地源热泵控制策略理论与系统实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于能源短缺,国家鼓励节能减排技术与清洁能源的发展,使一种经济环保、高效节能的新型空调技术——地源热泵在我国迅速发展壮大起来。同时,许多学者也开始对地源热泵进行了不断深入的研究,主要集中在地下埋管换热器(BHE)的传热模型和传热机理、过程参数的模拟、能源互补联合应用以及工质等研究上。然而,在地源热泵的控制策略及优化运行方法上较为欠缺。因此,本文将现代控制理论方法、非线性优化方法与地源热泵技术相结合,研究融合先进控制技术的地源热泵控制系统,并对该系统的运行过程、节能效果等进行了全面的分析和研究。
     本文以现代控制理论为基础,提出了带前馈的地源热泵能量调节智能控制策略,并对该策略的实现方法进行了详细的分析。采用机理分析与实验相结合的方法,完整的建立了地源热泵控制系统的仿真模型,并搭建了地源热泵系统及智能控制系统实验台。在设定值变化、流量干扰、频率放大系数突变条件下对地源热泵供水温度进行了控制仿真与实验研究。结果表明:当设定值变化时,变速积分PID控制比模糊控制的超调量大,调节时间更短,且模糊控制最终存在稳态偏差;流量干扰下,加入前馈后两种控制策略的控制性能都得到很大提高;当频率放大系数变化时,模糊控制逐渐产生发散的非稳定控制状态,而变速积分PID表现出了较好的鲁棒性。
     同常规控制系统的对照研究表明:在前馈-反馈的控制策略下,地源热泵控制性能显著提高。空调末端存在较大的负荷波动时,系统的供水温度波动幅度能够保持在1.0℃以内(常规控制为3.4℃),空调室内平均温度能够保持在24.4~25.9℃(常规控制为23.1~26.1℃)。因此,前馈-反馈的控制策略表现出了良好的抗干扰性与动态响应特性,控制输出的稳定性及响应迅速性远超过常规地源热泵空调系统。
     在负荷预测的基础上,提出了地源热泵与蓄能耦合系统的优化运行控制方法,详细分析了该方法的实现过程。根据本文建立的系统实验台,对该方法进行了实验验证。研究发现:优化运行控制的作用显著,可以较明显地降低运行成本,日运行费用的节省比例达到20%以上,运行效率显著提高(系统的COP由3.0提高至4.5左右),减少了运行能耗。
     根据建立的实验系统,研究了地源热泵的三种典型运行状态:地源与太阳能耦合运行模式、蓄能运行模式及独立地源热泵运行模式。在进行性能分析、环境影响、能源结构、能分析与火用分析的基础上,得出:(1)地源与太阳能耦合运行时,太阳能对提高热泵系统效率的短期效果不明显,主要作用在于保持系统长期运行的高效性及稳定性;(2)水蓄能装置的内部结构可直接影响分层效果,是影响蓄能过程综合效率的一个重要因素;(3)地源热泵循环中能量传递效率最高的环节是BHE中热交换过程(效率可达96.1%),但火用效率却最低(火用效率仅为7.2%)。在进行系统设计时,需要综合考虑这两种效率对于整个系统的影响。
In recent years, the state encourages the development of energy–savingtechnology and clean energy replying to the energy shortage, which has made a highperformance and environment–friendly air conditioning technology—geothermal heatpump (GHP) to grow quickly in China. At the same time, many researchers havebegun to conduct in–depth study on GHP. Most of current studies of GHP focus onthe heat transfer model and mechanism of the borehole heat exchanger (BHE),simulation of the process parameters, combined application under complementaryenergy sources and development of alternative refrigerants. However, the research ofcontrol strategy and optimization operation on GHP is rarely seen. Therefore, we havestudied a GHP system integrated with advanced control technologies based on moderncontrol theory methods and nonlinear optimization methods. Also, a comprehensiveanalysis and study on the running process and energy saving effect of this system hasbeen done.
     A feedforward GHP energy–regulation control strategy is proposed on the basisof modern control theory. A detailed analysis of implementation method on thiscontrol strategy is also carried out. Then the experiment system of GHP and thematched intelligent control system are established. A dynamic simulation model ofGHP has been developed by using mechanism modeling and experiment modelingmethods. Simulation and experimental studies were conducted on water supplytemperature of GHP under the conditions of setpoint changes, flow rate disturbancesand abrupt changes of frequency multiplication coefficient. The results show that, theovershoot of gearshift integral PID controller is higher, the regulation time ofgearshift integral PID controller is less than that of fuzzy controller as the setpointmakes a change. And there is a the steady-state deviation of the water supplytemperature under the fuzzy control. The control performance of the two controlmodes has been improved significantly with the help of feedforward strategy. Thefuzzy controller will be in unstable state gradually while gearshift integral PIDcontroller has good robustness with the abrupt changes of frequency multiplicationcoefficient.
     It has also shown that the feedforward-feedback control strategy makes the GHP control performance improve significantly. The water supply temperature of GHP cankeep within a variation of0~1.0℃in a big terminal cooling/heating load fluctuation,in comparison to0~3.4℃under conventional control strategy. The mean indoortemperature under the feedforward-feedback control strategy is kept in24.4~25.9℃,in comparison to23.1~26.1℃under conventional control strategy. Therefore, thefeedforward-feedback control strategy provides a good noise immunity and dynamicresponse characteristics. Moreover, the stability and response speed of control outputare superior to the GHP system with conventional control strategy.
     An optimized operation method is developed for the GHP system in combinationwith energy storage device on the basis of load forecasting. And the implementationprocess of this method is described in detail. Experimental validation has been carriedout from a small load system established at Tianjin University. It is found that a lot ofrunning costs can be reduced and the saving ratio to daily running cost can be morethan20%. Also the COP of the system rises to4.5from3.0, which will make theenergy consumption decrease significantly.
     Based on the experimental system, three typical operation modes areinvestigated, They are: geothermal and solar coupling operation mode, energy storageoperation mode and independent geothermal heat pump operation mode. Through theanalysis on performance, environmental influence, energy structure and exergyefficiency of the system, the conclusions are as follows:
     (1) The short–term effect of solar on improving the COP of the heat pumpsystem is not obvious when it is geothermal and solar coupling operation mode. Thesolar plays an important role in maintaining the high efficiency and stability of thesystem during long-term operation.(2) The internal structure of the water thermalstorage device is an important factor to affect the overall efficiency of the energystorage process.(3) The highest energy efficiency link of the system is the heatexchange process in BHE (Energy efficiency of which is96.1%). However, thisprocess has the lowest exergy efficiency (Exergy efficiency of which is7.2%).Therefore, the effects of energy and exergy efficiency to the whole system need to betaken into consideration when the system is designed.
引文
[1] BP世界能源统计,2012
    [2]李元龙,能源环境政策的增长、就业和减排效应:基于CGE模型的研究,浙江大学,2011
    [3]周志强,中国能源现状、发展趋势及对策,能源与环境,2008,6
    [4] Linwei Ma, Pei Liu, Feng Fu,et al., Weidou Niintegrated Energy Strategy forthe Sustainable Development of China, Energy,2011,(36):1143-54.
    [5] Berrah N, Feng F, Priddle Ret al., Sustainable Energy in China. The ClosingWindow of Opportunity, Washington DC: The World Bank,2007.
    [6] McElroy M B, Nielson C P, Lydon P Eds., Energizing China. ReconcilingEnvironmental Protection and Economic Growth: Harvard University Press,Cambridge, M A.,1998.
    [7] Smil V, Energy Development in China. The Need for a Coherent Energy Policy,Energ Policy,1981,9:113-26.
    [8] Philip Andrews-Speed, China’S Ongoing Energy Efficiency Drive: Origins,Progress and Prospects, Energ Policy,2009,(37):1331-44.
    [9]居住建筑节能设计标准(夏热冬冷地区)宣贯教材,:北京:中国计划出版社,2001
    [10]中国建筑能耗约占社会总能耗三分之一,现代物业(上旬刊),2011,04
    [11]蔡伟光,中国建筑能耗影响因素分析模型与实证研究,重庆大学,2011
    [12]涂逢祥,王庆一,中国建筑节能现状及发展,新型建筑材料,2004,(7):40-2
    [13] Hdtef Madani, Joachim Claesson, Capacity Control in Ground Source HeatPump Systems Part ⅱ:Comparative Analysis Between On/Off Controlled andVariable Capacity Systems, International Joural of Refrigeration34,2011:1934-42.
    [14] Rybach L., The Advance of Geothermal Heat Pumps Worldwide, NewsletterIEA Heat Pump Centre,2005,4.
    [15] Lund J., Sanner B., Geothermal (Ground Source)Heat Pumps,a WordOverviews, Oregon Institute of Technology,2004,25(3):1-10.
    [16]徐伟,国际国内地源热泵技术发展趋势,热泵专栏,2011,3
    [17]李树云,刘远辉,唐维,国外地源热泵应用分析,化工建设与设计,2005,12
    [18]丛旭日,地源热泵发展及应用,建筑科技,2005,23
    [19] National Rural Electric Cooperative Association, Oklahoma StateUniversity, Closed-Loop/Geothermal Heat Pump Systems, Design andInstallation Standards, International Ground Source Heat PumpAssociation (Igshpa), Stillwater Ok,1997.
    [20] Bose J. E., Geothermal Heat Pumps Introductory Guide. Oklahoma StateUniversity Ground Source Heat Pump Publications,1997.
    [21] Metz P. D., Design, Construction and Operation of Solar Assisted Heat PumpGround Coupled Storage Experiments at Brookheven National Laboratory,Proceeding of4th Annual heat pump technology conference,1979.
    [22] Mei V. C., Baxter V. D., Vertical Concentric Tube Ground Coupled HeatExchangers: ASHRAE Trans,1983,391-406.
    [23] ASHRAE, Commercial/Institutional Ground-Source Heat Pump EngineeringManual,1995.
    [24] ASHRAE, ASHRAE Handbook: Heating, Ventilating and Air ConditioningApplications,1999.
    [25] ASHRAE, HVAC Systems and Equipment,2000.
    [26]龚长山,中国地源热泵行业发展浅析,中国市场,2011,3
    [27] Ingersoll L. R., Plass H. J., Theory of the Ground Pipe Heat Source for the HeatPump, ASHVE Trans,1948,47:339-48.
    [28] Bose J. E., Parker J. D., McQuiston F. C., Design/Data Manual forClosed-Loop Ground-Coupled Heat Pump Systems: ASHRAE,1985.
    [29] Carslaw H. S., Jaeger J. C., Conduction of Heat in Solids.2Nd Ed. London:Oxford University Press,1959.
    [30] Ingersoll L. R., Zobel O. J., Ingersoll A. C., Heat Conduction with Engineering.Geological and Other Applications, Mc Graw-Hill, New York, USA,1954,325.
    [31] Deerman J. D., Kavanaugh S. P., Simulation of Vertical U-TubeGround-Coupled Heat Pump Systems Using the Cylindrical Heat SourceSolution,1991,97:287-94.
    [32] Eskilson, Thermal Analysis of Heat Extraction Boreholes, Ph.D. Thesis,University of Lund,1987.
    [33] Marcotte D., Pasquier P., Fast Fluid and Ground Temperature Computation forGeothermal Ground-Loop Heat Exchanger Systems, Geothermics,2008,37:651-65.
    [34] Bandos T. V., Montero á., Fernández E.et al., Finite Line-Source Model forBorehole Heat Exchangers: Effect of Vertical Temperature Variations,Geothermics,2009,38:263-70.
    [35] Diao N.R., Zeng H.Y., Fang Z.H., Improvement in Modeling of Heat Transferin Vertical Ground Heat Exchangers, HVAC&R. Research,2004,(10):459-70.
    [36] Lee C. K., Lam H. N., Computer Simulation of Borehole Ground HeatExchangers for Geothermal Heat Pump Systems, Renew Energy,2008,33:1286-96.
    [37] Yavuzturk C., Spitler J. D., Rees S. J., A Transient Two-Dimensional FiniteVolume Model for the Simulation of Vertical U-Tube Ground Heat Exchangers,ASHRAE Trans,1999,105(2):465-74.
    [38] Yavuzturk C., Spitler J. D., Rees S. J., A Short Time Step Response FactorModel for Vertical Ground Loop Heat Exchangers, ASHRAE Trans,1999,105:475-85.
    [39] Rottmayer S. P., Beckman W. A., Mitchell J. W., Simulation of a SingleVertical U-Tube Ground Heat Exchanger in an Infinite Medium, ASHRAETrans,1997,103:651-9.
    [40] Thornton J. W., McDowell T. P., Shonder J. A., Residential VerticalGeothermal Heat Pump System Models: Calibration to Data, ASHRAE Trans,1997,103:660-74.
    [41] Muraya N. K., O’Neal D. L., Heffington W. M., Thermal Interference ofAdjacent Legs in Vertical U-Tube Heat Exchanger for a Ground-Coupled HeatPump, ASHRAE Trans,1996,102:12-21.
    [42] Lei T. K., Development of a Computational Model for a Ground-Coupled HeatExchanger, ASHRAE Trans,1993,99(1):149-59.
    [43] Kavanaugh S. P., Simulation and Experimental Verification of VerticalGroundcoupled Heat Pump Systems, PhD. Thesis, Oklahoma State University,1986.
    [44] Mei V. C., Emerson C. J., New Approach for Analysis of Ground-Coil Designfor Applied Heat Pump System, ASHRAE Trans,1985,91:1216-24.
    [45] Li Z., Zheng M., Development of a Numerical Model for the Simulation ofVertical U-Tube Ground Heat Exchangers, Appl Therm Eng.: in press.
    [46] Zhao Y., Guansan T., Yi Z.et al., Performance and Dynamic Flammability ofR32/R134a Mixture in Water-to-Water Heat Pumps, Energy,2002,27:127-34.
    [47] Zhao Y., Yita M., Yie L.et al., The Performance of some Substitutes for Hcfc22Under Varying Operating Conditions, Appl Therm Eng,1999,19:801-6.
    [48] Zhao Y., Yita M., Yie L., New Alternatives for R22, Energy,1997,22(7):669-76.
    [49] Devotta S., Waghmare A. V., Sawant N. N.et al., Alternatives to Hcfc-22forAir Conditioners, Appl Therm Eng,2001,21:703-15.
    [50] Purkayastha B., Bansal P. K., An Experimental Study On Hc290and aCommercial Liquefied Petroleum Gas (Lpg) Mix as Suitable Replacements forHcfc22, International Journal of Refrigeration,1998,21:3-17.
    [51]史琳,韩礼钟,朱明善,HCFC-22替代制冷剂THR03的试验研究,暖通空调,2000,30(2):1-4
    [52]史琳,赵晓宇,韩礼钟等,HCFC-22的替代物THR03的研究,工程热物理学报,1999,20(5):538-41
    [53]赵力,张启,丁国良,一种非共沸混合工质的循环特性分析,工程热物理学报,2004,25(1):31-3
    [54]韩晓红,朱志伟,孙洁等,新型三元混合制冷剂R32/R125/R161替代制冷剂R407C的进行了实验研究,浙江大学学报(工学版),2007,41(2):337-41
    [55] Penrod E. B., Prasanna K. V., Design of a Flat-Plate Collector for a Solar EarthHeat Pump, Sol Energy,1962,6(1):9-22.
    [56] Chiasson A. D., Advances in Modeling of Ground-Source Heat Pump System,Oklahoma State University,1999:168.
    [57] Ozgener O., Hepbasli A., Experimental Performance Analysis of a SolarAssisted Ground-Source Heat Pump Greenhouse Heating System, EnergBuildings,2005:101-10.
    [58] Stojanovi B., Akander J., Build-Up and Long-Term Performance Test of aFull-Scale Solar-Assisted Heat Pump System for Residential Heating in NordicClimatic Conditions, Appl Therm Eng,2010:188-95.
    [59] Yuhong B., Tingwei G., Liang Z. et al., Solar and Ground Source Heat-PumpSystem, Appl Energ,2004,78:231-45.
    [60] Weibo Y., Mingheng S., Hua D., Numerical Simulation of the Performance of aSolar-Earth Source Heat Pump System, Appl Therm Eng,2006,26(18):2367-76.
    [61] Weibo Y., Zhenqian C., Mingheng S., The Alternate Operation Characteristicsof a Solar-Ground Source Heat Pump System, Journal of Southeast University(English Edition),2010,26(2):327-32.
    [62] Xi C., Hongxin Y., Lin L.et al., Experimental Studies On a Ground CoupledHeat Pump with Solar Thermal Collectors for Space Heating, Energy,2011,36:5292-300.
    [63] Xi C., Lin L., Hongxing Y., Long Term Operation of a Solar Assisted GroundCoupled Heat Pump System for Space Heating and Domestic Hot Water, EnergBuildings,2011,43:1835-44.
    [64] Xi C., Hongxing Y., Performance Analysis of a Proposed Solar AssistedGround Coupled Heat Pump System, Appl Energ,2012,97:888-96.
    [65] Elisabeth K., Goran H., Bengt P., Optimization of Systems with theCombination of Ground-Source Heat Pump and Solar Collectors in Dwellings,Energy,2010,35:2667-73.
    [66] Enyu W., Alan S. F., Chengying Q.et al., Performance Prediction of a HybridSolar Ground-Source Heat Pump System, Energ Buildings,2012,47:600-11.
    [67] Buzelin L. O. S., Amico S. C., Vargas J. V., Cparise J. A. R., ExperimentalDevelopment of an Intelligent Refrigeration System.International Journal ofRefrigeration-Revue Internationale Du Froid,2005,28(2):165-75.
    [68] Qureshi T., Qtassou S. A., Variable-Speed Capacity Control in RefrigerationSystems, Applied Thermal Engineering,1996,16(2):103-13.
    [69]朱瑞琪,孙毅刚,刘君华,制冷空调设备的变频能量调节,流体工程,1991,(8):51-6
    [70]王沣浩,费继友,金立文等,变频空调器控制系统的技术现状与发展趋势,制冷学报,2000:(2):1-6
    [71]彦启森,李先庭,石文星,小型变容量空调系统控制技术在日本的研究进展.家用电器科技,2000,(9):55-8
    [72]杨冲伟,董事尔,数码涡旋空调的应用研究,制冷与空调,2009,(2):63-7
    [73]田明力,杨亚华,张登科等,数码涡旋空调热水器的研究与开发,制冷与空调,2007,(6):76-9
    [74]吴锦京,卢纪富,曾章传等,空气源热泵直接地板辐射供暖运行模式实验研究,暖通空调,2010,(1):71-4
    [75] Navarro-esbri J., Ginestar D., Belman J. M., Milian V., Verdu G., Applicationof a Lumped Model for Predicting Energy Performance of a Variable-SpeedVapour Compression System, Applied Thermal Engineering,2010,30(4):286-94.
    [76] Navarro-esbri J., Berbegall V., Verdu G., Cabello R. R., A Low DataRequirement Model of a Variable-Speed Vapour Compression RefrigerationSystem Based on Neural Networks, International Journal of Refrigeration-Revue Internationale Du Froid,2007,30(8):1452-9.
    [77] Schurt L. C., Hermes C. J., Lneto A. T., A Model-Driven MultivariableController for Vapor Compression Refrigeration Systems, International Journalof Refrigeration-Revue Internationale Du Froid,2009,32(7):1672-82.
    [78] Tassou S., Aqureshi T. Q., Dynamic Mode Performance Evaluation and EnergyAnalysis of Mains and Inverter Driven Refrigeration Compressors, Proceedingsof the Institution of Mechanical Engineers Part a-Journal of Power and Energy,1997,211(4):339-46.
    [79] Shao S. Q., SHI W. X., LI X. T., MA J., A New Inverter Heat Pump OperatedAll Year Round with Domestic Hot Water, Energy Conversion andManagement,2004,45(13-14):2255-68.
    [80] Karlsson F. P., Capacity-Controlled Ground Source Heat Pumps in HydronicHeating Systems, International Journal of Refrigeration-Revue InternationaleDu Froid,2007,30(2):221-9.
    [81] CHOI J., KIM Y., KIM J., Experimental Study on the Performance of anInverter Heat Pump with a Bypass Orifice, International Journal ofRefrigeration-Revue Internationale Du Froid,2001,24(5):417-27.
    [82] XUE Z., SHI L., Modeling and Experimental Investigation of a Variable SpeedDrive Water Source Heat Pump, Tsinghua Science&Technology,2010,15(4):434-40.
    [83] Chaturvedi S. K., Chen D. T., Kheireddine A., Thermal Performance of aVariable Capacity Direct Expansion Solar-Assisted Heat Pump, EnergyConversion and Management,1998,39(3-4):81-191.
    [84]胡静,杨昭,焦永刚,直流变频型空调器的实验研究与SEER分析,流体机械,2007,(5):58-61
    [85]陈文勇,陈芝久,朱瑞琪等,制冷系统启动过程电子膨胀阀的控制,上海交通大学学报,2002,(2):210-3
    [86]陈文勇,陈芝久,陈佑华,冷柜启动过程中电子膨胀阀的控制,流体机械,2005,(10)
    [87]王海涛,裴刚,电子膨胀阀开度对SAHP系统稳定性的影响,制冷学报,2008,(2):42-5
    [88] Chen W., Chen Z. J., Zhu R. Q., Wu Y. Z., Experimental Investigation of aMinimum Stable Superheat.Control System of an Evaporator, InternationalJournal of Refrigeration-Revue Internationale Du Froid,2002,25(8):1137-42.
    [89]朱瑞琪,孟建军,蒸发器过热度的自适应控制,流体机械,1997,(3):28-30
    [90]朱瑞琪,陈文勇,吴业正,电子膨胀阀的控制,流体机械,1998,(5):20-5
    [91]李郁武,王如竹,王泰华等,直膨式太阳能热泵热水器过热度PI控制的实现,工程热物理学报,2007,(S1):49-52
    [92] Li X. Q., Chen J. P., Chen Z. J., et al., A New Method for ControllingRefrigerant Flow in Automobile Air Conditioning, Applied ThermalEngineering,2004,24(7):1073-85.
    [93]杨昭,张金亮,胡云峰,燃气机热泵系统电子膨胀阀流量控制的研究,流体机械,2005,(增刊):45-8
    [94]傅明星,曹琦,王宜义,空调器新型模糊控制器研究,暖通空调,2000,30(2):38-40
    [95]张良杰,王普等,基于神经网络与模糊逻辑控制技术的“舒逸”智能空调控制器,制冷学报,1994,(3):54-7
    [96]赵原,俞炳丰,空调器多路毛细管组合节流及其模糊控制,流体机械,1995,(10):46-50
    [97]丁小江,何应强等,一机多挂式空调中制冷剂的控制盒分析,制冷,1995,51(2):36-9
    [98]丁国良,张春路,刘浩,结合人工神经网络的翅片管式冷凝器快速仿真模型,工程热物理学报,2002,23(1):75-8
    [99]丁国良,张春路,基于模型的制冷系统智能化仿真研究,工程热物理学报,2001,22(5):552-4
    [100]丁国良,张春路,窗式空调器实用化仿真技术与软件开发,中国工程热物理学会传热传质学学术会议论文集,2000,526
    [101]丁国良,张春路,詹涛,制冷压缩机热力计算的复合模糊模型,科学通报,2000,(6):660
    [102]张春路,基于模型的制冷空调装置智能仿真方法基础研究,[博士学位论文],上海:上海交通大学,1999
    [103]丁国良,小型制冷装置动态仿真与优化,[博士学位论文],上海:上海交通大学,1993
    [104]赵力,张天瑾,一种用于调控高温热泵负荷的方法及仿真,系统仿真学报,2006,18(6):1529-31
    [105]冯利辉,基于模糊理论的汽车空调智能控制,[硕士学位论文],吉林:吉林大学,2007
    [106]陈慧萍,芮延年,李军涛,基于模糊遗传算法变频空调智能控制方法的研究,苏州大学学报(工科版),2004,24(5):111-4
    [107]张伟捷,侯立泉,用变频调速器实现空调送风的混沌运行,全国暖通空调制冷1998年学术年会论文集,1998,699-702
    [108]张子慧,黄翔,张景春,制冷空调自动控制,科学出版社,1999,7
    [109]赵明旺,王杰,智能控制,武汉:华中科技大学出版社,2010
    [110] Zhao Y., Haibo Z., Xihong L., Characteristic Analysis of Water Heater-ChillerUnit Driven by Natural-Gas Engine, International Journal of Green Energy,2005,(2):79-89.
    [111]严刚峰,赵宪生,模糊控制器在延迟控制系统中的应用,自动化技术与应用,2003,22(10):22-4
    [112]朱瑞琪,制冷装置自动化,西安:西安交通大学出版社,2009
    [113]诸静,模糊控制原理与应用,北京:机械工业出版社,2005
    [114]何平,王鸿绪,模糊控制器的设计及应用,北京:科学出版社,1997
    [115] Procyk T. J., Mamdani E. H., Fuzzy Mapping and Control, IEEE Trans. OnSMC,1972,2(1):30-4.
    [116]张振良,张金岭,殷允强等,模糊集理论与方法,武汉:武汉理工大学出版社,2010
    [117]刘金琨,先进PID控制Matlab仿真(第二版),北京:电子工业出版社,2004
    [118]邹自明,变速积分PID在温度控制系统的应用,桂林航天工业高等专科学校学报,2007,4:9-11
    [119]张凯举,邵诚,朱晖,步进式加热炉炉温优化散发的改进与计算机仿真,系统仿真学报,2006,18(3):94-796
    [120]苗荣霞,谭宝成,陈忠孝等,基于PID和变频技术的空调循环水控制系统,科学技术与工程,2008,16(8):1671-819
    [121]李国勇,智能控制机器Matlab实现,北京:电子工业出版社,2005
    [122]易继锴,侯嫒彬,智能控制技术,北京:北京工业大学出版社,1999
    [123]孙增圻,智能控制理论与技术,北京:清华大学出版社,1997
    [124] Mamdani E.H., Assilian S., An experiment in linguistic synthesis with a fuzzylogic controller, International Journal of Man-Machine Studies,1975,7(1):1-13.
    [125] Mamdani E.H., Advances in the linguistic synthesis of fuzzy controllers,International Journal of Man-Machine Studies,1976,8(6):669-678.
    [126] King P. J., Mamdani E. H., The application of fuzzy control systems toindustrial processes, Automatica,1977,13(3):235-242.
    [127] Ahmed S. S., Majid S. M., Novia H., et al., Fuzzy logic based energy savingtechnique for a central air conditioning system, Energy,2007,32(7):1222~1234.
    [128]朱瑞琪,陈文勇,吴业正,制冷机供液量调节系统中蒸发器的动态特性,流体机械,1998,26(5):33-7
    [129] Alfieri E., Amstutz A., Guzzella L., Gain-Scheduled Model-Based FeedbackControl of the Air/Fuel Ratio in Diesel Engines, Control E Ngineering Practice,2009,17(12):1417-25.
    [130]李才永,非线性系统多模型分析及增益调度PID控制器设计:[硕士学位论文],保定:华北电力大学,2004
    [131]段锦良,马俊功,液压马达速度系统粉底乳增益调度控制,仪器仪表学报,2004,25(增刊):688-92
    [132]姚行健等,空气调节用制冷技术,北京:中国建筑工业出版社,1996
    [133]彭天好,变频泵控马达调速及补偿特性的研究,[博士学位论文],浙江:浙江大学,2003
    [134] Outtagarts A., Haberschll P., Lallemand M., The Transient Response of anEvaporator Fed through an Electronic Expa Nsion Valve, International Journalof Energy Research,1997,21(9):793-807.
    [135] Outtagarts A., Haberschll P., Lallemand M., Comportement Dynamique D’UnEvaporatcur Dc Machinc Frigorigiquc Soumis a Dcs Variations Dc Dcbit19ThInt, Congress Refrigeration,1995,56(6):505-11.
    [136]陈芝久,吴静怡,制冷装置自动化(第二版),北京:机械工业出版社,2010
    [137]李炎锋,暖通自动化控制,北京:北京工业大学出版社,2006
    [138] Ziegler J. G., Nichols N. B., Optimum Settings for Automatic Controllers,Trans. ASME,1942,64:759-68.
    [139] Cohen G. H., Coon A. G., Theoretical Consideration of Retarded Control,Trans. ASME,1953,75:827-34.
    [140]谢政,李建华,陈挚,非线性最优化理论与方法,北京:高等教育出版社,2010
    [141]曹卫华,郭正,最优化技术方法及Matlab的实现,北京:化学工业出版社,2005
    [142]陈宝林,最优化理论与算法(第二版),北京:清华大学出版社,2005
    [143]赵风治,尉继英,约束最优化计算方法,北京:科学出版社,1991
    [144]邓乃扬,无约束最优化计算方法,北京:科学出版社,1982
    [145]龚纯,王正林,精通Matlab最优化计算,北京:电子工业出版社,2009
    [146]苏金明,张莲花,刘波,Matlab工具箱应用,北京:电子工业出版社,2004
    [147]廖常初,S7-200PLC编程及应用,北京:机械工业出版社,2007
    [148] Simatic S7-200可编程控制器系统手册,2000,03
    [149]北京亚控自动化软件科技有限公司,组态王6.52使用手册,北京,2006
    [150]冯江涛,组态王与Matlab的DDE通讯设计,电力学报,2006,21(3):291-3
    [151]董新利,王景景,在控制系统中实现组态王与Matlab的DDE通讯吗,微计算机信息,2005,21(8):3-5
    [152]刘满华,任正云,邵惠鹤,监控平台软件与Matlab的DDE通信,微型电脑应用,2002,18(1):27-31
    [153]孙昆峰,Matlab和数据库的连接,电脑开发与应用,2001,4:10
    [154]王明涛,燃气机热泵自动控制系统的研究,[博士学位论文],天津:天津大学,2011
    [155]张运刚,宋小春,郭武强,从入门到精通——西门子S7-200PLC技术与应用,北京:北京邮电出版社,2007
    [156]宫淑贞,王冬青,徐世许,可编程控制原理及应用,北京:人民邮电出版社,2002
    [157]谢克明,夏路易,可编程控制器原理与程序设计,北京:电子工业出版社,2002
    [158]方贵银,蓄能空调技术,北京:机械工业出版社,2006
    [159]王正林,王胜开,陈国顺,Matab/Simulink与控制系统仿真,北京:电子工业出版社,2005
    [160]程曙霞,陈良,一种新型的直接日射表,太阳能学报,1994,15(4):401-5
    [161]张素宁,田胜元,太阳辐射逐时模型的建立,太阳能学报,1997,18(3):273-7
    [162] Kawashima M., Optimizing System Control with Load Prediction by NeuralNetwork for an Ice-Storage System, ASHRAE Transactions,1996,102(1):1169-78.
    [163] TingYao C., Athenitis A. K., Ambient Temperature and Solar RadiationPredietion for Predietive Control of HVAC Systems and a Methodology forOptimal Building Heating Dynamic Operation, ASHRAE Transactions,1996,102(1):26-36.
    [164]石磊,基于负荷预测在线修正的冰蓄冷空调系统优化运行研究,[博士学位论文],西安:西安建筑科技大学,2002
    [165] Kreider J. F., Jeff S., Haberl, Predicting Hourly Building Energy Use: TheGreat Energy Predictor Shootout-Overview and Discussion of Result,ASHRAE Transactions,1994,100(2):1104-18.
    [166] Mackay D. J., et al., Bayesian Nonlinear Modeling for the Energy PredictionCompetition, ASHRAE Transaction,1994,100(2):1053-62.
    [167] Ohlsson M, et al., Predicting Utility Loads with Artificial NeuralNetworks-Methods and Results From the Great Energy Predictor Shootout,ASHRAE Transaction,1994,100(2):1063-74.
    [168] Feuston B. P., Thrutell J. H., Generalized Nonlinear Regression with Ensembleof Neural Nets: The Great Energy Predictor Shoot, ASHRAE Transaction,1994,100(2):1075-80.
    [169] Stevenson W. J., Using Artificial Neural Nets to Predict Building EnergyParameters, ASHRAE Transactions,1994,100(2):1081-7.
    [170] Iijima M., et al., A Piecewise-Linear Regression On the ASHRAE Time SeriesData, ASHRAE Transactions,1994,100(2):1088-95.
    [171] Kawashima M., Artificial Neural Network Back Propagation Model withThree-Phase Annealing Developed for the Building Energy Predictor Shootout,ASHRAE Transactions,1994,100(2):1096-118.
    [172]曹双华,曹家枞,刘凤强,小波分析在太阳辐射神经网络预测中的应用研究,东华大学学报,2004,30(6):18-22
    [173]曹双华,曹家枞,太阳逐时总辐射混沌优化神经网络预测模型研究,太阳能学报,2006,27(2):164-9
    [174]成驰,陈正洪,张礼平,一种遗传神经网络逐时太阳辐射预测模型,第27届中国气象学会年会气候资源应用研究分会场论文集,2010,
    [175] Shapiro M. M., et al., Test Hut Validation of a Microcomputer PredictiveHVAC Control, ASHRAE Transactions,1988,94(1A):644-62.
    [176] Athienitis A. K., A Predictive Control Algorithm for Massive Buildings,ASHRAE Transactions,1988,94(2):1050-7.
    [177] ASHRAE, ASHRAE Handbook-Fundamentals, Chapter26, Table2,Atlanta:American Society of Heating, Refrigerating and Air-ConditioningEngineers, Inc.,1993.
    [178] MacArthur J. W., et al., On-Line Recursive Estimation for Load ProfilePrediction, ASHRAE Transaction,1989,95(1):621-8.
    [179]吴杰,冰蓄冷空调系统负荷预测模型和系统优化控制研究,[博士学位论文],浙江:浙江大学,2002
    [180]中原研究室,冰蓄熱シスラムの最適化に関する研究,日本:名古屋大学工学建築学科,1992
    [181] Fan Y. J., McDonald J. D., A Real-Time Implementation of Short-Term LoadForecasting for Distribution Power Systems, IEEE. Transactions on PowerSystems,1994,9(2):988-90.
    [182] Kawashima M., Dorgan C. E., Mitchell J. W., Hourly Thermal Load Predictionfor the Next24Hours by Arima, Ema, Lr, and an ArtificialNeural Network, ASHRAE Transactions,1995,101(1):186-200.
    [183]段艳艳,空调负荷预测的现状和发展,制冷与空调,2012,26(3):300-4
    [184]王勇领,预测计算方法,北京:科学出版社,1986
    [185] Rumelhart D. E., Hinton G. E., Williams R. J., Learning InternalRepresentations by Error Propagation in Parallel Distributed Processing, MA:MIT press,1986,(1):318-62.
    [186] Ferrano F. J., Wong K. V., Prediction of Thermal Storage Loads Using aNeural Network, ASHRAE Transactions,1990,96(2):723-6.
    [187]刘宪英,张华玲,神经网络法负荷预测与蓄冰空调系统的运行优化,重庆建筑大学学报,1999,21(6):86-90
    [188]刘朝贤,夏季新风“逐时”冷负荷计算方法的探讨,暖通空调,1999,(6):65-7
    [189]陈沛霖,曹叔维,郭建雄,空气调节负荷计算理论与方法,上海:同济大学出版社,1997
    [190]廖勇,基于负荷预测的冰蓄冷空调系统优化控制研究:[硕士学位论文],广州:广州工业大学,2008
    [191]佟威,阎秀英,介军,冰蓄冷系统优化控制策略及实施控制研究,暖通与设备,2007,35(10):38-44
    [192] Stethmann H. D., Optimal Control for Cool Storage, ASHRAE Transaections,1989,95(1):1189-93.
    [193]殷亮,刘道平,陈之航,蓄冷空调控制策略的选择及运行优化,能源研究与信息,1997,13(1):11-6
    [194] Yongjun S., Shengwei W., Gongsheng H., A Demand Limiting Strategy forMaximizing Monthly Cost Savings of Commercial Buildings, Energ Buildings,2010,42:2219-30.
    [195] Bejan A., Tsatsaronis G., Moran M., Thermal Design and Optimization, first ed.John Wiley&Sons, INC, Canada,1996.
    [196] Sayyed M. S., Takaaki F., Toshihiko N., Assessment of Energy Utilization inIran’S Industrial Sector Using Energy and Exergy Analysis Method, ApplTherm Eng,2012,36:472-81.
    [197] Dincer I., Rosen M. A., Exergy, Energy, Environment and SustainableDevelopment, first ed. Elsevier, Oxford, UK.,2007.
    [198]自然资源,走进天津,天津政务网,2009,http://www.tj.gov.cn/zjtj/zrdl/zrdl/zrnr/200709/t20070905_4100.htm
    [199] Dikici A., Akbulut A., Performance Characteristics and Energy–ExergyAnalysis of Solar-Assisted Heat Pump System, Build Environ,2008,43:1961-72.
    [200]朱明善,陈宏芳等,热力学分析,北京:高等教育出版社,1992
    [201]吴业正,韩宝琦,制冷原理及设备,西安:西安交通大学出版社,1997
    [202]彦启森,空气调节用制冷技术,北京:中国建筑工业出版社,1985
    [203] Yujin H., Jae-Keun L., Young-Man J., et al., Cooling Performance of a VerticalGround-Coupled Heat Pump System Installed in a School Building, RenewEnerg,2009,34(3):578-82.