陈修.药理实验方法学.第3版.北京:人民卫生出版社,2002,829-830.
    [36]张磊,张均田.学习记忆的实验方法和记忆障碍模型.药学通报,1988,23(8):475.
    [37]Kameyame T, Nabeshima T, Kozawa T. Step-down-type passive svidance and escape learning methods. Pharmacol Methods, 1986(16):39.
    [38]张均田,斋藤洋.十二种化学药品破坏小鼠被动回避性行为一跳台法与避暗法实验的比较观察.药学学报,1986(21):12.
    [39]马作峰,姜瑞雪.固本健脑方改善记忆障碍动物模型记忆功能的实验研究.江苏中医药,2005,26(2):47-50.
    [40]侯悦,吴春福,何祥,等.氟哌啶醇对小鼠在避暗实验中学习记忆获得、巩固和再现过程的影响.中国临床康复,2006,34(10):99-102.
    [41]张小超,何波,陈鹏,等.三七皂苷对学习记忆功能障碍的影响.中药药理与临床,2008,24(3):13-16.
    [42]罗小泉,骆利平,陈海芳,等.Morris水迷宫检测大鼠记忆力方法的探讨.时珍国医国药,2010,21(10):2667-2669
    [43]马作峰,张六通,姜瑞雪,等.固本健脑法对老年健忘模型动物海马脑区c-fos基因表达的影响.中医药学报,2009,37(6):18-20
    [44]朱亚珍,朱虹.D-半乳糖致衰老动物模型的建立及其检测方法.复旦学报(医学版),2007,34(4):617-619
    [45]HouQ L, GaoX, ZhangX, et al. SNAP-25 in hippocampal CA1 region is involved inmemory consolidation. Eur J Neurosci,2004,20: 1593-1603.
    [46]Hou Q L, Gao X, Lu Q, et al. SNAP-25 in hippocampal CA3 region is required for long-term memory formation. Biochem Biophys Res Commun,2006,347:955-962.
    [47]GarbelliR, Inverardi F,MediciV,et al. Heterogeneous expression of SNAP-25 in rat and human brain. J Comp Neuro,2008, 506(3):373-86.
    [48]Mayer A, Wickner W, Haas A. Secl8p(NSF)-driven release of Secl7p(alpha-SNAP) can precede docking and fusion of yeast vacuoles.Cell,1996,85(1):83-94.
    [49]Wilson MC, Mehta PP, Hess EJ.SNAP-25 in SNARE in neurotransmission and regulation of behaviour. Biochem Soc Trans,1996,24:670-676.
    [50]Hayashi T, McMahon H, Yamnsaki S, et al. Synaptic vescicle membrane fusion complex:action of clostridial neurotoxins on assembly. EMBO J,1994,13:5051-5061.
    [51]Trimble W S, Scheller R H. Molecular biology of synaptic vesicle associated proteins.Trends Neurosci,1988,11:241-242.
    [52]Thomas L, Hatung K, Langosch D, et al. Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science,1988,242:1050.
    [53]文敏,周波,康朝胜,等.大鼠海马CA3区突触素的增龄性变化.山东大学学报(医学版),2008,46(3):229-231,248
    [54]Lisanti M P, Seherer P E, Vidugiriene J, et al. Charaeterization of caveolin-rich membrane domains isolated from an endothelial-rich source:implications for human disease. J Cell Biol,1994,126 (1):111-126
    [55]王璐,秘志红,陈冬冬等.Cavcolin-1与脑功能关系的研究进展. Progress in Biochemistry And Biophysics.2007,34(5):449-453
    [56]Trushina E, Du Charme J, Parisi J, et al. Neurological abnormalities in caveolin-1 knock out mice. Behav Brain Res, 2006,172(1):24-32
    [57]Razzani B, Woodman S E, Lisanti M P. Caveolae:from cell biology to animal physiology. Pharmacol Rev,2002,54(3):431-467.
    [58]Braun J E, Madison D V. A novel SNAP25-caveolin complex correlates with the onset of Persistent synaptic potentiation.J Neurosci,2000,20(16):5997-6006
    [59]Bu J, Bruckner S R,Sengoku T,et al. Glutamate regulates caveolin expression in rat Hippocampal neurons. J Neurosci Res,2003, 72(2):185-190
    [60]吕国枫,王红霞,邹伟.不同发育年龄大鼠脑内小窝蛋白的表达与神经可塑性,解剖学杂志,2009,32(2):215-217.
    [61]Camerm P Z, Ruffin J W, Rollay R, et al. Identification of caveolin and caveolin-related proteins in the brain. J Neurosci,1997,17 (24) 9520-9535
    [62]Gioiosa L, Raqqi C, Ricceri L, et al. Altered emotionality, spatial memory and cholinergio function in caveolin-1 knock-out mice. Rehav Brain Res,2008,188 (2):255-262
    [63]邹伟,王红霞,刘晶,等.大鼠脑内。caveolin-1蛋白的表达及其在分辨学习中的作用.生理学报,2006,58(5):429-434
    [64]Lisanti MP, Seherer PE, Vidugiriene J, et al. Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source:implications for human disease. J Cell Biol,1994,126 (1):111-126
    [65]Kone BC. Protein-protein interactions controlling nitric oxide synthases. Acta physiol scand,2000,168(1):27-31.
    [66]Schnitzer J E, Liu J, oh P. Endothelial caveolae have the molecular transport machinery for Vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases J Biol Chem,1995,270(24):14399-14404
    [67]Magga J M, Kay J G, Braun J E, et al. ATP dependence of the SNARE/caveolin 1 interaction In the hiPppocampus. Bioehem Biophys Res Commun,2002,291 (5):1232-1238
    [68]Gaudreault S B, Blain J F, Gratton J P, et al. A role for caveolin-1 in post-injury reactive Neuronal plasticity. J Neurochem,2005,92(4):831-839
    [1]Petersen RC, Doody R, Kurz A, et al.Current concepts in mild cognitive impairment. Arch Neurol,2001,58(12):1985-1992.
    [2]Fillit H, EvansD, Butler R, et al. Achieving and maintaining cognitive vitality with aging. Mayo Clin Proc,2002,77(7): 681-967.
    [3]贾建平.重视轻度认知障碍与老年性痴呆关系的研究.中华神经科杂志,2002,35(6):324-326.
    [4]Ritchie K, Touchon J. Mild cognitive impairment:conceptual basis and current nosological status. Lancet,2000,355(9199): 225-228.
    [5]Collie A, Maruf P. The neuropsychology of preclinical Alzheimer' s disease and mild cognitive impairment. Neurosci Biobehav Rev, 2000,24(3):365-374.
    [6]De Carli C. Mild cognitive impairment:prevalence, prognosis, aetiology, and treatment. Lancet Neurol,2003,2(1):15-21.
    [7]Davis HS, Rockwood K. Conceptuaiization of mild cognitive impairment:a review. Int J Geriatr Psychiatry,2004,19(4): 313-319.
    [8]Chertkow H, Bergman H, Schipper HM, et al. Assessment of suspected dementia. Can J Neurol Sci,2001,28 (suppl 1):28-41.
    [9]Petersen RC, Stevens JC, Ganguli M, et al. Practice parameter: Early detection of dementia:Mild cognitive impairment (an evidence-based review). Neurology,2001,56(9):1133-1142.
    [10]American Psychiatric Association. Diagnostic and statis-
    tical manual of mental disorders.4th ed. Washington:American Psychiatric Press,1994,706-708.
    [11]Petersen RC, Smith GE,Waring SC,et al. Mild cognitive impairment clinical characterization and outcome. Arch Neurol, 1999,56 (3):303-308.
    [12]Gauthier S, ReisbergB, ZaudigM, et al. Mild cognitive impairment. Lancet,2006,367(9518):262-270.
    [13]中国防治认知功能障碍专家共识专家组.中国防治认知功能障碍专家共识.中华内科杂志,2006,45(2):171.
    [14]Portet F, Ousset PJ, Visser PJ, et al. Mild cognitive impairment (MCI) in medical practice:a critical review of the concept and new diagnostic procedure. Report of the MCI Working Group of the European Consortium on Alzheimerps Disease[J], J Neurol Neurosurg Psychiatry,2006,77(6):714-718.
    [15]Papaliagkas V, Kimiskidis V, Tsolaki M, et al.Usefulness of event-related potentials in the assessment ofmild cognitive impairment. BMC Neurosci,2008,5(1):107-108.
    [16]Mowla A, Zandi T.Mini-mental status examination:a screening instrument for cognitive and mood disorders of elderly. Alzheimer Dis Assoc Disord,2006,20(2):124.
    [17]RosselliM, Tappen R, Williams C, et al. The relation of education and genderon the attention items of themini-mental state examination in spanish speaking hispanic elders. Arch Clin Neur,2006,21(7):677-686.
    [18]Qi-Hao GUO,Xin-Yi CAO, Yan ZHOU, et al. Application study of quick cognitive screening test in identifying mild cognitive impairment. Neurosci Bull,2010,26 (1):47-54.
    [19]Umidi S, Trimarchi PD, Corsi M, et al. Clock drawing test (CDT) in the screening ofmild cognitive impairment (MCI). Arch Gerontol Geriatr,2009,49(Suppll):227-229.
    [20]张立秀,刘雪琴.老年轻度认知障碍的筛查评估工具研究进展.中国心 理卫生杂志,2008,22(2):129-132
    [21]马强,谷新医,高平.蒙特利尔认知评估在老年人群的应用研究.中国现代医生,2010,48(14):48,67.
    [22]Tornatore JB, Hill E, Laboff JA, et al. Self-administered screening for mild cognitive impairment:initial validation of a computerized test battery. J Neuropsychiatry Clin Neurosci, 2005,17(1):98-105.
    [23]Saka E, Dogan EA, Topcuoglu MA, et al. Linear measures of temporal lobe atrophy on brain magnetic resonance imaging (MRI) but not visual ratingofwhite matter changes can help discrimi-
    nation of mild cognitive impairment(MCI) and Alzheimer's disease(AD). Arch Gerontol Geriatri,2007,44 (2):141-151.
    [24]Wolf H, Grunwald M, Kruggel F, et al. Hippocampal volume discriminates between normal cognition: questionable and mild dementia in the elderly. Neurobiology of Aging,2001, 22(2):177-186.
    [25]Smith EE, Egorova S, BlackerD, et al. Magnetic resonance imaging whitematter hyperintensities and brain volume in the prediction of mild cognitive impairment and dementia. Arch Neurol,2008,65(1):94-100.
    [26]Kantarci K, Reynolds G, Petersen RC, et al. Proton MR spectroscopy in mild cognitive impairment and Alzheimer's disease:comparison of 1.5 T and 3 T.AJNR,2003,24 (5):843-849.
    [27]Herminghaus S, Frolich L, Gorriz C, et al. Brain metabolism in Alzheimer disease and vascular dementia assessed by in vivo proton magnetic resonance spectroscopy. Psychiatr Res Neuroi-maging,2003,123(3):183-849.
    [28]den Heijer T, Sijens PE, Prins ND, et al. MR spectroscopy of brain white matter in the prediction of dementia. Neurology, 2006,66 (4):540-544.
    [29]Kantarci K, Jack CR Jr, Xu YC, et al. Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease:A 1H MRS study. Neurology,2000,55 (2):210-217.
    [30]高平,秦绍森,蔡晓杰,等.Alzheimer病与轻度认知功能障碍的脑SPECT显像.中国核医学杂志,2006,26(4):213-214
    [31]Staff en J, Schonauer U, Zauner H, et al. Brain perfus ion SPECT in patients with mild cognitive impairment and Alzheimer's disease:comparison of a semiquantitative and a visual evaluation.J Neural Transm,2006,113(2):195-203.
    [32]Hirao K, Ohnishi T, Hirata Y, et al. The prediction of rapid conversion to Alzheimer's disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage,2005, 28(4):1014-1021.
    [33]Dobert N, Pantel J, Frolich L, et al. Diagnostic value of FDG-PET and HMPAO-SPET in patients with mild dementia and mild cognitive impairment:metabolic index and perfusion index. Dement Geriatr Cogn Disord,2005,20(2-3):63-70.
    [34]Mosconi L, Tsui WH, Herholz K, et al. Multicenter stand-
    ardized 18F-FDG PET diagnosis ofmild cognitive impairment, Alzheimer' sdisease, and other dementias. J Nucl Med,2008, 49 (3):390-398.
    [35]Coria F, Gomez deCaso JA, MinguezL, et al. Prevalence ofage-associated memory impairment and dementia in a rural community. J NeurolNeurosurg Psychiatry,1993,56(9):973-976.
    [36]RavagliaG, Forti P, Montesi F, et al. Mild cognitive impairment: epidemiology and dementia risk in an elderly Italian population. J Am GeriatrSoc,2008,56(1):51-58.
    [37]Logsdon RG, McCurry SM, TeriL. Evidence-based interventions to improve quality of life for individualswith dementia. Alzh Care Today,2007,8(4):309-318.
    [38]丁淑平,陈长香,赵佳,等.22省城乡老年人轻度认识障碍现状与对策.护理研究,2009,23(3):676-677.
    [39]Hanninen T. Hallikainen M. Tuomainen S, et al. Prevalence of mild cognitive impairm ent:A population-based study in elderly subjects. Acta Neurologica Scandinavica,2002,106(3): 148-154.
    [40]Barker A, Jones R, Jennison C. A prevalence study of age-associated memory impairment. BrJ Psychiatry,1995,167:642-648.
    [41]汤哲,张欣卿,吴晓光,等.北京城乡老年人轻度认知障碍患病率调查.中国心理卫生杂志,2007,21(2):116-8.
    [42]老膺荣,杨志敏,汤湘江.开展轻度认知障碍中医病因学研究的设想.上海中医药大学学报,2006,20(3):77-79.
    [43]Cervilla JA, PrinceM, MannA-Smoking, drinking, and incident cognitive impairment:a cohort community based study included in the GospelOak Project. NeurolNeurosurg Psychiatry,2000; 68(5):622-6.
    [44]Brenner DE, Kukull WA, van Belle G, Bowen JD, McCormick WC,Teri L,Larson EB. Relationship between cigarette smoking and Alzheimer's disease in a population based case-control study. Neurology,1993,43:293-300
    [45]Carmelli D, Swan GE, Reed T, et al. The effect of apoliporotein Ee4 in the relationships of smoking and drinking to cognitive func-tion. Neuroepidemiol,1999,18:125-133.
    [46]Anttila T, Helkala EL, ViitanenM, et al. Alcohol drinking in middle age and subsequent risk ofmild cognitive impairment and dementia in old age:a prospective population based study. BrMed J (Clin Res),2004; 329(5):539-44.
    [47]Giuseppe Z, Graziano O, Claudio P, et al. Dose-related impact of alcohol consumption on cognitive function in advanced age: results of a multicenter survey. AlcoholClin Exp Res,2001; 25(12):1743-8.
    [48]赵晓东.轻度认知损害的记忆特征、危险因素及中医证候研究.北京:北京中医药大学硕士学位论文,2007:41-45,29-32.
    [49]叶妮,彭海.轻度认知障碍的治疗现状和展望.中国临床康复,2004,8(16):3111-3113.
    [50]王学美,富宏,宋萍,等.从神经心理学和影像学探讨加味五子衍宗颗粒对轻度认知障碍患者的影响.中国老年学杂志,2004,24(4):299-301
    [51]Scarmeas N, Levy G, Tang M, et al. Influence of leisure activityon the incidence of Alzheimer's disease. Neurology, 2002,57:2236-2242.
    [1]李亚明,谢素玲,王健,等.调心补肾法对中老年记忆功能减退的影响比较.老年医学与保健,2004,10(4):224-226.
    [2]洪创雄,明康文,补肾益心片对高血压轻度认知功能障碍患者记忆的影响.深圳中西医结合杂志,2007,17(4)210-212
    [3]侯志峰,徐国存,归脾丸对小鼠学习记忆作用的影响.北京中医,2006,25(12):754-755
    [4]龚耀先,汪达威,邓君林,等.记忆的年龄差异研究.中国神经精神疾病杂志,2000,10(5):260-262
    [5]纪立金,白正勇,王苹,等.脾虚对大鼠空间学习记忆影响的研究.福建中医学院学报,2003,13(4):34-36.
    [6]詹向红,王淑玲,赵君玫.益气健脾、益气健脾祛痰化瘀法对脑老化小鼠学习记忆功能及神经递质受体表达的影响.中国中医基础医学杂志,2005,11(4):280-282.
    [7]刘林增,延缓衰老与肾的关系.现代中西医结合杂志,2007,16(31):4604-4605
    [8]史正刚.中医识脑.甘肃中医,2003,16(9):1-3.
    [9]戴薇薇,金国琴,张学礼,等.补肾方药对衰老大鼠海马学习记忆相关基因BDNF及其受体TrkB mRNA表达的影响.中华中医药杂志(原中国医药学报),2008,23(4):296-299.
    [10]方家选,马作峰.中老年记忆力减退的从肝论治.中国临床康复,2006,31(10):119-134.
    [11]马作峰,张六通,姜瑞雪,等.中老年记忆力减退与情志的关系探析.云南中医中药杂志,2008,29(2):4-5.
    [12]黄立武,张六通,邱幸凡,养肝活血开窍法对血管性痴呆大鼠海马CAl区LTP的影响.中医药研究,2001,17(1):44-45.
    [13]吴正治,张艳萍,李映红,补肝养髓方对自发老年性痴呆模型认知功能的影响.中国中医药科技,2007,14(6):446-447.
    [14]魏录翠,负建业,唐农,从肺的生理功能论肺与老年性痴呆的关系.江苏中医药,2010,42(8):3-4.
    [15]魏录翠,胡国恒,张强等,从肺论治老年性痴呆理论探讨.江西中医学院学报,2008,20(5):16-17.
    [16]唐农,黄立武,对血管性痴呆从肺论治的思考.广西中医学院学报,2004,7(4):1-3.
    [17]马立川,益肺增智汤协定方对中风后痴呆患者血脂及血液流变性的影响.中国中医急症,2010,9(1):20.
    [1]Palade G E. Fine strueture of blood capillaries. J Appl Physiol, 1953,24:1424-1436.
    [2]Yamada E. The fine strueture of the gall bladder epithelium of the mouse.J Biophys BioehemCytol,1955,1(5):445-458.
    [3]Rothberg K G, Heuser J E, Donzell W C, et al. Caveolin, a protein component of caveolae membrane coats. Cell,1992 68 (4):673-682.
    [4]Glenney JR, Soppet JrD. Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transfomed fibroblasts. Proc Nat1 Acad Sci U S A.1992,89(21):10517-10521.
    [5]Kurzchalia TV, Dupree P, Parton RG, Kellner R, Virta H, Lehnert M, Simons K. VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J Cell Biol,1992,118 (5):1003-1014.
    [6]全国科学技术名词审定委员会.全国科学技术名词审定委员会发布试用新词.科技术语研究,1998,01:19-21.
    [7]Razzani B, Woodman S E, Lisanti M P. Caveolae:from cell biology to animal physiology. Pharmacol Rev,2002,54(3):431-467.
    [8]W.Schubert, P.G.Frank, B. Razani, D. S. Park, C. W. Chow and M. P. Lisanti. Caveolae-Deficient Endothelial Cells Show Defects in the Uptake and Transport of Albumin in Vivo. J Biol Chem.2001, 276(52):48619-48622.
    [9]R. D. Minshall, W. C. Sessa, R.V.Stan, R. G. Anderson and A. B. Malik. Caveolin Regulation of Endothelial Function. Am J Physiol Lung Cell Mol Physiol.2003,285(6):1179-1183.
    [10]P. G. Frank, S. E. Woodman, D. S. Park and M. P. Lisanti. Caveolin, Caveolae, and Endothelial Cell Function. Arterioscler Thromb Vasc Biol.2003,23(7):1161-1168.
    [11]Smart EJ, Ying YS, Conrad PA, et al. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation.J Cell Biol,1994,127:1185-1197.
    [12]Murata M, Peranen J, Sehreiner R, etal. VIP21/cavcolin is acholesterol-bindingProtein. Proc Nati Acad Sci USA,1995, 92(22):10339-10343.
    [13]Thyberg J, Calara F, Dimayuga P, et al. Role of caveolae in cholesterol transport in arterial smooth muscle cells exposed to lipoproteins in vitro and in vivo. Lab Invest,1998,78(7): 825-837.
    [14]Ivier F, Chantal D, Stephane M, et al. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J Clin Invest,1999; 103 (6):897.
    [15]冉胤威,杜俊蓉,白波,等.高胆固醇上调的表达,生物医学工程学杂志,2004;21(2):276-279.
    [16]严鹏科,廖端芳,杨永宗.Caveolin-1表达对血管平滑肌细胞胆固醇逆转运的调节作用,中国动脉硬化杂志2002,10(5):379-383.
    [17]邸辉,焦保华.Caveolin-1基因在肿瘤发生发展中的作用研究,现代医药卫生,2010,26(4):540-542.
    [18]Vicente A. torres, Julio C. Tapia, Diego A. Caveolin-1 controls cell proliferation and cell death by suppression of the inhibitor of apoptosis protein surviving. Journal of Cell Science,2006,119,1812-1823.
    [19]邸辉,田春辉,李志红,等.小窝蛋白-1的表达与胶质瘤细胞增殖的相关性研究.中国全科医学2010,13(3B):840-842.
    [20]刘小旭,康华峰,王西京,等.乳腺癌组织小窝蛋白-1的表达。第四军医大学学报,2008,29(20):1885-1887.
    [21]Lisanti M P, Seherer P E, Vidugiriene J, et al. Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source:implications for human disease. J Cell Biol,1994,126 (1):111-126
    [22]Li S, OkamotoT, ChunM, et al. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem,1995,270(26):15693-15701.
    [23]Li S, Couet J, Lisanti MP. Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin bindingnegatively regulatesthe auto-activation ofSrc tyrosine kinases. J Biol Chem,1996, 271(46):29182-29190.
    [24]Couet J, Sargiacomo M, Lisanti MP. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities [J]. J Biol Chem,1997,272(48):30429-30438.
    [25]Feron O, Saldana F, Michel JB, et al. The endothelial nitric-oxide synthase-caveolin regulatory cycle. J Biol Chem, 1998,273(6):3125-3128.
    [26]Yamamoto M, Toya Y, Schwencke C, et al. Caveolin is an activator of insulin receptor signaling. J Biol Chem,1998, 273 (41):26962-26968.
    [27]Rybin VO,Xu X, Steinberg SF. Activated protein kinase C isoforms target to cardiomyocyte caveolae:stimulation of local protein phosphorylation. Circ Res,1999,84:980-988.
    [28]Kone BC. Protein-protein interactions controlling nitric oxide synthases. Acta physiol scand,2000,168 (1):27-31.
    [29]Braun JEA. Madison DV. A Novel SNAP25-Caveolin Complex Correlates with the Onset of Persistent Synaptic Potentiation. J. Neurosci,2000,20:5997-6007.
    [30]Gaudreaul SB, Blain JF, Gratton JP, et al. A role for caveolin-1 in post-injury reactive neuronal plasticity. J Neurochem. 2005,92:831-839.
    [31]吕国枫,王红霞,邹伟.不同发育年龄大鼠脑内小窝蛋白的表达与神经可塑性,解剖学杂志,2009,32(2):215-217.