WSN中节点布局、定位及移动节点路径规划问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络的应用前景广阔,能够广泛应用于军事、环境、智能家居等领域。国内外相关研究多数局限于所有传感器节点都是静止的情况,不满足某些需要移动节点的应用,比如检测野生动物的生活,追踪病人的心跳情况等,在这些应用中节点总是在不断地慢速运动,它们需要无线传感器网络中存在可移动的节点。移动节点的引入不但可以拓宽类似于上述的网络应用范围,而且可以动态调整网络结构,优化网络的性能——能耗、延迟、生命周期等。因此移动节点的引入对无线传感器网络具有重要意义,作为该引入的前提——无线传感器网络中移动节点的路径规划,将成为亟待解决的问题。
     由于无线传感器网络的应用环境特殊、资源受限等特点,GPS等高端导航设备难以适用于该网络中移动节点路径规划问题,例如在太空探索或者地下煤矿应用中,GPS信号无法覆盖。无线传感器网络本身是一种密集感知型网络,其自身具备了进行路径规划的条件,然而由于该网络资源受限,路径规划不再纯粹是搜索算法问题,而是一个需要兼顾路径规划优度与网络性能的问题。
     本文将无线传感器网络中的路径规划问题划分为四个主要环节:无线传感器网络布局、定位参考点选择、定位算法与路径搜索算法,这四个主要环节首先是路径规划问题的必要组成部分,缺少任何一项均无法解决实际应用中的路径规划问题;其次,这四个主要环节之间存在着相互促进的内联关系,这些关系从整体上进一步提升了路径规划算法的性能。
     本文主要工作与贡献集中于以下几点:
     1.在网络布局环节中,针对应用环境分别提出了布局指导策略LG(Layout Guide)、布局优化策略LO(Layout Optimization)。在对LG的研究中发现,传感半径与通信半径的比值λ能够影响一种布局的有效覆盖率,它可以指导用户根据给定的λ值,选择最优的布局方法;LO策略可以对网络功率级进行调整,从而在不影响网络度值的前提下,减少网络能耗。
     2.在定位参考点选择环节中,本文提出了一种参考点选择算法CRS,采用“多轮分配”机制在最终搜索解的优度与计算复杂度之间较好地做了一次权衡。实验结果表明,CRS算法得出的定位覆盖度要较随机选择与SHARP算法分别高41.7%、38.3%左右。
     3.在定位算法环节中,本文提出了一种基于模糊识别的定位算法FTLM,该算法用若干样本点将未知点“约束”于某一个小区域内,进而估算未知点的坐标,FTLM执行过程简单,无需大量参考点参与计算,节约了能量与带宽。此外FTLM可以通过设置样本点的个数,灵活地调节定位精度与计算复杂度以满足应用需求,该算法尤其适用于本文研究的路径规划问题。实验结果表明计算复杂度为O(n)的FTLM算法对应的定位精度要比计算复杂度为O(nm)的SBL算法约高7.3%,其中m为参考点个数。
     4.在路径搜索算法环节中,本文提出了一种基于无线传感器网络的路径搜索算法PS。该算法将传感器节点作为“路标”,通过数据包的传递建立候选路径,在路径选择时,兼顾了路径长度与无线传感器网络的生命周期,该算法执行简单、计算复杂度低,适用于无线传感器网络的路径规划中。实验结果表明PS算法的一次执行延迟较栅格法低4.2s,PS算法对应的生命周期较高于栅格法。
     5.将上述各个环节有机地结合起来,形成了基于无线传感器网络的路径规划算法WPP,并通过大量实验,测试了该算法内部各环节的关联性及算法整体性能。测试结果表明通过调节算法的四个参数,可以改变WPP算法的各项性能,以达到用户需求。
     本文工作有效地解决了路径规划优度与无线传感器网络资源受限的矛盾。虽然最终的路径规划结果不是最短距离路径,但是相比于某些特定应用中所收获的更长的生存周期、较低的计算复杂度仍然是值得的。本文的研究特别适合于无大规模障碍物群的环境以及对网络生命周期要求高的相关应用,本文的研究成果为无线传感器网络中移动节点的路径规划提供了新的思路。
Wireless sensor networks has a wide application fields, it can be used in military affairs, environment supervision, samrt home and so on. Most of correlation researches are limited to immobile network, and they are uncomfortable for some mobile applications such as inspecting of wild animal's living and tracing of patients'heartbeat, in these applications, the nodes always mobile at a low speed, and they need mobile nodes in WSNs. The introduced mobile nodes can not only advance the ability of service but also can adjust the structure of WSNs to optimize its performance----energy consumption, latency and lifetime. So, the mobile nodes have an important signification to WSNs, and the path planning of mobile nodes based on WSNs has to be solved firstly.
     WSN has its characters such as special application environment, restricted resource and so on, so, some well worked navigation devices such as GPS can hardly be used. For example, while in outer space or underground colliery applications, the GPS signal can't work. WSNs is a kind of denseness and sensor network, it has the terms of path planning. However, due to WSNs'restricted resource, the path planning is not a simple search problem anymore, but a problem which needs to be given attention to the result of planning and network's performance.
     The algorithm of path planning is divided into four parts in this paper:network's layout, reference nodes' selection, localization model and path searching. The four parts are the necessaries of path planning firstly; there are inner relations among them secondly, the relations can advance the performance of path planning ulteriorly.
     The main works and contributions of the paper are focused on the following aspects:
     1. In the research of network's layout, two strategies are promoted:LG (Layout Guide) and LO (Layout Optimization). In LG, the ratioλbetween sensor radius and communication radius can change the efficiency cover ratio, it can guide people to layout the network according to the givenλ; In LO, the power levels are adjusted to decrease the energy consumption in condition of unchanging the degree of network.
     2. In the research of reference nodes'selection, CRS is advanced, it takes "multi-turns" mechanism to balance the advantage of planning result and complexity. The result of experiments shows that, the coverage ratio of CRS is 41.7% and 38.3% higher than random selection and SHARP selection.
     3. In the research of localization model, an algorithm called FTLM is advanced based fuzzy recognition. In FTLM, the unknown node is limited into a small area by setting several swatch nodes, the procedure is simple and doesn't need larger number of reference nodes, it can save energy and bandwidth. Moreover, the precision and complexity can be adjusted by the set of swatch nodes to satisfy applications' requirements. It is very suitable for the path planning research in this paper. This result of experiments show that, the complex degree of FTLM is O(n) and its localization precision is 7.3% more than SBL whose degree is O(nm), in which, m is the number of reference nodes.
     4. In the research of path search, we promote a algorithm based wireless sensor networks which is called PS. In this algorithm, the sensors are considered as the guides, and the paths are constructed by packets'communication. While in path selection, we give attentions to the lifetime of WSNs and the length of the path, the PS algorithm is simple and it has a low computing complex. The result of experiments shows that, the latency of PS algorithm is 4.2s lower than gridding algorithm, and PS can cause a longer lifetime than gridding.
     5. Finally, a path planning algorithm called WPP based WSN is advanced by banding the above researches together. A lot of experiments are performed to test the inner relations and the algorithm's performance. The result shows that, the performance of WPP can be adjusted to satisfy the requirements of users by changing the four parameters in WPP.
     This paper solves the conflicts between the path planning result and the restricted resource in WSNs. Although, the finally planning result maybe not the shortest path, but, we think it is more valuable to get a more lifetime and low planning complexity. The result of this paper is more suitable for the applications which have no block clusters or requires high lifetime. The researches of this paper provide a novel way for the path planning based WSNs.
引文
1. Min Chen, Gonzalez S, Leung V C M. Applications and Design Issues for Mobile Agents in Wireless Sensor Networks [J]. IEEE Wireless Communications,2007,14(6):20-26.
    2. Wameke B, Last M. Smart dust:Communication with a Cubic Millimeter Computer [J]. IEEE Computer Magazine,2001,34(1):44-51.
    3. Rentala P, Musunuri R. Survey on Sensor Networks [R]. Dallas:University of Texas, 2002.
    4. Bonnet P, GeHrke J. Querying the Physical World [J]. IEEE personal communication, 2000,7(5):10-15.
    5. Pottie G J. Embedding the Internet:Wireless Integrated Network Sensors [J]. Communication of the ACM,2000,43(5):51-58.
    6. Govindan R. The Sensor Network as a Database [R]. California:University of California, 2003.
    7. Noury N, Herve T. Mornitoring Behavior in Home Using a Smart Fall Sensor and Position Sensors [A]. Proceeding of IEEE-EMBS Special Topic Conf on Microtechnologies in Medicine and Biology [C]. Piscataway:IEEE,2000.607-610.
    8. Sohrabi K, Gao J. Protocol for Self-Organization of a Wireless Sensor Network [J]. IEEE Personal Communications,2000,7(5):16-27.
    9. Akyildiz I F, Su W, Sankarasubramaniam Y, et al. A Survey on Sensor Networks [J]. IEEE Communications Magazine,2002,40(8):102-105.
    10. C.Y. Chong and S.P. Kumar. Sensor Networks:Evolution, Opportunities, and Challenges [A]. Proceeding of the IEEE[C].2003,91(8):1247-1256.
    11. Busch D, Grant C J. Co-operative Engagement Capability [J]. Military Technology.2003, 8(5):8-9.
    12. http://www.xbow.com/products/wireless sensornetworks.htm.
    13. http://bwrc.eecs.berkeley.edu/Research/Pico Radio/Default.htm.
    14. http://nesl.ee.ucla.edu/projects/ahlos.
    15. http://www.intel.com/research/exploatory/motes.htm.
    16. http://mantis.cs.colorado.edu/index.php/tiki-index.php.
    17. http://nesl.ee.ucla.edu/projects/sos.
    18.李建中,李金宝,石胜飞.传感器网络及其数据管理的概念、问题与进展[J].软件学报,2003,14(10):1717-1727.
    19.任丰原,黄海宁,闯林.无线传感器网络[J].软件学报,2003,14(7):1282-1291.
    20.林亚平,王雷,陈宇等.传感器网络中一种分布式数据汇聚层次路由算法[J].电子学报,2004,32(11):1801-1805.
    21.张卿,谢志鹏,凌波等.一种传感器网络最大化生命周期数据收集算法[J].软件学报,2005,16(11):1946-1957.
    22.刘明,龚海刚,毛莺池等.高效节能的传感器网络数据收集和聚合协议[J].软件学报,2005,16(12):2106-2116.
    23.彭伟,卢锡城.一个新的分布式最小连通支配集近似算法[J].计算机学报,2001,24(3):254-258.
    24.张希元,赵海,孙佩刚等.无线传感器网络中以效率为中心的可靠通信机制研究[J].通信学报,2008,29(1):39-45.
    25.罗玎玎,赵海等. 一个具有能量管理机制WSNs的操作系统内核[J].东北大学学报(自然科学版),2007,28(11):1552-1555.
    26.孙佩刚,赵海等.智能空间中RSSI定位问题研究[J].电子学报,2007,35(7):1240-1245.
    27.孙佩刚,赵海,韩光洁等.混沌三角形定位参考点选择算法[J].计算机研究与发展,2007,44(12):1987-1995.
    28.张希元,赵海,孙佩刚等.基于链路层重传的传感器网络可靠传输模型[J],系统仿真学报,2007,19(22):5325-5330.
    29.卿利,朱清新,王明文.异构传感器网络的分布式能量有效成簇算法[J].软件学报,2006,17(3):481-489.
    30. Kumar A. Analysis and Optimization of IEEE 802.11 Wireless Local Area Networks [A]. Proceedings of Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks [C]. Trentino:IEEE,2005,151-169.
    31. Drula C, Amza C, Rousseau F. Adaptive Energy Conserving Algorithms for Neighbor Discovery in Opportunistic Bluetooth Networks [J]. IEEE Journal on Communications. 2007,25(1):96-107.
    32. Kim T O, Lee J, Park J. Performance Analysis of IEEE 802.15.4 with Non-Beacon enabled CSMA/CA in Non-Saturated Condition [A]. Proceeding of EUC 2006[C]. Berlin: Springer-Verlag,2006,884-893.
    33. Rabbachin A, Stoica L, Tiuraniemi S. A Low Cost, Low Power UWB based Sensor Network [A]. Proceeding of 2004 International Workshop on Wireless Ad-Hoc Networks[C]. Piscataway:Institute of Electrical and Electronics Engineers Computer Society June,2004,84-88.
    34. Li L, Ephremides A. On Designing Incentive-compatible Routing and Forwarding Protocols in Wireless Ad-hoc Networks [J]. Ad Hoc Networks.2007,5(7):959-973.
    35. Sohrabi K, Gao J, Ailawadhi V. Protocols for Self-organization of a Wireless Sensor Network [J]. IEEE Personal Communications,2000,7(5):16-27.
    36. Demirkol I, Ersoy C. Mac Protocols for Wireless Sensor Networks:a Survey [J]. IEEE Communications Magazine,2006,44(7):115-121.
    37. Ye W, Heidemann J, Estrin D. An Energy-efficient Mac Protocol for Wireless Sensor Networks [A]. Proceeding of IEEE INFOCOM'02[C]. New York:IEEE,2002. 1567-1576.
    38. Behrens C, Bischoff O, Lueders M. Energy-efficient Topology Control for Wireless Sensor Networks Using Online Battery Monitoring [J]. Advances in Radio Science,2007, (8)5:205-208.
    39. Wang Y, Attebury G, Ramamurthy B. A Survey of Security Issues in Wireless Sensor Networks [J]. Communications Surveys & Tutorials,2006,8(2):2-23.
    40. Sun K, Ning P. Cliff Secure and Resilient Clock Synchronization in Wireless Sensor Networks [J]. IEEE Journal on Selected Areas in Communications,2006,24(2):395-408.
    41. Song H, Zhu S, Cao G. Attack-resilient Time Synchronization for Wireless Sensor Networks [J]. Ad Hoc Networks.2007,5(1):112-125.
    42. Hofmann B, Lichtenegger H, Collins J. Global Positioning System:Theory and Practice [M], Washington DC:American Institute of Aeronautics and Astronautics,2004.232-249.
    43. Sun Y J, Qian J H, Wu J L. Hybrid Energy-Aware Time Synchronization Protocol for WSNs [A]. Proceedings of Coal Mine International Conference on Information Acquisition, ICIA'07[C]. Piscataway:IEEE,2007,436-441.
    44. Fan K W, Liu S, Sinha P. Structure-Free Data Aggregation in Sensor Networks [J]. Transactions on Mobile Computing,2007,6(8):929-942.
    45. Baouche C, Freitas A, Misson M. Radio proximity detection in a WSN to localize mobile entities within a confined area [J]. Journal of Communications,2009,4(6):379-381.
    46. Haynes B, Coles M, Azzi D. A self-healing mobile wireless sensor network using predictive reasoning [J]. Sensor Review,2008,28(4):326-333.
    47. Li Zhi-yu, Shi Haoshan. Data aggregation algorithm based on grid and mobile agent in WSN [J]. Chinese Journal of Sensors and Actuators,2008,21(7):1232-1236.
    48. Sabbah E, Kyoung-Don Kang, Abu-Ghazaleh N. An application-driven approach to designing secure wireless sensor networks [J]. Wireless Communications and Mobile Computing,2008,8(3):369-384.
    49. Caballero F, Merino L, Gil P. A probabilistic framework for entire WSN localization using a mobile robot [J]. Robotics and Autonomous Systems,2008,56(10):798-806.
    50. Coles M D, Azzi D, Haynes B P.A Bayesian network approach to a biologically inspired motion strategy for mobile wireless sensor networks [J]. Ad Hoc Networks,2009, 7(6):1217-1228.
    51. Leonard J, Durrant-Whyte H F. Mobile Robot Localization by Tracking Geometric Beacons [J]. IEEE Transactions on Robotics and Automation,1991,7(3):376-382.
    52. Matthias G, David N C T. Mobility Increases the Capacity of Ad Hoc Wireless Networks [J]. IEEE Transactions on Networking,2002,10(4):477-486.
    53. Zhou Zuan, Wang Tengfei, Dai Guangming. Bi-directional Dijkstra with binary tree sorted algorithm in robot path plan [J]. Computer Engineering,2007,33(10):36-37.
    54. Otani Takahiro, Koshino Makoto. Applying a path planner based on RRT to cooperative multirobot box-pushing [J]. Artificial Life and Robotics,2009,13(2):418-422.
    55. Yue-Shan Chang, Tong-Ying Juang, Chen-Yi Su. Wireless sensor network assisted dynamic path planning for transportation systems [A].5th International Conference[C]. Berlin:Springer-Verlag,2008,615-28.
    56. Fei Zhang, Zhuang-de Jiang, Jian-jun Ding. A path planning method for large-scale blade profile measurement based on neural network [A]. The International Society for Optical Engineering[C]. USA:SPIE,2008,1-9.
    57.康亮,赵春霞,郭剑辉.未知环境下改进的基于BUG算法的移动机器人路径规划[J].系统仿真学报,2009,21(17):5414-5422.
    58.闫茂德,吴青云,郭剑辉.非完整移动机器人的自适应滑模轨迹跟踪控制[J].系统仿真学报,2007,19(3):579-584.
    59.吴峰光,奚宏生.一种新的基于切线的路径规划方法[J].机器人,2004,26(3):193-197.
    60. Borenstein J, Koren Y. Real time obstacle avoidance for fast mobile robots [J]. IEEE Transactions on Systems, Man and Cybernetics,1989,19(5):1179-1187.
    61. Molina G, Alba E. Wireless sensor network deployment using a memetic simulated annealing [A].2008 International Symposium on Applications and the Internet [C]. USA: IEEE,2008,237-240.
    62. Niculescu D, Nath B. Ad-hoc positioning system (APS) using AoA[A], In:Proc. of the IEEE INFOCOM, Computer and Communications Societies[C]. USA:IEEE,2003, 1734-1743.
    63. Gu H L, Shi Y C, Xu G Y et al. A core model supporting location-aware computing in smart classroom [A]. In Proceedings of the 4th International Conference on Web-based Learning[C]. Hong Kong, July 31-August 3,2005,1-13.
    64. Chan L W, Chang J R, Chen Y C, et al. Collaborative localization:Enhancing WiFi-based position estimation with neighborhood links in clusters [A]. In Proceedings of The 4th International Conference on Pervasive Computing[C]. Dublin, Ireland, May 7-10,2006, 50-66.
    65. Mcneff J G. The global positioning system [J]. IEEE Transaction on Microwave Theory and Techniques,2002,50(3):645-652.
    66. An X L, Prasad R V, Wang J, et al. OPT-online person tracking system for context-awareness in wireless personal network[A]. In Proceedings of the 2nd International Workshop on Multi-hop Ad Hoc Networks:From Theory to Reality[C]. Florence, Italy. May 26,2006,47-54.
    67. Ni L M, Liu Y H, Lau Y C, et al. LANDMARC:Indoor location sensing using active RFID[J]. Wireless Net-Works,2004,10(6):701-710.
    68. Cabri G, Leonardi L, Mamei M, et al. Location dependent services for mobile users [J]. IEEE Transaction on Systems Man and Cybernetics, Part A,2003,33(6):667-681.
    69. Lee S Y, Park J T. NLOS error mitigation in a location estimation of object based on RTLS using kalman filter [A]. In Proceedings of 2006 SICE-ICASE International Joint Conference[C]. Busan, South Korea London, Oct 18-21,2006,2942-2946.
    70. Bahl P, Padmanabhan V N. RADAR:An in-building RF-based user location and tracking system [A]. In Proceedings of the 19th Annual Joint Conference of the IEEE Computer and Communication Societies (INFOCOM 2000)[C]. Tel Aviv, Israel, March 26-30,2000, 775-784.
    71.游维,李枚毅,吴琼.一种动态未知环境下的机器人路径搜索方法[J].计算机工程与应用,2009,45(19):201-203.
    72. Yang S X, Luo C A. Neural network approach to complete coverage path planning [J]. IEEE Transactions on Systems, Man and Cybernet-ics,2004,1(34):718-724.
    73.朱庆保.全局未知环境下多机器人运动蚂蚁导航算法[J].软件学报,2006,17(9):1890-1898.
    74.樊长虹,陈卫东,席裕庚.未知环境下移动机器人安全路径规划的一种神经网络方法[J].自动化学报,2004,30(6):816-823.
    75.袁麟博,章卫国,李广文.一种基于遗传算法模式搜索法的无人机路径规划[J].弹箭与制导学报,2009,29(3):279-282.
    76. Younis, Akkaya. Strategies and techniques for node placement in wireless sensor networks:A survey [J]. AD HOC NETWORKS,2008,6(4):621-655.
    77. Hou Y T, Yi Shi, Sherali H D, Midkiff S F. On energy provisioning and relay node placement for wireless sensor networks [J]. IEEE Transactions on Wireless Communications,2005,4(5):2579-2590.
    78. Yiqun Wu, Lin Zhang, Yihong Wu, Zhisheng Niu. Motion-Indicated Interest Dissemination With Directional Antennas for Wireless Sensor Networks With Mobile Sinks [J]. IEEE Transactions on Vehicular Technology,2009,58(2):977-989.
    79. Yuh-Ren Tsai. Sensing Coverage for Randomly Distributed Wireless Sensor Networks in Shadowed Environments [J]. IEEE Transactions on,2008,57(1):556-564.
    80. Yu Yi Cheng, Yi-Yuan Lin. A new received signal strength based location estimation scheme for wireless sensor network [J]. IEEE Transactions on Consumer Electronics, 2009,55(3):1295-1299.
    81. Sarkar T K, Burintramart S, Yilmazer N, Seunghyeon Hwang, Yu Zhang, De A, Salazar-Palma M. A Discussion about Some of the Principles/Practices of Wireless Communication under a Maxwellian Framework [J]. IEEE Transactions on Antennas and Propagation,2006,54(12):3727-3745.
    82.刘林峰,刘业.传感器网络中基于模拟退火算法的拓扑控制方案[J].通信学报,2006,27(9):71-77.
    83. Wu P, Cheng H, Xing J. The Interval Minimum Load Cutting Problem in the Process of Transmission Network Expansion Planning Considering Uncertainty in Demand [J]. IEEE Transactions on Power Systems,2008,23(3):1497-1506.
    84. Resende M G C. Computing approximate solutions of the maximum covering problem with GRASP [J], Journal of Heuristics,1998,8(4):161-177.
    85. Ramanathan R, Rosales H R. Topology control of multihop wireless networks using transmit power adjustment [A]. In:Proc. of IEEE INFOCOM[C]. USA:IEEE,2000: 404-413.
    86. Tilak S, Abu G N, Heinzelman W. Infrastructure tradeoff for sensor networks [A]. In: Proc. of the 1st Int'l Workshop on Wireless Sensor Networks and Applications (WSNA 2002)[C]. Atlanta:ACM Press,2002,49-57.
    87. You Chiun Wang, Yu Chee Tseng. Distributed Deployment Schemes for Mobile Wireless Sensor Networks to Ensure Multilevel Coverage [J]. IEEE Transactions on Parallel and Distributed Systems,2008,19(9):1280-1294.
    88. Xu Li, Santoro N, Stojmenovic I. Localized Distance-Sensitive Service Discovery in Wireless Sensor and Actor Networks [J]. IEEE Transactions on Computers,2009, 58(9):1275-1288.
    89. Chin Lung Yang, Bagchi S, Chappell W J. Topology Insensitive Location Determination Using Independent Estimates Through Semi-Directional Antennas [J]. IEEE Transactions on Antennas and Propagation,2006,54(11):3458-3472.
    90. Pan J, Cai L, Hou Y T, Shi Y, Shen S X. Optimal base-station locations in two-tiered wireless sensor networks [J]. IEEE Transactions on Mobile Computing,2005, 4(5):458-473.
    91. Yu K, Guo Y J. Anchor Global Position Accuracy Enhancement Based on Data Fusion [J]. IEEE Transactions on Vehicular Technology,2009,58(3):1616-623.
    92. Ruixin Niu, Varshney P K. Target Location Estimation in Sensor Networks with Quantized Data [J]. IEEE Transactions on Signal Processing,2006,54(12):4519-4528.
    93. Zaruba, G.V. Indoor location tracking using RSSI readings from a single Wi-Fi access point [J]. Wireless Networks,2007,13(2):221-235.
    94. Zorzi M. Power Control and Diversity in Mobile Radio Cellular Systems in the presence of Ricean Fading and Log-normal Shadowing [J]. IEEE Transactions on Vehicular Technology,1996,2(45):373-382.
    95. Varshavsky A, Lara E D, Hightower J, et al. GSM indoor localization[J], Pervasive and Mobile Computing,2008,3(6):698-720.
    96. Yang Ji, Liu Feng. A modified localization algorithm of APIT based on perpendicular bisector feature for wireless sensor network [J]. Chinese Journal of Sensor and Actuators, 2008,21(8):1453-1457.
    97. Zhao Jun, Pei Qingqi, Xu Zhangqi. APIT localization algorithms for wireless sensor networks [J]. Computer Engineering,2007,33(5):109-111.
    98. Yi Ling Hsieh, Kuochen Wang. Efficient localization in mobile wireless sensor networks [A]. IEEE International Conference on Sensor Networks Ubiquitous and Trustworthy Computing 2006[C]. Taichung, Taiwan, June 5-7,2006,5-6.
    99.张文波.普适计算环境下定位参考点的分布问题[J].东北大学学报(自然科学版),2005,26(9):848-851.
    100.朱剑,赵海,徐久强.三角形定位算法误差分析.东北大学学报(自然科学版)[J],2009,30(5):648-651.
    101.Feng Tian, Wei Guo, Chuanyun Wang, Qian Gao. Robust Localization Based on Adjustment of Trilateration Network for Wireless Sensor Networks [A]. Wireless Communications Networking and Mobile Computing 2008[C]. Dalian, China, Oct 12-14, 2008,1-4.
    102.Chuan Chin Pu, Wan-Young Chung. In-network location estimation using collaborative ranging technique in wireless sensor network [A].2008 5th International Summer School and Symposium on Medical Devices and Biosensors[C]. Hong Kong, June 1-3,2008, 161-164.
    103.Vivekanandan V, Wong V W S. Concentric Anchor Beacon Localization Algorithm for Wireless Sensor Networks [J]. IEEE Transactions on Vehicular Technology,2007, 56(5):2733-2744.
    104.Ou Chia-Ho, Ssu Kuo-Feng. Sensor Position Determination with Flying Anchors in Three-Dimensional Wireless Sensor Networks [J]. IEEE Transactions on Mobile Computing,2008,7(9):1084-1097.
    105.Ditzel M, Elferink FH. Low-power radar for wireless sensor networks [A].2006 European Radar Conference, Manchester[C]. Manchester United Kingdom, Sept 13-15, 2006,139-141.
    106.潘晏涛.无线传感器网络生存时间优化问题研究[D].湖南:国防科学技术大学,2006,16-23.
    107.Singh S, Woo M, Raghavendra C S. Power-Aware Routing in Mobile Ad Hoc Networks[C]. Proceedings of the 4th annual ACM/IEEE international conference on Mobile computing and networking. Dallas:ACM Press,1998,89-95.
    108.Chang J H, Tassiulas L. Energy Conserving Routing in Wireless Ad Hoc Networks[A].Proceedings of INFOCOM 2000[C]. Piscataway:IEEE,2000,22-31.
    109.Santi P, Blough D M, Vainstein F. A Probabilistic Analysis for the Range Assignment Problem in Ad hoc Networks [A]. Proceedings of MobiHoc 2001 [C]. New York:ACM, 2001:212-220.
    110.Chiyangwa S, Kwiatkowska M. A Timing Analysis of AODV [A]. Proceedings of the 7th IFIP WG 6.1 International Conference on Formal Methods for Open Object-Based Distributed Systems[C]. Berlin:Springer Verlag,2005.306-321.
    111.Raghunathan V, Suitan F. A New Computing and Communication Paradigm for Next Generation Wireless Services:Low Power, Secure Wireless Sensor Networks [A]. Proceedings of 2006 IEEE Radio and Wireless Symposium[C]. San Diego:IEEE,2006. 311-314.
    112.Pathan A S, Choong S H. Smartening the Environment Using Wireless Sensor Networks in a Developing Country [A]. Proceedings of 8th International Conference on Advanced Communication Technology [C]. Piscataway:IEEE,2006,1-5.
    113. Van H L, Nieberg T, Wu J, et al. Prolonging the Lifetime of Wireless Sensor Networks by Cross-layer Interaction [J]. IEEE Wireless Communications,2004,11(6):78-86.
    114.Xu Y, Heidemann J S, Estrin D. Geography-informed Energy Conservation for Ad Hoc Routing [A]. Proceedings of MOBICOM'01. New York:ACM,2001:70-84.
    115.Toh C K. Maximum Battery Life Routing to Support Ubiquitous Mobile Computing in Wireless Ad hoc Networks [J]. IEEE Communications Magazine,2001,39(6):138-147.
    116.Chen B, Jamieson K, Balakrishnan K. Span:An Energy-Efficient Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks [A]. Proceedings of the 7th ACM MOBICOM[C], New York:ACM,2001,85-96.
    117.Brown T X, Gabow H N, Zhang Q. Maximum Flow-Life Curve for a Wireless Ad Hoc Network [A]. Proceedings of MobiHoc'01. New York:ACM,2001:128-136.
    118.Bhardwaj M, Garnett T, Chandrakasan A P. Upper Bounds on the Lifetime of Sensor Networks [A]. Proceedings of IEEE International Conference on Communications[C]. Piscataway:IEEE,2001:785-790.
    119.张海涛,程荫杭.基于A*算法的全局路径搜索[J].机器人技术,2007,23(6-2):238-240.
    120.P E Hart, N J Nilsson B R aphael. A formalbasis for the heuristic determination of minimum cost paths in graphs [J]. IEEE Trans Syst Sci and Cybernetics,1968,4(2): 100-107.
    121.王萌,王晓荣,李春贵.改进人工市场法的移动机器人路径规划研究[J].计算机工程与设计,2008,29(6):1504-1506.
    122.张卿,谢志鹏,凌波.一种传感器网络最大化生命周期数据收集算法[J].软件学报,2005,16(11):1946-1957.
    123.Ye W, Heidemann J, Estrin D. An Energy-efficient Mac Protocol for Wireless Sensor Networks [A]. Proceeding of IEEE INFOCOM'02[C]. New York:IEEE,2002. 1567-1576.
    124.Sun Y J, Qian J H, Wu J L. Hybrid Energy-Aware Time Synchronization Protocol for WSNs [A]. Proceedings of Coal Mine International Conference on Information Acquisition, ICIA'07[C]. Piscataway:IEEE,2007,436-441.
    125.Sharifkhani A, Beaulieu NC. A Mobile-Sink-Based Packet Transmission Scheduling Algorithm for Dense Wireless Sensor Networks [J]. IEEE Transactions on Vehicular Technology,2009,58(5):2509-2518.
    126.Viana AC, Ziviani A, Friedman R. Decoupling Data Dissemination from Mobile Sink's Trajectory in Wireless Sensor Networks [J]. IEEE Communications Letters,2009, 13(3):178-180.
    127.Chatzigiannakis L, Kinalis A, Nikoletseas S. Efficient data propagation strategies in wireless sensor networks using a single mobile sink [J]. Computer Communications, 2008,31(5):896-914.
    128.Wang NC, Huang YF, Chen JS. Energy-aware data aggregation for grid-based wireless sensor networks with a mobile sink [J]. Wireless Personal Communications,2007, 43(4):1539-1551.
    129.Guo-Lin Sun, Wei Guo. Comparison of distributed localization algorithm for sensor network with a mobile beacon [A]. IEEE International Conference on Networking[C]. USA:IEEE,2004,536-540.
    130.Yang Tao, Lian-yong Yuan, Ya-li Wang, Wei Luo. Optimized coverage algorithm in WSN based on energy balance [A]. Communication Systems,2008. ICCS 2008.11th IEEE Singapore International Conference [C]. Singapore,19-21 Nov.2008.933-936
    131.Mu Da-nian, Wang Chang-shan. Energy balance routing protocol in WSN [J]. Chinese Journal of Sensors and Actuators,2009,2 (22):254-257
    132.Yanjun Li, Chung Shue Chen, Ye Qiong Song, Zhi Wang, Youxian Sun. Enhancing Real-Time Delivery in Wireless Sensor Networks With Two-Hop Information [J]. IEEE Transactions on Industrial Informatics,2009,5(2):113-122.
    133.Alesii Roberto, Graziosi Fabio, Pomante Luigi, Rinaldi Claudia. Exploiting WSN for Audio Surveillance Applications:The VoWSN Approach [A]. DSD'08 11th EUROMICRO Conference on Digital System Design Architectures Methods and Tools[C]. Parma, Italian, Sept 3-5,2008,520-524.
    134.Beakcheol Jang, Jun Bum Lim, Sichitiu M L. AS-MAC:An asynchronous scheduled MAC protocol for wireless sensor networks [A]. MASS 2008 5th IEEE International Conference on Mobile Ad Hoc and Sensor Systems[C]. Atlanta, United States, Sept 29-Oct 2,2008,434-441.
    135.Hongli Xu, Liusheng Huang, Tao Xu, Yongkai Huo, Yang Wang. Practical indoor tracking using Wireless Sensor Networks [A]. WPNC 2009.6th Workshop on Positioning Navigation and Communication, Hannover[C]. Hannover, Germany, Mar 19-19,2009, 209-215.
    136.Zein Sabatto S, Elangovan V, Wei Chen, Mgaya R. Localization strategies for large-scale airborne deployed wireless sensors [A]. MCDM'09. IEEE symposium on Computational intelligence in miulti-criteria decision making[C]. Nashville, United States, Mar 30-Apr 1, 2009,9-15.
    137.Pianegiani F, Hu Mingqing, Boni A, Petri, D. Energy-Efficient Signal Classification in Ad hoc Wireless Sensor Networks [J]. IEEE Transactions on Instrumentation and Measurement,2008,57(1):190-196.
    138.Wadhwa M, Min Song, Rali V, Shetty S. The impact of antenna orientation on wireless sensor network performance [A]. Computer Science and Information Technology 2009[C]. Beijing, China, Aug 8-11,2009,143-147.
    139.Trathnigg T, Moser J, Weiss R. An Energy-Efficient MAC Protocol for Low Traffic Wireless Sensor Networks [A]. Wireless Communications and Mobile Computing Conference 2008[C]. Crete Island, Greece, Aug 6-8,2008,377-382.
    140.See C H, Abd Alhameed R A, Hu Y F, Horoshenkov K V. Wireless sensor transmission range measurement within the ground level [A]. Antennas and Propagation Conference 2008[C]. Loughborough, United Kingdom, Mar 17-18,2008,225-228.
    141.Cheng Tai Yeh, Gao R X. Reconfigurable energy-efficient wireless sensor networks for real-time data acquisition [A].IECON 2008 34th Annual Conference of IEEE on Industrial Electronics [C]. Nashville, United States, Nov 10-13,2008,2623-2628.