掺杂改性二氧化钛薄膜的制备及其光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO_2作为一种廉价、无毒、化学性质稳定的半导体,目前已成为研究最为广泛的太阳能电池用材料之一。但TiO_2禁带宽度较宽,对太阳能的利用率很低,限制了其在太阳能领域的实际应用。因此对TiO_2进行各种掺杂,以提高其对太阳光的利用率。
     本文分别采用溶胶-凝胶法和磁控溅射法制备了纯TiO_2薄膜,并采用溶胶-凝胶法和离子注入技术对TiO_2薄膜进行改性研究。在溶胶-凝胶法制备TiO_2薄膜过程中将Ge掺入TiO_2薄膜;在溶胶-凝胶法制备的TiO_2薄膜中,用离子注入技术进行了Fe、Cr的单独注入以及复合注入;在磁控溅射法制备的TiO_2薄膜中,分别进行Ge、Si的单独和复合注入。考察了掺杂方式和掺杂离子对薄膜表面形貌、结晶、表面化学态和光学性能的影响,结果如下。
     XRD及XPS的研究结果表明,溶胶凝胶法和磁控溅射制备的TiO_2薄膜为锐钛矿型;但薄膜的表面化学态及价键状态有所不同,最终导致两者光性能的差异。溶胶的配比对薄膜质量有影响。
     采用溶胶-凝胶法对TiO_2进行Ge掺杂及还原处理,薄膜产生了一定红移,掺杂Ge:Ti = 3:7的薄膜红移显著,同时聚乙二醇的加入有利于薄膜红移。溶胶凝胶法在不同室温下制备薄膜结晶性、Ge存在方式、紫外-可见吸收不同。室温22℃条件下制备的薄膜及其中Ge的结晶性很好;XPS分析表明,Ge大部分以单质形式存在;18℃条件下掺杂薄膜结晶性差,Ge主要以氧化锗形式存在。
     Fe、Cr离子复合注入后,薄膜的结晶性变差;XPS分析结果显示,Fe、Cr分别以单质和氧化物形式存在;光学性能较单独注入Fe的有所下降。分析表明,两种离子的相互作用最终使得薄膜中有效离子浓度降低,Cr的存在使Fe得红移效果降低。
     与Fe、Cr离子复合注入不同,在磁控溅射法制备的TiO_2薄膜中,Si、Ge复合注入使得薄膜的红移效果显著,但结晶性变差;XPS分析Ge、Si表明;Si以氧化态存在,Ge以单质存在,两种离子的相互作用,使复合注入的薄膜光学性能有大幅度提高。
     以上研究结果为促进制备对可见光敏感的TiO_2薄膜的研究提供了有价值的参考依据。
As a low-cost, non-toxic and chemically stable semiconductor, TiO_2 has been regarded as one of the most extensively investigated materials in the filed of solar cells. However, the inactivity in the visible light region limits the practical applications of TiO_2. Therefore, different elements were doped into TiO_2 to improve the inherently low efficiency of TiO_2 in harvesting sun light by shifting its spectral response into visible light range.
     In this thesis, pristine TiO_2 thin films were synthesized by sol-gel method and magnetron sputtering systems. Modification of the films was performed by sol-gel and ion implantation methods respectively. Ge was doped into films of TiO_2 by sol-gel method. Fe, Cr ions were implanted into the films by sol-gel method. Fe, Cr were implanted separately and then co-implanted. Ge, Si implantation were carried out on the films deposited by middle frequency magnetron sputtering system. The effect of the doping methods and different ions were investigated on the surface morphology, crystallization, surface chemical states and optical characterization.
     According to XRD and XPS, TiO_2 films obtained by sol-gel method and magnetron sputtering systems were anatase, and the different optical properties resulted from the difference of surface chemical states and bonds of these two kinds of films. The proportion of sol materials affected the quality of films.
     Certain optical property improvement was achieved by Ge doped TiO_2 films synthesized by sol-gel method and deoxidization. In comparison to the pristine TiO_2 films, the absorption edge of the doped films (Ge: Ti = 3: 7) had distinct red shife, and the same result appeared on account of polyethyleneglycol joined. The doped films had high crystallinity at atmosphere temperature of 22℃, and the majority of Ge was element based on XPS spectra. In contrast the doped films had low crystallinity at atmosphere temperature of 18℃, and Ge existed mostly in the form of oxides based on XPS spectra.
     Fe/Cr co-implanted films showed lower crystallinity than the pure TiO_2 films, and in the co-doped films Fe and Cr existed in the form of element and oxides based on XPS spectra. After the implantation of Fe and Cr, optical property of the film was worse than when Fe was doped. The interaction between these two kinds of ions decreased the efficient implanted ions, which made the absorption of the co-implanted films worse than when Fe doped because of the existence of Cr.
     Unlike the Fe/Cr co-implanted films, optical property of the Ge/Si co-implanted films was improved significantly. Ge and Si ions could promote the optical behavior of the films. However, crystallinity of the flims was destroyed because of the implantation. Si existed in the form of oxides, and Ge existed in the form of element and oxides based on XPS spectra. The interaction between Ge and Si was beneficial to improve the optical property of TiO_2 films.
     These results provide a valuable reference for the further investigation of visible light sensitive TiO_2 thin films.
引文
[1]李春鹏,张廷元,周封.太阳能光伏发电综述.电工材料, 2006, 12(3): 45-48.
    [2]李侠. TiO_2薄膜的掺杂改性及其对光学性能的影响: [硕士学位论文].天津:天津大学, 2008.
    [3]王美容. CdS敏化纳晶TiO_2薄膜电极的光电化学性能研究: [硕士学位论文].北京:北京化工大学, 2006.
    [4]Bessekhouad Y, Robert D, Weber J V. Bi_2S_3/TiO_2 and CdS/TiO_2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(3): 569-580.
    [5]李伟,孙云,刘伟,等.稼(Ga)的含量及分布对CIGS薄膜电池量效率的影响.人工晶体学报, 2006, 35(1): 131-134.
    [6]路胜利,刘宽,杨慕杰.聚合物太阳能电池材料的研究进展.高分子材料科学与工程, 2005, 21(4): 1-4.
    [7]Spanggaard H, Krebs F C. A brief history of the development of organic and polymeric photovoltaics. Solar Energy Materials and Solar Cells, 2004, 83(2-3): 125-146.
    [8]Brabec C J, Sariciftci N S, Hummelen J C. Plastic Solar Cells. Advanced functional materials, 2001, 11(1): 15-26.
    [9]Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972, 238(5358): 37-38.
    [10]O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films. Nature, 1991, 353(6346): 737-740.
    [11]王刚,李晓红,李斌.晶体硅与染料敏化纳米薄膜太阳能一光电转换技术.青海科技, 2006, (l): 267-277.
    [12]Peter L M, Riley D J, Tull Elizabeth J., et al. Photosensitization of nanocrystalline TiO_2 by self-assembled layers of CdS quantum dots. Chemical Communications, 2002, (10): 1030-1031.
    [13]Mane R S, Roh S J, Joo Oh-Shim, et al. Improved performance of dense TiO_2/CdSe coupled thin films by low temperature process. Electrochimica Acta, 2005, 50(12): 2453-2459.
    [14]Yang S M, Wang Z S, Huang C H. The photoelectrochemical properties of TiO_2 electrodes modified by quantum sized PbS and thiols. Synthetic Metals, 2001, 123(2): 267-272.
    [15]Zhang L D, Mou J M. Nanomaterials and nanostructures. Beijing: Science Press, 2001: 2-19.
    [16]Shannon R D, Pask J A. Topotaxy in the anatase-rutile transformation. Am Mineralogist, 1964, 49: 1707-1717.
    [17]Burdett J K, Hughbanks T, Miller G J, et al. Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. Journal of the American Chemical Society, 1987, 109(12): 3639-3646.
    [18]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社, 2002.
    [19]刘小玲.稀土铈对纳米二氧化钛光催化性能的影响: [硕士学位论文].北京:北京化工大学, 2006: 1-2.
    [20]张立德,牟季美.纳米材料和纳米科学.北京:科学出版社, 2001: 88-89.
    [21]孙琦,盛京.纳米材料的技术发展与应用.化工进展, 1997, 1: 48-53.
    [22]自春礼.纳米科学与技术.云南:云南科学技术出版社, 1995: 1-10.
    [23]张媛.纳米二氧化钛薄膜的制备及其光电性能研究: [硕士学位论文].大连:大连海事大学, 2009.
    [24]章天金,唐超群,吴蓉等.理化检验-物理分册.北京:高等教育出版社, 1997: 12-13.
    [25]潘小龙,唐超群,夏正才.铜掺杂TiO_2中电导与氧空位跃迁的关系.华中理工大学学报, 1997, 25(6): 109-112.
    [26]李玲,向航编.功能材料与纳米技术.北京:化学工业出版社, 2002.
    [27]周立新. TiO_2纳米晶和薄膜的制备、表征及薄膜光电性质研究: [硕士学位论文].大连:大连海事大学, 2006.
    [28]Ball P, Garwin L. Science at the atomic scale. Nature, 1992, 355(6363): 761-766.
    [29]符春林,魏锡文.二氧化钛晶型转变研究进展.涂料工业, 1999, 2: 28 -30.
    [30]韩兆慧,赵化侨.半导体多相光催化应用研究进展.化学进展, 1999, 11(1): 1-10.
    [31]Bessekhouad Y, Robert D, Weber J V. Synthesis of photocatalytic TiO_2 nanoparticles: optimization of the preparation conditions. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157(1): 47-53.
    [32]Fernandez A, Lassaletta G, Jimenez V M, et al. Preparation and characterization of TiO_2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Applied Catalysis B: Environmental, 1995, 7(1-2): 49-63.
    [33]Nagayama H, Honda H, Kawahara H. A New Process for Silica Coating. Journal of The Electrochemical Society, 1988, 135(8): 2013-2016.
    [34]余萍,陈善华.液相沉积法的应用与发展.广东微量元素科学, 2006, 13(3): 12-16.
    [35]陈令允,姜炜,李凤生,等.液相沉积法制备磁性材料纳米Fe3O4/SiO_2复合粒子.机械工程材料, 2005, 29(4): 34-37.
    [36]Aoi Y, Kambayashi H, Deguchi T, et al. Synthesis of nanostructured metal oxide by liquid-phase deposition. Electrochimica Acta, 2007, 53(1): 175-178.
    [37]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社, 2002: 23-56.
    [38]崔晓莉,汪志裕.纳米TiO_2薄膜的制备方法.化学进展, 2002, 5(3-9).
    [39]吕建国,叶志镇. ZnO薄膜的最新研究进展.功能材料, 2002, 33(6): 58-59.
    [40]叶志镇.磁控溅射技术及其在材料科学中的应用.材料科学与工程, 1989, 7(l): 26-28.
    [41]姜海波,李春忠,丛德滋.气相燃烧合成二氧化钛纳米颗粒.中国粉体技术, 2001, 7(2): 28-32.
    [42]Carrawaye R, Hoffman A J, Hoffman M R. Photocatalystic oxidation of organic acid on quantum sized semiconductor colloids. Environmental Science Technology, 1994, 28(5): 786-793.
    [43]赵文宽.高热稳定性锐钛矿型TiO_2纳米粉体的制备.无机材料学报, 1998, 13(4): 608-612.
    [44]Kittel Charles Introductioto Solidstate Physics. New York: JohnWiley, 1989: 45-47.
    [45]Xu A W, Gao Y, Liu H Q. The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO_2 Nanoparticles. Journal of Catalysis, 2002, 207(2): 151-157.
    [46]?teng V, Bakardjieva S, Murafa N. Preparation and photocatalytic activity of rare earth doped TiO_2 nanoparticles. Materials Chemistry and Physics, 2009, 114(1): 217-226.
    [47]Ghasemi S, Rahimnejad S, Setayesh S. Rahman, et al. Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO_2 prepared in an ionic liquid. Journal of Hazardous Materials, 2009, 172(2-3): 1573-1578.
    [48]郝凤欢,侯兴刚,顾雪楠,等.用金属蒸气真空弧源离子注入机在溶胶凝胶法制备的TiO_2薄膜上注入V+.北京师范大学学报, 2005, 41(5): 492.
    [49]杨睿婷,李文军,王明文,等.掺铅TiO_2薄膜的制备及光催化性能.北京科技大学学报, 2005, 27(4): 462-464.
    [50]Choi W, Termin A, Hoffmann M R. The Role of Metal Ion Dopants in Quantum-Sized TiO_2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. The Journal of Physical Chemistry, 1994, 98(51): 13669-13679.
    [51]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269-271.
    [52]陈恒,龙明策,徐俊,等.可见光响应的氯掺杂TiO_2的制备、表征和光催化活性.催化学报, 2006, 27(10): 890-894.
    [53]Shanmugasundaram S, Horst K. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide. Angewandte Chemie International Edition, 2003, 42(40): 4908-4911.
    [54]Ohno T, Akiyoshi M, Umebayashi T, et al. Preparation of S-doped TiO_2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General, 2004, 265(1): 115-121.
    [55]Kiema G K, Colgan M J, Brett M J. Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers. Solar Energy Materials and Solar Cells, 2005, 85(3): 321-331.
    [56]Deb S K. Dye-sensitized TiO_2 thin-film solar cell research at the National Renewable Energy Laboratory (NREL). Solar Energy Materials & Solar Cells, 2005, 88(1): 1-10.
    [57]Peumans P, Uchida S, Forrest S R. Nature, 2003, 425: 158.
    [58]Xia M X, Wang F X, Wang Y C, et al. TiO_2 nanowires sensitized with CdS quantum dots and the surface photovoltage properties. Materials Letters, 64(15): 1688-1690.
    [59]Chatterjee S. Titania-germanium nanocomposite as a thermoelectric material. Materials Letters, 2008, 62(4-5): 707-710.
    [60]Chatterjee S. Titania-germanium nanocomposite as a photovoltaic material. Solar Energy, 2008, 82(2): 95-99.
    [61]银董红,邓吨英,陈恩伟,等.溶胶-凝胶法制备二氧化钛薄膜的研究进展.工业催化, 2004, 12(1): 1-6.
    [62]Sakai H, Kawahara H, Shimazaki M, et al. Preparation of Ultrafine Titanium Dioxide Particles Using Hydrolysis and Condensation Reactions in the Inner Aqueous Phase of Reversed Micelles: Effect of Alcohol Addition. Langmuir, 1998, 14(8): 2208-2212.
    [63]Livage J, Henry M, Sanchez C. Sol-gel chemistry of transition metal oxides. Progress in Solid State Chemistry, 1988, 18(4): 259-341.
    [64]陈建军,陈晓春,李庆余,等. Sol-Gel法制备纳米二氧化钛凝胶的工艺优化.中国有色金属学报, 2000, 10(增刊1): 84-87.
    [65]廖东亮,肖新颜,张会平,等.溶胶-凝胶法制备纳米二氧化钛的工艺研究.化学工业与工程, 2003, 20(5): 256-260.
    [66]陶国忠,古宏晨,陈爱平,等. Sol-Gel法制备TiO_2粉末的光催化性能研究.华东理工大学学报, 2000, 26: 62-65.
    [67]陈曦,陈孝云,郭成,等.溶胶-凝胶制备工艺对纳米TiO_2光催化活性的影响.科学技术与工程, 2006, 6(18): 2813-2816.
    [68]侯亚奇.二氧化钛及其复合薄膜光催化降解性能研: [博士学位论文].北京:清华大学, 2004.
    [69]刘瑞鹏,李刘合.磁控溅射镀膜技术简述.中国青年科技, 2006, 8: 56-59.
    [70]徐万劲.磁控溅射技术进展及应用(上).现代仪器, 2005, 5: 1-5.
    [71]田立强.磁控溅射TiO_2薄膜与氧传感器的研究: [硕士学位论文].天津:河北工业大学, 2003.
    [72]武秀芳. TiO_2薄膜的磁控溅射制备及其光催化性能研究: [硕士学位论文].哈尔滨:哈尔滨工程大学, 2006.
    [73]李晓平,徐宝馄,刘国范,等.纳米TiO_2光催化降解水中有机污染物的研究与发展.功能材料, 1999, 30(3): 242-245.
    [74]赵青南,刘保顺,赵修建,等.基片温度对直流反应磁控溅射法制备玻璃基TiO_2薄膜结构与亲水性的影响.硅酸盐学报, 2003, 31(7): 678-691.
    [75]Zeman P, Takabayashi S. Effect of total and oxygen partial pressures on structure of photocatalytic TiO_2 films sputtered on unheated substrate. Surface and Coatings Technology, 2002, 153: 93~99.
    [76]Wang H Y, Wang T M, Xu P. Effects of substrate temperature on the microstructure and photocatalytic reactivity of TiO_2 films. Journal Of Materials Science:Materials in Electronics, 1998, 9: 327-330.
    [77]Treichel O, Kirchhoff V. The influence of pulsed magnetron sputtering on topography and crystallinity of TiO_2 films on glass. Surface and Coatings Technology, 2000, 123(2-3): 268~272.
    [78]Meng L J, Santos M P. Investigations of titanium oxide films deposited by d.c. reactive magnetron sputtering in different sputtering pressures. Thin Solid Films, 1993, 226(1): 22-29.
    [79]Meng L J, Santos M P. The influence of oxygen partial pressure on the properties of DC reactive magnetron sputtered titanium oxide films. Applied Surface Science, 1993, 68(3): 319-325.
    [80]薛书文,梅芳,肖世发,等. ZnO薄膜离子注入改性的研究进展.液晶与显示, 2009, 24(3): 367-371.
    [81]刘瑶.镁/碳离子注入医用纯钛表面改性的研究: [硕士学位论文].天津:天津大学, 2007.
    [82]Meyer O, Khubies I, Fromknecht R. Nuclear Instruments and Methods in Phsics Reasearch B, 1998, 136-138: 436.
    [83]向钢,王聪,郑树凯,等.离子注入改善纳米二氧化钛薄膜光催化性能.功能材料与器件学报, 2002, 81(1): 23-26.
    [84]陈宝清.离子镀及溅射技术.北京:国防工业出版社, 1990: 259-260,292-299.
    [85]张通合,吴瑜光.离子注入表面优化技术.北京:冶金工业出版社, 1993: 1-2.
    [86]罗晋生.离子注入物理.上海:上海科学技术出版社, 1984: 1-35.
    [87]王贻华,胡正琼.离子注入与分析基础.北京:航空工业出版社, 1992: 1-16,136-161.
    [88]北京市辐射中心,北京师范大学低能物理研究所加速器研究室.离子注入机基础.北京:北京出版社, 1981: 1-15.
    [89]张光华,钏士谦.离子注入技术.北京:机械工业出版社, 1982: 253-257.
    [90]李宝铭,程雷,郑玉婴.离子注入改性聚合物光电性能的研究进展.半导体光电, 2009, 30(4): 477-505.
    [91]常丹,陈猛,向霞,等.离子注入掺杂锐钛矿TiO_2薄膜的光学性能.强激光与粒子束, 2009, 21(5): 775-778.
    [92]郭丽彬.离子注入SiC薄膜的制备与表征及Er~(3+)发光行为的研究: [硕士学位论文].天津:天津大学, 2007.
    [93]刘正超.离子注入技术.集成电路应用, 2002, 11: 74-76.
    [94]袁志钟.离子注入制备硅基发光材料及其性能研究: [博士学位论文].上海:浙江大学, 2007.
    [95]Chatterjee S, Goyal A, Shah S I. Inorganic nanocomposites for the next generation photovoltaics. Materials Letters, 2006, 60(29-30): 3541-3543.
    [96]余家国,赵修建,赵青南. TiO_2纳米薄膜的溶胶-凝胶工艺制备和表征.物理化学学报, 2000, 16(9): 792-797.
    [97]袁麟,刘静,黄峰.不锈钢表面TiO_2薄膜的溶胶-凝胶法制备及其性能.中国表面工程, 2009, 22(5): 32-39.
    [98]Jiang W H, Bao Z H. Effect of Polyethylene glycol on Microstructure and Photocatalysis of TiO_2 thin Films by Non-Hydrolytic sol-gel Processing. Journal of the Chinese Ceramic Society, 2008, 36(2): 187-199.
    [99]张翠轩,陈汝芬,夏青,等.聚乙二醇2000作用下TiO_2薄膜的溶胶-凝胶法制备.人工晶体学报, 2008, 37(5): 1290-1294.
    [100]刘云峰,茅昕辉,张浩康,等.交流磁控溅射技术及其应用.电子器件, 1998, 21(1): 1-5.
    [101]Besseklitrad Y, Robert D, Weber J V. Synthesis of photocatalytic TiO_2 nanoparticles: optimization of the preparation conditions. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157: 47-53.
    [102]任达森.溶胶_凝胶法制备纳米二氧化钛薄膜及其光致特性研究: [博士学位论文].上海:复旦大学, 2004.
    [103]侯亚奇,庄大明,张弓,等.退火温度对TiO_2薄膜结构和表面形貌的影响.真空科学与技术, 2002, 22(4): 247-251.
    [104]刘保顺,何鑫,赵修建,等.纳米TiO_2的表面能态及光生电子-空穴对复合过程的研究.光谱学与光谱分析, 2006, 26: 208-212.
    [105]刘明源. Ti离子注入及后续热处理对镀膜光学玻璃性能影响的研究: [硕士学位论文].大连:大连轻工业学院, 2001.
    [106]Yang H Q, Wang X J, Shi H Z, et al. Sol-gel preparation of Ge nanocrystals embedded in SiO_2 glasses. Journal of Crystal Growth, 2002, 236(1-3): 371-375.
    [107]Choudhary V R, Uphade B S, Pataskar S G. Low temperature complete combustion of dilute methane over Mn-doped ZrO_2 catalysts: factors influencing the reactivity of lattice oxygen and methane combustion activity of the catalyst. Applied Catalysis A: General, 2002, 227 (1-2): 29-41.
    [108]Yang H Q, Yao X, Wang X J, et al. Visible room-temperature photoluminescence of Ge-doped SiO_2 glasses fabricated by a sol-gel process. Optical Materials, 2007, 29(6): 631-635.
    [109]Ramos S M M, Bonardi N, Brenier R. Evidence of a new phase formation (BaTi4O9) by barium implantation into TiO_2. Journal of Crystal Growth, 1994, 143(3-4): 227-231.
    [110]Shen H, Mi L, Xu P, et al. Visible-light photocatalysis of nitrogen-doped TiO_2 nanoparticulate films prepared by low-energy ion implantation. Applied Surface Science, 2007, 253(17): 7024-7028.
    [111]Domaradzki J. Structural, optical and electrical properties of transparent V and Pd-doped TiO_2 thin films prepared by sputtering. Thin Solid Films, 2006, 497(1-2): 243-248.
    [112]Xiao Q H, Tu H L, Zhou Q G, et al. HRTEM observation on microstructures in the Ge-implanted silicon wafers re-processed by solid phase epitaxy. Materials Science in Semiconductor Processing, 2006, 9(1-3): 121-126.
    [113]Raineri V, Lombardo S, Iacona F, et al. Atomic force microscopy on SiO_2 layers grown on Ge implanted silicon. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1996, 116(1-4): 482-485.
    [114]Giri P K, Kesavamoorthy R, Panigrahi B K, et al. Surface acoustic phonon modes of Ge nanocrystals embedded in SiO_2. Solid State Communications, 2005, 136(1): 36-40.
    [115]Fitting H J, Barfels T, Trukhin A N, et al. Cathodoluminescence of Ge~+, Si~+, and O~+ implanted SiO_2 layers and the role of mobile oxygen in defect transformations. Journal of Non-Crystalline Solids, 2002, 303(2): 218-231.
    [116]Choi S H, Han S C, Hwang S. Defect-related photoluminescence and Raman studies on the growth of Ge nanocrystals during annealing of Ge~+-implanted SiO_2 films. Thin Solid Films, 2002, 413(1-2): 177-180.
    [117]Magruder I R H, Weller R A, Weeks R A, et al. Effects of ArF excimer irradiation on single energy and multi energy Ge ion implanted silica. Journal of Non-Crystalline Solids, 2001, 280(1-3): 169-176.
    [118]Dowd A, Llewellyn D, Elliman R G, et al. Physical and optical characterisation of Ge-implanted silica. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001, 175-177: 637-640.
    [119]Krzyzanowska H, Bubert H, Zuk J, et al. Composition of Ge~+ and Si~+ implanted SiO_2/Si layers: Role of oxides in nanocluster formation. Journal of Non-Crystalline Solids, 2008, 354(35-39): 4363-4366.
    [120]Wu X L, Gao T, Siu G G, et al. Defect-related infrared photoluminescence in Ge~+-implanted SiO_2 films. Applied Phsics Letters, 1999, 74(17): 2420-2422.
    [121]Yamamoto M, Koshikawa T, Yasue T, et al. Formation of size controlled Ge nanocrystals in SiO_2 matrix by ion implantation and annealing. Thin Solid Films, 2000, 369(1-2): 100-103.
    [122]Mestanza S N M, Rodriguez E, Frateschi N C The effect of Ge implantation dose on the optical properties of Ge nanocrystals in SiO_2. Nanotechnology, 2006, 17: 4548-4553.
    [123]Mestanza S, Doi I, Swart J, et al. Fabrication and characterization of Ge nanocrystalline growth by ion implantation in SiO_2 matrix. Journal of Materials Science, 2007, 42(18): 7757-7761.
    [124]Borodin V A, Heinig K H, Schmidt B, et al. Oxidation of Ge implanted into SiO_2 layers: Modeling and XPS. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001, 178(1-4): 115-119.
    [125]Lee W S, Jeong J Y, Kim H B, et al. Violet and orange luminescence from Ge-implanted SiO_2 layers. Materials Science and Engineering B, 2000, 69-70: 474-478.
    [126]Kim H B, Chae K H, Whang C N, et al. The origin of photoluminescence in Ge-implanted SiO_2 layers. Journal of Luminescence, 1998, 80(1-4): 281-284.
    [127]Heinig K H, Schmidt B, Markwitz A, et al. Precipitation, ripening and chemical effects during annealing of Ge~+ implanted SiO_2 layers. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1999, 148(1-4): 969-974.
    [128]von B J, Grotzschel R, Heinig K H, et al. Multimodal impurity redistribution and nanocluster formation in Ge implanted silicon dioxide films. Appl Phys Lett, 1997, 71(22): 3215-3217.
    [129]Zhu J G, White C W, Budai J D, et al. Growth of Ge, Si, and SiGe nanocrystals in SiO_2 matrices. Journal of Applied Physics, 1995, 78(7): 4386-4389.
    [130]Zuk J, Krzyzanowska H, Clouter M J, et al. Brillouin scattering and x-ray photoelectron studies of germanium nanoclusters synthesized in SiO_2 by ion implantation. Journal of Applied Physics, 2004, 96(9): 4952-4959.
    [131]Fromknecht R, Linker G, Khubeis I, et al. Coherent precipitate formation and diffusion effects in Ge-implanted TiO_2-single crystals. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001, 178(1-4): 97-100.
    [132]Fromknecht R, Wiss T, Khubeis I, et al. Diffusion effects and conductivity of Ge- and Pb-implanted TiO_2 single crystals. Surface and Coatings Technology, 2000, 128-129: 364-369.
    [133]Fromknecht R, Khubeis I, Meyer O. Implantation of group IVA elements in TiO_2: lattice site location and diffusion. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2000, 161-163: 528-533.
    [134]Meyer O, Fromknecht R, Khubeis I. Oxidation state and lattice site occupation of ions implanted into rutile. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1999, 148(1-4): 752-757.
    [135]Tsutomu S I, David E H, Peter D. Townsend. Optical properties of interacting Si nanoclusters in SiO_2 fabricated by ion implantation and annealing. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1999, 147(1-4): 350-355.
    [136]Hryciw A, Meldrum A, Buchanan K S, et al. Effects of particle size and excitation spectrum on the photoluminescence of silicon nanocrystals formed by ion implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 222(3-4): 469-476.
    [137]White C W, Budai J ., Withrow S P, et al. Encapsulated nanocrystals and quantum dots formed by ion beam synthesis. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1997, 127-128: 545-552.
    [138]Shimizu-Iwayama T, Fujita K, Nakao Setsuo, et al. Visible photoluminescence in Si~+-implanted silica glass. Journal of Applied Physics, 1994, 75(12): 7779-7783.
    [139]Takagahara T, Takeda K. Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Physical Review B, 1992, 46(23): 15578.
    [140]Shimizu-Iwayama T, Terao Y, Kamiya A, et al. Correlation of microstructure and photoluminescence for nanometer-sized Si crystals formed in an amorphous SiO_2 matrix by ion implantation. Nanostructured Materials, 1995, 5(3): 307-318.
    [141]Delley B, Steigmeier E F. Quantum confinement in Si nanocrystals. Physical Review B, 1993, 47(3): 1397.
    [142]Ramos S M M, Bonardi N, Brenier R. Evidence of a new phase formation (BaTi_4O_9) by barium implantation into TiO_2 Journal of Crystal Growth, 1994, 143(3-4): 227-231.
    [143]Chen L, Graham M E, Li G H, et al. Fabricating highly active mixed phase TiO_2 photocatalysts by reactive DC magnetron sputter deposition. Thin Solid Films, 2006, 515(3): 1176-1181.
    [144]Liu B S, Wen L P, Zhao X J. The structure and photocatalytic studies of N-doped TiO_2 films prepared by radio frequency reactive magnetron sputtering. Solar Energy Materials and Solar Cells, 2008, 92(1): 1-10.
    [145]Nguyen T P, Lefrant S. XPS study of SiO thin films and SiO-metal interfaces. Journal of Physics: Condensed Matter, 1989, 1: 5197-5204.
    [146]Chao S S, Takagi ., Lucovsky G, et al. Chemical states study of Si in SiOx films grown by PECVD. Applied Surface Science, 1986, 26(4): 575-583.
    [147]Evans S. Energy calibration secondary standards for X-ray photoelectron spectrometers Surface and Interface Analysis, 1985, (7): 299-302.
    [148]Bender H, Chen W D, Portillo J, et al. AES and XPS analysis of the interaction of Ti with Si and SiO_2 during RTA. Applied Surface Science, 1989, 38(1-4): 37-47.
    [149]Umebayashi T, Yamaki T, Itoh H, et al. Analysis of electronic structures of 3d transition metal-doped TiO_2 based on band calculations. Journal of Physics and Chemistry of Solids, 2002, 63(10): 1909-1920.
    [150]Fan X X, Chen X Y, Zhu S P, et al. The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO_2. Journal of Molecular Catalysis A: Chemical, 2008, 284(1-2): 155-160.
    [151]Tong Ti, Zhang J L, Tian B Z, et al. Preparation of Fe~(3+)-doped TiO_2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. Journal of Hazardous Materials, 2008, 155(3): 572-579.
    [152]Zhu J F, Deng Z G, Chen F, et al. Hydrothermal doping method for preparation of Cr~(3+)-TiO_2 photocatalysts with concentration gradient distribution of Cr3~+. Applied Catalysis B: Environmental, 2006, 62(3-4): 329-335.
    [153]Chan Y S, Goh G K L. Hydrothermal growth of ferromagnetic Fe-doped TiO_2 films. Thin Solid Films, 2008, 516(16): 5582-5585.
    [154]Zhang X W, Lei L C. One step preparation of visible-light responsive Fe-TiO_2 coating photocatalysts by MOCVD. Materials Letters, 2008, 62(6-7): 895-897.
    [155]Pan C C, Wu J C S. Visible-light response Cr-doped TiO_2-XNX photocatalysts. Materials Chemistry and Physics, 2006, 100(1): 102-107.
    [156]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95 (1): 69-96.
    [157]Huang W, Tang X, Felner I, et al. Preparation and characterization of FexOy-TiO_2 via sonochemical synthesis. Materials Research Bulletin 2002, 37(10): 1721-1735.
    [158]Wang C Y, Bahnemann D W, Dohrmann J K. A novel preparation of iron-doped TiO_2 nanoparticles with enhanced photocatalytic activity. Chemical Communications, 2000, (16): 1539-1540.
    [159]Lam R C W, Leung M K H, Leung Y C, et al. Visible-light-assisted photocatalytic degradation of gaseous formaldehyde by parallel-plate reactor coated with Cr ion-implanted TiO_2 thin film. Solar Energy Materials & Solar Cells, 2007, 91: 54-61.
    [160]吴先映,李强. 50型MEVVA源离子注入机.北京师范大学学报(自然科学版), 2002, 38(4): 496-499.
    [161]张通和,吴瑜光.离子束材料改性科学和应用.北京:科学出版社, 1999: 131-134.
    [162]于向阳,程继健.铁、铬离子掺杂对TiO_2薄膜光催化活性的影响.无机材料学报, 2001, 16: 742-746.
    [163]Zheng S K, Wang T M, Wang C, et al. Photocatalytic activity study of TiO_2 thin films with and without Fe ion implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2002, 187(4): 479-484.
    [164]Carneiro J O, Teixeira V, Portinha A, et al. Study of the deposition parameters and Fe-dopant effect in the photocatalytic activity of TiO_2 films prepared by dc reactive magnetron sputtering. Vacuum, 2005, 78(1): 37-46.
    [165]Jho J H, Kim D H, Kim S J, et al. Synthesis and photocatalytic property of a mixture of anatase and rutile TiO_2 doped with Fe by mechanical alloying process. Journal of Alloys and Compounds, 2008, 459(1-2): 386-389.
    [166]Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO_(2-x)N_x powders. Journal of Physics Chemistry B, 2003, 107: 5483-5486.
    [167]Khan S U M, Al-Shahry M, Ingler W B, et al. Efficient Photochemical Water Splitting by a Chemically Modified n- TiO_2. Science, 2002, 297(5590): 2243-2245.
    [168]李凡修,陆晓华,梅平.金属离子掺杂对纳米TiO_2晶型转变影响作用机制的研究进展.材料导报, 2006, 20: 13-15.
    [169]Oh S M, Kim S S, Lee J E, et al. Effect of additives on photocatalytic activity of titanium dioxide powders synthesized by thermal plasma. Thin Solid Films, 2003, 435(1-2): 252-258.
    [170]Liu Z, Cui Z L, Zhang Z K. The structural defects and UV-VIS spectral characterization of TiO_2 particles doped in the lattice with Cr3+ cations. Materials Characterization, 2005, 54(2): 123-129.