高速铁路无碴轨道桩板结构路基设计理论及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩板结构路基(pile-plank embankment)是高速铁路无碴轨道一种新的路基结构形式,它由下部钢筋混凝土桩基、路基本体与上部钢筋混凝土承载板组成,承载板直接与轨道结构连接,桩、板固结与土路基共同组成一个承载结构体系。它综合了无碴轨道结构与桩基础的各自特点,充分利用桩-土、板-土之间的共同作用来满足无碴轨道的强度与沉降变形要求。本文结合铁道部科技计划发展项目“遂渝线无碴轨道线下工程关键技术试验研究”专题“遂渝线高速铁路桩板结构路基”,率先在国内开展了无碴轨道桩板结构路基的深入研究,概括总结了桩板结构路基的设计理论及计算方法,通过模型试验、现场测试和数值模拟等手段,取得了一些创新性的成果,主要得出如下几方面的结论。
     1.从一个独立的地基处理技术体系的观点,提出了桩板结构路基这一新型的无碴轨道路基结构形式,给出了桩板结构路基的定义及其适用场合。
     2.系统阐述桩板结构路基的设计理论及计算方法,总结了各种状态下的荷载组合及各构件设计的关键性技术要求,参考国外无碴轨道设计,根据目前国内设计经验,给出桩板结构路基设计控制指标,按照正交试验法对桩板结构进行优化,确定了合理的设计尺寸范围。
     3.通过离心模型试验,对桩板结构路基的沉降特性以及桩土相互作用进行了研究。研究结果表明,桩板结构路基施工完成放置5个月后路基面累积沉降基本达到稳定,采用钢板配重来模拟列车荷载,半年左右路基面沉降达到稳定;桩板结构路基的桩基属于长径比较大的挖孔灌注嵌岩桩,其荷载传递具有摩擦桩的特性。
     4.以遂渝高速铁路为背景,通过大比例动力模型试验,加载频率为5 Hz和10 Hz,各激振20万次,研究在列车动荷载长期作用下桩板结构路基动力相互作用机理及其沉降变形规律。试验结果表明,在激振荷载作用下桩间土、跨中板下土体的竖向动应力幅值沿深度近似呈“K”形分布,与土体相比,桩分担了大多数动力荷载,加载频率和激振位置对动应力有影响。桩基加深了路基的动力影响范围,改善了路基土体部分的受力状态;在荷载激振1万次后桩板结构路基沉降趋于稳定,工后沉降量满足铺设无碴轨道的沉降控制要求。
     5.通过遂渝线现场实测,对CRH_2动力分散型机车及货车在桩板结构路基试验段高速行车条件下的动力响应规律进行了研究,分析列车速度及轴重对路基动力响应的影响。分析表明:随车速的增大,加速度及动应力均有不同程度的增加,路基动力响应受车速影响较小,受轴重影响较大;动应力随路基深度的增加而衰减,并且随着深度的增加,动应力值和静态应力值越来越接近:桩底土动应力较大,是路基动力设计的关键环节之一。
     6.通过有限元法,基于弹塑性理论,建立桩板结构路基整体有限元模型,该模型充分地考虑了系统的空间、时变、耦合特性,通过非线性数值模拟,分析了桩板结构路基在不同车速、不同轴重及不同跨度下动力响应的变化规律,并与部分实测结果进行了对比分析,主要得到以下结论:
     (1)列车时速对路基动应力、动位移影响较小,而对路基加速度影响较大:车速对桩身动应力的影响较大区域基本在桩顶以下2/3桩长范围,对桩底几乎无影响。且随着深度的增大,车速对路基的动力影响程度在减弱。
     (2)路基动力响应随着轴重的增加近线性增大。
     (3)在5~10m跨度范围内,路基的动位移、动应力随着跨度的增大而增大,而加速度随着跨度的增大而减小。
     通过与动力模型试验和现场行车试验对比分析可知,动力模型试验、现场行车试验与数值分析得到的桩板结构路基的动力响应规律结论一致。证明了本文建立的计算模型具有较好的可靠性和实用性。
     7.对桩板结构路基的总沉降及工后沉降问题进行理论与试验研究,探讨桩板结构路基的沉降计算方法;结合遂渝线计算桩板结构的工后沉降并与长期沉降测试结果进行对比分析。分析结果表明,桩板结构有效的控制了路基的工后沉降,是一种有效的路基及地基加固工法。
Pile-plank embankment is a kind of new-type form of ballastless truck in high-speed railway, it is composed with the reinforced concrete plank at its upside and reinforced concrete piles, subgrade and subground at its downside, and plank directly connectes with the track structure, the piles fixedly link to plank and together with the subgrade compose a bearing load structure system. It synthesizes respective characteristic with the ballastless truck and the piles, fully depends on pile-soil and plank-soil interaction to satisfy with the intensity and the settlement requests. This paper unified Ministry science and technology development project 'study on the key technology under the line of ballestless truck in the Suining-chongqing high speed railway' ,with the topic pile-plank embankment in the Suining-chongqing high speed railway , domestically took the lead to carry out pile-plank embankment thorough research. The design and the calculation method of pile-plank embankment were summarized, through method of model test,field test and number simulation, received some innovation results,mainly obtained the following several conclusions.
     1. Pile-plank embankment is not only a kind of new-type form of ballastless truck, but also an independent subground processing technology system, pile-plank embankment definition and its suitable situation are given.
     2. The design theory and calculation method of pile-plank embankment are proposed, the crucial specification which under each kind of load combination condition and various component designs are summarized. Based on overseas ballaseless truck design, the design control target of pile-plank embankment is given, carried on the optimized design, the reasonable design size of pile-plank embankment is received.
     3. Through centrifugal model test of pile-plank embankment for ballastless truck, the settlement and pile-soil interaction of pile-plank embankment are studied. It is shown that the settlement of pile-plank embankment is completed when pile-plank embankment is laid for five months; By using the steel plate counterweight to simulate the train load, the settlement of ballastless truck is completed when it is used for seven months; and the pile of the structure is rock-socketed bored cast-in-place frictional pile whose diameter is small in proportion to its length.
     4. Based on Suining-chongqing high speed railway, the large scale dynamic model test is established, the loading frequency is 5Hz and 10Hz, and the loading time is 200000, receives the dynamic interaction and settlement change rules. Test results indicate that the amplitude of vertical dynamic stress is approximately " K" form to distribute with depth in soil between piles and soil under the middle-span plank, piles share most dynamic stress compared with soil, dynamic stress is affected by loading position and loading frequency. Pile structure expanded the depth of dynamic response of the subgrade and improve the stress of roadbed soil, the settlements of the pile-plank embankment remain constant after 10000 times of vibrant loading, post-construction settlements satisfy with the settlement control request to build ballastless truck in high-speed railway.
     5. Based on the field test in Suining-chongqing high-speed Railway, the dynamic responses of pile-plank embankment on which a disperse impetus locomotive CRH_2 and freight train with high speed is running are studied, changes the dynamic responses with the speed of train and the wheel load are analyzed. The analysis indicates that the acceleration and dynamic stress grow in varying degrees with the speed of train increased. The dynamic responses of subgrade are less affected by speed of train, but are significantly affected by the wheel load. The dynamic stresses attenuate with increasing the depth of subgrade, with increase in the depth, dynamic stresses are closer to the static stress. Dynamic stress at pile-bottom soil is biggish, and is one of the key dynamic design of subgrade.
     6. A tri-dimensional element model has been founded, which involves the ballastless track and pile-plank system. It can provide dynamic responses of the system with changes of wheel load, vehicle velocity, frequency, irregularities, and distribution of dynamic responses in the subgrade etc. by changed the wheel load, vehicle velocity, pile-span, the dynamic response of the system were studied systematically, some results were stated as followings:
     (1) Dynamic stress and displacement were less affected by vehicle velocity, but acceleration was significantly affected by vehicle velocity, and dynamic stress in the pile is mostly affectd at 2/3 pile length under the pile top, and is less affected at bottom of pile, dynamic response decreases with the vertical depth increase
     (2) The dynamic response increases along with the wheel load increase near linearity.
     (3) In the 5~10m span scope,the dynamic stress and displacement increase with the span increase,but acceleration reduced with the span increase.
     These studies show that the results are in good agreement with the datum from tests. It proves that the dynamic model is practical and reliable.
     7. Studied on the theory and the test of settlement and post-construction settlement of pile-plank embankment, discussed on the calculation settlement method of pile-plank embankment, calculated the post-construction settlement in Suining-chongqing high-speed railway and carries on the contrast analysis with the long test. The result indicated that pile-plank embankment was effective control post-construction settlements of roadbed, was one kind of effective roadbed and subground reinforcement measures.
引文
[1] Bstin R.The Development of non-Ballased Track in Germany[C]. Institution of Civil Engineers and Railway Civil Engineers meeting 3rd June 2003
    [2] Konstantinos Giannakos.Requirements of Tomorrow's Rail Transport Infrastucture[C].2nd Traffic & Transportation Conference. Sept.20 2004
    [3] Ramesh Pinjani. Ballastless Track[J]. Permanent Way Bulletin, 8(3), Dec.2001
    [4] UIC Infrastructure Commision Civil Engineering Surport Group. Feasibility study'ballastless track'[R]. Report-2002
    [5] 郭福安.客运专线无碴轨道结构[J].铁道标准设计.2006(4):7-10
    [6] Hargis, Louis L. A study of strain characteristics in a limestone gravel subjected to repetitive load. Texas ASM University, College Station,1963
    [7] Barksdale. Repeated loading text evaluation of base course materials. Georgin Institute of Technology, 1972, 101-121
    [8] Monismith. Permanent deformation characteristics of subgrade soils due to repeated loading. Transportation Research Research Record, 1975, 537-551.
    [9] Brown. Repeated load triaxial testing of silty clay[J]. Geotechnique, 1975, 2:95-114
    [10] Lashine D L. The displacements in an elastic half-space due to a moving concentrated normal loads[R]. NASA, TRR-238, 1996
    [11] U.S. Department of Transportation. A theory for track maintenance life prediction. 1979
    [12] George B, Rober V W, Allen W M. Permanent displacement of sand with cycliic loading[J]. J. Geotech. Engr. ASCE, 1984, 1606-1623
    [13] Li. Wheel-track dynamic interaction track substructure perspective[J]. Vehicle System Supplement, 1995, 24:183-196
    [14] 杨英豪,王杰贤.列车运行时振波在土中的传递[J].西安建筑科技大学学报,1995,27(3):329-334
    [15] 李军世,李克.高速铁路路基动力反应的有限元分析[J].铁道学报,1998,17(1):66-75
    [16] Jenkins H. The effect of track and vehicle parameter on wheel-rail vertical dynamic forces[J].Railway Engineering, 1974, 3 (1):21-27
    [17] Yoshihiko S.Theoretical analysis on vibration of ballasted track[J]. QR&RTRI,1988,29(1):41-46
    [18] 翟婉明,王其昌.轮轨动力分析模型研究[J].铁道学报,1994,16(1):64-71
    [19] 翟婉明,韩卫军,蔡成标,等.高速铁路板式轨道动力特征研究[J].铁道学报,1999,21(6):65-69
    [20] 梁波,蔡英,朱东生.车-路垂向耦合系统的动力分析[J].铁道学报,2004,22(5):65-71
    [21] 雷晓燕,陈水生.高速铁路轨道结构空间动力分析[J].铁道学报,2000,22(5):76-80
    [22] 毛利军,雷晓燕.车辆-轨道耦合系统随机振动分析[J].华东交通大学学报,2001,18(2):6-12
    [23] 蒋关鲁,詹永祥,陈睿,等.无碴轨道桩板结构路基设计理论及计算理论的探讨[C]//中国铁道学会.铁路客运专线技术交流会论文集.武汉:长江出版社,2005:398-401
    [24] 詹永祥,蒋关鲁,魏永幸.无碴轨道桩板结构路基的设计及计算[C]//中国铁道学会.第二届中国交通土建工程学术交流会论文集.成都:西南交通大学出版社,2006:723-729
    [25] 詹永祥,蒋关鲁,魏永幸.无碴轨道桩板结构路基在地震荷载下的动力响应分析[J].中国铁道科学,2006,27(6):22-26
    [26] 魏永幸,蒋关鲁.客运专线无碴轨道路基关键技术探讨 以遂渝线无碴轨道综合试验段为例[J].铁道工程学报.2006年第5期,39-44
    [27] 陈睿,蒋关鲁,魏永幸.无碴轨道桩板结构路基离心模型试验研究[J].铁道建筑技术,2006,Vol.146,No.1:1-4
    [28] 牛国辉,蒋关鲁,詹永祥,等.遂渝铁路无碴轨道桩板结构路基大比例动态模型试验研究[J].铁道建筑技术.2007,Vol.154,No.1:1-5
    [29] 詹永祥,蒋关鲁,牛国辉,等.高速铁路无碴轨道桩板结构路基模型试验研究[J].西南交通大学学报,2007,42(4):400-403
    [30] 詹永祥,蒋关鲁,牛国辉,等.桩板结构路基动态模型试验研究[J].岩土力学,已录用
    [31] 詹永祥,蒋关鲁,牛国辉,等.遂渝高速铁路桩板结构路基动力相互作用模型试验研究[J].铁道学报,已录用
    [32] 詹永祥,蒋关鲁.桩板结构路基沉降影响因素的有限元分析[J].路基工 程,2007,132(3):12-14
    [33] 王智猛,蒋关鲁,魏永幸.红层泥岩填料物理力学特性的试验研究[J].路基工程,2006,(5):86-88
    [34] 詹永祥,蒋关鲁,胡安华,等.遂渝线无碴轨道桩板结构路基动力响应现场试验研究[J].岩土力学,已录用
    [35] 蒋关鲁,詹永祥.遂渝线土质路基上无碴轨道桩-板结构设计及试验研究[C].第十届土力学及岩土工程学术会议论文集.2007
    [36] 铁建设[2004]157号.京沪高速铁路设计暂行规定[S].北京:中国铁道出版社,2005
    [37] 佐藤吉彦著,徐涌等译.新轨道力学[M].北京:中国铁道出版社,2001.
    [38] 王其昌,韩启孟编译.板式轨道设计与施工[M].成都:西南交通大学出版社,1999
    [39] DE-Consult.Engineering Design of CHI High Speed Railway DK+000-DK1019+600 Consulting Service:Consulting Report(final)[R], 2005,3
    [40] UIC Code 774-3.Track/Bridge Interaction:Recommendations for Calculations[S].International Union of Railways, 1999
    [41] JARTS.Beijing-Shanghai High-Speed Railways Consulting Services on the Engineering Design:Consulting Report(final,)[R].Japan Railway Technical Service.2005.3
    [42] 《铁道構造物等设计标準—同解说 省力轨道土構造物》日本铁道综合技术研究所编,丸善株式会社出版,平成11年11月
    [43] 《铁道耩造物等设计标準—同解说 基礎構造物—抗土压構造物》日本铁道総合技衍研究所编,丸善株式会社出版,平成9年3月
    [44] 黄克智等.板壳理论[M].北京:清华大学出版社,1987
    [45] R.Szilard著.陈太平等译.板的理论和分析[M].北京:中国铁道出版社,1984
    [46] 周谦.无梁板桥的纵横向弯曲及自振频率分析[J].西安公路学报,1989
    [47] 江成,范佳,王继军.高速铁路无碴轨道设计关键技术[J].中国铁道科学,2004,15(2):42-47
    [48] Lopez Pita A, Robuste F.The Madrid-Barcelona High-Speed Line[C]. Proceedings of the Institution of Civil Engineers, Transport 156, February 2003, Issue 1
    [49] Lopez Pita A.The Vertical Stiffness of the Track and the Deterioration of High-Speed Lines[R].Revista de Obras Publicas, 2001, No.3414
    [50] DB Netz AG.Requirements Catalog for the Consruction of the Permament Way(Anforderungskatalog zum Bau der Festen Fahrbahn)-4th Revised Edition[S].2002
    [51] 孙宏林,陈占.客运专线土质路基地段铺设无碴轨道调研及分析[J].铁道勘测与设计,2005(1):37-41
    [52] 铁建设函[2005]754号.客运专线无碴轨道铁路设计指南[S]
    [53] Tore Dahlberg.Railway Track Settlements-ALiterature Review[R].Report for the EU Project SUPERTRACK, LinkSping University, Sweden, July 2003
    [54] 杨广庆等.高速铁路路基与桥梁过渡段技术措施分析[J].铁道标准设计,1999,19(5):38-39
    [55] 杨广庆等.高速铁路路基与桥梁过渡段施工技术研究[J].铁道标准设计,2000,20(2):21-23
    [56] 张宏等.路桥过渡段结构型式设计与施工方法探讨[J].公路,2001,(9):49-53
    [57] Heelis M E.Resilient Modulus of SoR Soil Beneath High Speed Rail Line[C].TRB 1999
    [58] Vogel W.Earthwork Structures for New Railway Lines Slab Track-Principles and Suggestions for Realization[J].Railway Technical Review.1995,(1)
    [59] Vogel W.Erdbauwerke yon Neubaustrecken fur Feste Fahrbahn[J]. Eisenbahntechnische Rundschau, 1993, 42(9)
    [60] Wesoly J.Vermessungsleistungen zum Bau der Festen Fahrbahn[J]. Eisenbahningenieur, 1998, 49(12)
    [61] 铁科技函[2004]120号.遂渝线无碴轨道综合试验段无碴轨道设计技术条件[S].铁道科学研究院,2004,12
    [62] 朱维新.土工离心模型试验研究综述[J].岩土工程学报,1986,(2):82-95
    [63] Arulanandan K, Ananadrajah A, Abghari A. Centrifuge Modeling of Soil Liquefaction Susceptibility[J]. Proc. ofASCE. 1983, 109(3):281-300
    [64] Astaneh S M F, Ko H Y, Sture S. Assessment of earthquake effects on soil embankments[A].Centrifuge 94[C]. Singapore: Leung. Lee&Tan(eds), 1994: 221-226
    [65] Law H K, Ko H Y, Scavuzzo R. Simulation of o'Neill Forebay Dam, California, subjected to the 1989 Loma Prieta Earthquake[A].Centrifuge 94[C].Singapore: Leung, Lee&Tan(eds), 1994:245-250
    [66] Pilgrim N K, Zeng X. Slope stability with seepage in centrifuge model earthquakes[A]. Centrifuge 94[C].Singapore:Leung,Lee&Tan(eds), 1994: 233-238
    [67] Steedman R S, Zeng X. Centrifuge modeling of the effects of earthquake on free cantilever walls [A] .Centrifuge 91 [C].Colorado: Ko(ed.), 1994:425-430
    [68] 包承纲,饶锡保.土工离心模型的试验原理[J].长江科学院院报,1998
    [69] 陈文,施建勇,龚友平,等.饱和粘土中静压桩挤土效应的离心模型试验研究[J].河海大学学报,1999
    [70] 胡黎明.离心模型试验技术在环境岩土工程中的应用与展望[J].土壤与环境,2001,10(4):327-330
    [71] Randolph, M.F (1994). Design Methods for Pile Groups and Piled Rafts. SOA.Report. 13 ICSMFE, New Delhi, 5:61-82
    [72] 沈珠江.理论上力学[M].北京:中国水利水电出版社,2000
    [73] 周健,刘宁.离心模型试验技术应用的新进展[J].上海地质,2002,(1):52-56
    [74] 侯瑜京.高土石坝离心模型试验技术及位移反分析研究[D].中国水利水电科学研究院博士论文,北京:1996
    [75] 吕西林,陈跃庆,陈波,等.结构.地基动力相互作用体系振动台模拟试验研究[J].地震工程与工程振动,2000,20(4):30-36
    [76] 凌贤长、王臣、王成,等.液化场地桩-土-桥梁结构动力相互作用振动台试验模型相似设计方法[J].岩石力学与工程学报,2004,23(3):450-456
    [77] Yasuda Susumu. Large-scale shaking table tests on pile foundations in liquefied ground [A]. In: Proc of Earthquake Engineering [C]. New Zealand: [s.n.], 2000
    [78] 范立础,韦晓.桩-土-结构动力相互作用试验研究现状[A].见:大型复杂结构的关键科学问题研究文集[C].大连:大连理工大学,1999,111-116
    [79] 楼梦麟,王文剑,朱杉,等.土-结构体系振动台模拟试验中土层边界影响问题[J].地震工程与工程振动,2000,20(4):30-36
    [80] 林皋,朱彤,林蓓.结构动力模型试验的相似技巧[J].大连理工大学学报,2000,40(1):1-8
    [81] 张敏政.地震模拟试验中相似律应用的若干问题[J].地震工程与工程振 动,1997,17(2):52-58
    [82] Kagawa T, Minowa C, Mizuno H, et al. Shaking table testing on piles in liquefying sand[A]. In: Proc.ofFifth U.S. National Conf. on Earthq.Eng.[C]. Chicago: [s. n.],1994,4:107-116
    [83] Konagai K, Nogami T. Analog circuit to simulate dynamic soil-structure interaction in shaking table test[J]. Soil Dynamics and Earthquake Engineering, 1998, 17:279-287
    [84] Koseki J. Comparison of centrifuge and shaking table tests on liquefaction induced damage[A]. In : Proc. of First International Conference on Earthquake Geotechnical Engineering[C]. Rotterdam: A. A. Balkema, 1995, 2:729-734
    [85] Mori S. Applicability of liquefaction analysis for soil-structure system and verification by shaking table test (in Japanese)[A]. In: Proceedings of the Eighth Japan Earthquake Engineering Symposium[C]. Tokyo: [s. n.], 1990, 1:801-806
    [86] Tamura S, Suzuki Y, Tsuchiya T, et al. Dynamic response and failure mechanisms of a pile foundation during soil liquefaction by shaking table test with a large-scale laminar shear box[A]. In: Proc. of 12WCEE[C]. New Zealand: [s. n.], 2000, 167-175
    [87] Kagawa T, Minowa C, Abe A. EDUS project (earthquake damage to underground structures)[A]. In: Proc. of 12WCEE[C]. New Zealand: [s. n.], 2000, 384-392
    [88] Nomura S,Shamoto Y, Tokimatsu K. Soil-Pile-Structure Interaction[M]. Missouri: [s. n.],1991,743-750
    [89] Yasuda Susumu. Large-scale shaking table tests on pile foundations in liquefied ground[A]. In: Proc of Earthquake Engineering[C]. NewZealand: [s. n.], 2000, 187-192
    [90] 蒋关鲁,刘先锋,张建文,等.高速铁路液化土地基加固的振动台试验研究[J].西南交通大学学报,2006,41(2):190-196
    [91] 宰金珉,宰金璋.高层建筑基础分析与设计-土与结构物共同作用的理论和应用[M].中国建筑工业出版社,1993
    [92] 钱家欢,殷宗泽.土工原理与计算(第二版)[M],中国水利水电出版社,1996
    [93] 裴捷.上部结构与地基基础共同作用理论工程应用与理论研究[D].上海:同济大学博士学位论文,2001
    [94] 赵锡宏.上海高层建筑桩筏和桩箱基础设计理论[M].上海:同济大学出版社,1989
    [95] 董建国,赵锡宏.高层建筑地基基础共同作用理论与实践[M].同济大学出版社,1997
    [96] [加]A.P.S塞尔瓦杜雷著,范文田译.土与结构共同作用的弹性分析[M].铁道出版社,1984
    [97] 杨灿文,龚亚丽.列车通过时路基的动应力和振动[J].土木工程学报,1993,9(2):49-57
    [98] 王炳龙,余绍锋,周顺华,等.提速状态下路基动应力测试分析[J].铁道学报,2000,22(增):79-81
    [99] 王炳龙,周文杰,周顺华,等.土工固格网改善基床上的动应力分析[J].铁道学报,1998,20(5):103-108
    [100] 孙常新,梁波,杨泉.秦沈客运专线路基动应力响应分析[J].兰州铁道学院学报(自然科学版),2003,22(4):110-112
    [101] 梁波.秦沈客运专线综合试验科技攻关项目测试分报告[R].兰州:兰州交通大学,2003
    [102] 陈雪华,律文田,王永和.高速铁路路桥过渡段路基动响应特性研究[J].振动与冲击,2006,25(3):95-98
    [103] 张千里,韩自力,吕宾林,等.不同基床表层结构及路基轨道动态试验研究[R].北京:铁道科学研究院,2003
    [104] 韩自力,张千里.既有线提速路基动应力分析[J].中国铁道科学,2005,26(5):1-5
    [105] 杨灿文,周胜平,何连生,等.铁路路基土动力性质[A].中国土木工程学会编.第五届土力学及基础工程学术会议论文集[C].北京:中国建筑工业出版社,1990,304-307
    [106] 江成,林之珉.高速铁路无碴轨道结构的试验研究.中国铁路,2000年第7期:22-24
    [107] 梁波.高速铁路路基的动力特性及土工合成材料的应用研究[D].西南交通大学博士论文.1998
    [108] 翟婉明.车辆一轨道耦合动力学[M].北京:中国铁道出版社,1997
    [109] 李成辉.轨道结构振动理论及应用研究[D],西南交通大学博士学位论 文.1996
    [110] 王平.道岔区轮轨系统动力学的研究[D].西南交通大学博士学位论文.1997
    [111] Bettess P. More on infinite element[J]. Int.J.Numer.Mech.Eng. 1980,15: 613-1626
    [112] Beer G, Meek J L. Infinit domain element[J]. Int.J.Numer.Mech.Eng., 1981.17:43-52
    [113] 张建辉,邓安福,何水源.三维无限元的映射函数[J].岩石力学与工程学报,2000,19(1):97-100
    [114] 黄雨,Stephen F Brown,Glenn R Mcdowell.循环荷载下柔性路面路基变形的动力耦合分析[J].岩土工程学报,2001,23(6):757-762
    [115] J.P瓦尔夫[瑞士]著,吴世明等译.土-结构动力相互作用[M].北京:地震出版社,1989
    [116] 刘学毅.钢轨波形磨耗成因研究[D].西南交通大学博士学位论文.1996
    [117] Nasim M A, et al.The Behavior of a Rigid Pavement Under Moving Dynamic Loads.Transportation Research RECORD No.1307, Transportation Research Board, Washington,D.C. 1991:129-135
    [118] Seed H B, Idriss I M.Soil model and damping factors for dynamic response analyses[A]. University of California Earthquake Engineering Research Center, 1970
    [119] Towhata I. Ishihara K. Modeling soils behavior under principal stress axes rotation [A]. 5th Int. Conf.Numerical Methods in Geomechanics.Nagoya, 1985
    [120] Kawakami F and Ogawa S. Strength and Deformation of Compacted Soil Subjected to Repeated Stress Applications. In: Proc.6th ICSMFE, 1965:264-267
    [121] Yasuhara K.Approximate Prediction of Soil Deformation Under Drained-Repeated Loading. Soils and Foundations, 1983,23(2): 13-25
    [122] Gillesple T D, Karamihas S M, Sayers M W, etal. The University of Michigan Transportation Research Institute Ann Arbor, Michigan and D.Cebon Cambridge University United Kingdom. Effects of Heavy-Vehicle Characteristics on Pavement Responsse and Performance. NCHRP Report 353, National academy press Washington,D.C. 1993: 1-126
    [123] Boussinesq J, Application des Potential, Paris, 1885
    [124] Westergaard H M S, Theory of Elasticity and Plasticity, 1952
    [125] 黄克智,黄永刚.固体本构关系[M].北京:清华大学出版社,1999
    [126] 候永峰,张航,周建,龚晓南.循环荷载作用下水泥复合土变形性状试验研究[J].岩土工程学报,2001,23(3):287-291
    [127] 陈惠发,A.F.萨里普.著,余天庆,王勋文,刘再华编译.弹性与塑性力学[M].中国建筑工业出版社,2004
    [128] 陈国兴,谢君斐,张克绪.土的动模量和阻尼比的经验估计[J].地震工程与工程振动,1995,15(1):73-84
    [129] 陈波.土-桩基-结构动力相互作用体系的模拟及分析[D].同济大学博士学位论文,2002
    [130] 吴军帅,姜朴.土与混凝土接触面的动力剪切特性[J].岩土工程学报,1992,14(2):61-66
    [131] 高速铁路深厚软弱地基上桥梁基础合理形式及设计研究报告之三:室内试验报告[R].成都:西南交通大学,1998
    [132] 许宏发,王斌,戴小平,等.桩土接触面力学参数取值研究[J].河海大学学报,2001,29(增刊):54-56
    [133] 黄昌利,谢肖礼.桩与土相互作用非线性有限元分析[J].广西大学学报(自然科学版),2002,27(2):175-178
    [134] 刘学增,朱合华.上海典型土层与混凝土接触特性的试验研究[J].同济大学学报,2004,32(5):601-606
    [135] 王建华,冯士伦.桩土相互作用的振动台试验研究[J].岩土工程学报,2004,26(5):616-618
    [136] 袁晓铭,孙锐,孙静,等.常规土类动剪切模量和阻尼比试验研究[J].地震工程与工程振动,2000,20(4):133-139
    [137] Hardin B.O., Drnevich V P.. Shear modulus and damping in soils: design equations and curves. Journal Soil Mechanical Engineering Division ASCE,1972, 107(10): 1327-1343
    [138] 卿启湘.高速铁路无碴轨道-软岩路基系统动力特性研究[D].中南大学博士学位论文.2005
    [139] 律文田.静动荷载作用下铁路桥梁桩基的动力特性研究[D].中南大学博士学位论文.2005
    [140] 王杰贤.动力地基与基础[M].北京:科学出版社,2001
    [141] 伊德里斯I.M..地震工程和土动力问题译文集.北京:地震出版社,1985:111-202
    [142] Potyondy J.G.. Skin friction between various and construction Geoetchnique, 1961, 11 (4): 339-353
    [143] Acar Y. B., Durgunoglu H. T., Tumay M. T.. Interface properties of sand.Journal of Geotechnical Engineering, Divison ASCE, 1982, 108(4):648-654
    [144] Desai C.S., Drumm E.C., Zaman M. M.. Cyclic testing and modeling of interface. Joumal of Geotechnical Engineering. ASCE, 1985, 111(6): 793-815
    [145] 沈聚敏,周锡元,高小旺等.地震工程学[M].北京:中国建筑工业出版社,2000
    [146] 苏谦.高速铁路路基空间时变耦合系统动力分析模型及其应用研究[D].西南交通大学博士学位论文,2001
    [147] Jenkins H. The effect of track and vehicle parameter on wheel-rail vertical dynamic forces[J].Railway Engineering, 1974, 3 (1):21-27
    [148] 殷宗泽.土体固结和沉降[M].南京:河海大学出版社,1997
    [149] 陈仁朋,许锋等.软土地基上刚性桩-路堤共同作用分析[J].中国公路学报,2005
    [150] 《实用桩基工程手册》编审委员会,实用桩基工程手册,中国建筑工业出版社,1999
    [151] 史佩栋主编.《实用桩基工程手册》.中国建筑工业出版社,1995:47-243
    [152] 杨广庆,刘树山,刘田明.高速铁路路基设计与施工[M].北京:中国铁道出版,2001:1-2,33-39
    [153] 郝瀛.铁道工程[M].北京:中国铁道出版社,2002:37-38
    [154] Monley G J, Wu T H. Tensile-reinforcement effects on bridge-approach settlement[J]. Journal of Geotechnical engineering, 1993, 119(4): 749-762
    [155] Horikoshi K, Randolph MF.Centrifuge modeling of piled raft foundation on clay [J].Geotechnique, 1996, 46(4):741-752
    [156] Horikoshi K, Randolph MF.On the definition of raft-soil stiffness ratio [J].Geotechnique, 1997, 47(5): 1055-1061
    [157] Horikoshi K, Randolph MF.A Contribution to optimum design of piled rafts [J].Geotechnique, 1998, 48(3): 301-317
    [158] F.M.clemente(1981), Downdrag on Bitumen Coated Piles in a Warm Climate, Proc, 10th ICSMFE,Vol.Ⅱ,PP677-679
    [159] G.Auvinet and J.Hanell(1981), Negative Skin Friction on piles in mexico City Clay.Prpc, 10th ICSMFE, Vol.Ⅱ,PP599-604
    [160] Poulos HG. Pile raft foundations: design and applicariond [J].Geotechnique, 2001,51(2):95-113
    [161] Cooke RW.Piled raft foundation on stiff clays-a contribution to design philosophy [J].Geotechnique, 1986, 36(2):169-203
    [162] Kim KN, Lee SH, Kim KS, et al. Optimal pile arramgement for minimizing differemtial settlements in piled raft foundation [J]. Computers and Georechnics, 2001, 28(2):235-253
    [163] 阳吉宝.超长桩的荷载传递机理[J].岩土工程学报,1998,20(6):108-112
    [164] 池跃君.大自径超长灌注桩承载性状的试验研究[J].工业建筑,2000,30(8):26-29
    [165] 龚晓南.复合地基理论与工程应用[M].北京:中国建筑工业出版社,2002
    [166] 黄运飞.复合桩基能挑战复合地基吗[J].岩土工程界,1999,(10):7-9
    [167] 叶观宝.地基加固新技术[M].上海:同济大学出版社(第二版),2002
    [168] 宰金珉.桩土明确分担荷载的复合桩基及其设计方法[J].建筑结构学报,1995,16(4):66-74
    [169] 黄文峰.复合地基中桩与基土的相互作用[D].清华大学博士学位论文,1999
    [170] 建筑地基处理技术规范(JGJ79-2002).北京:中国建筑工业出版社,2002
    [171] 沈珠江.软土工程特性和软土地基设计[J].岩土工程学报,1998,20(1):100-111
    [172] 日本铁道建设工团.强化路盘の设计にっぃて[A].日本高速铁路路基设计及施工控制技术参考资料[C].日本:日本铁道建设工团,1998:280-291
    [173] 陈耀荣,孙明漳,邹崇富,等译.日本国有铁道.土工结构物设计标准和解说[M].北京:中国铁道出版社,1982:225-230