纳米分辨率定位检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平面间平行度的测量方法在光学检测和加工中有着广泛的需求。激光干涉测量技术用于平行度的检测已经发展地非常成熟,具有测量精度高和非接触性等优点,能够很好地满足大多情况下对两平面平行度的检测要求。但是,在一些需要高精度平行度检测的场合,如近场纳米光刻中,对平面间平行度的检测精度要求高达微弧度量级,并且平行度的精度能否达到将直接关系到纳米光刻的加工精度。在诸如此类的应用中。常用的激光干涉测量技术由于受到视场内条纹读数的限制,无法达到微弧度的测量精度。针对该问题,本论文引入移相干涉测量方法来解决这个难题。移相干涉技术的基本原理是在干涉仪的两相干光之间引入有序的位相差,当参考光光强或位相发生变化时,干涉条纹的位置也做出相应的移动,而通过条纹位置的移动量的变化,则可以反演出平面间平行度的变化。本文主要建立和发展了移相干涉技术精密测量平面间平行度的方法,使1mm口径的平面间平行度的检测精度达到几个微弧度的量级,解决了现有方法无法达到纳米光刻中对平行度检测的高精度需求;同时,发展和优化了相移反演算法,以最大限度地消除干涉仪的测量误差,提高条纹分析的精确度,达到消除移相干涉测试方法的总体误差,使得测量结果更加地可靠。
     一直以来,由于光学衍射极限的存在,使得光学干涉方法在检测两物体间绝对间距精度无法达到纳米尺度,从而极大地限制了该检测方法的应用范围。为了将光学干涉方法在间距方面的检测精度提高到纳米尺度,许多科研工作者做出了大量的工作,但是目前尽管检测精度可以达到纳米量级,但检测范围却一般都被限定在微米量级。表面等离子共振(SPR)传感器具有极高的敏感度,其在临界角附近对于角度变化的敏感度可达1200,因此可以被用来实现角度和距离的高精度检测。一些学者提出的方法中,利用SPR角度传感器可以实现纳米精度的间距检测,其检测最小间距可以达到126nm。但是对于小于100nm以下的间距检测,这些方法将不能适用。纳米光刻技术中往往要求实现100nm以下的间距的精确定位,其对准的精度直接关系到纳米器件的加工精度,因此,纳米尺度的检测具有十分重要的现实意义和实用价值。我们提出一种基于物理光学原理结合SPR角度传感器来检测纳米间距的方法。该方法利用物理光学的原理,当反射镜与透镜后焦面没有重合而存在一极小位移时,反射光束会产生一个角度偏离,并且其偏移量与反射镜的离焦位移有一定的比例关系;同时在满足SPR的情况下,光束P分量和S分量的位相变化与入射光角度的变化成一定的比例关系。因此,通过检测位相变化可以实现纳米间距的测量。本文提出的纳米精度定位检测方法,利用SPR传感器的高敏感度,将纳米间距的检测分辨率提高到了1nm的精度,而最小检测距离达到了10nm以下。本文所发展和建立的纳米精度定位检测方法,为后续的近场纳米光刻技术在基片和模板的高精度定位和检测方面打下了良好的技术积累。
The measurement of parallel between two flat planes has wide application inoptical testing and manufacture. The conventional laser interference measuringtechnique is well developed to detect the parallel between two planes, and it'saccuracy is as high as0.3mrad. In general, the laser interefering method could meetmost applications with the advantages of high precision and non-contacting. However,with the trend to develop optoelectronic devices to be more miniaturizable and highlyintegrated, the aligent between two planes needs to more accurate. Such as innanolithography, the aligent accuracy between two planes is required to be as high as1m rad. The precision of the aligent between two planes will directly affect theaccuracy of the nanolithography. However, for laser interfering method, the precisionis limited by the intereference pattern in field of view. To overcome this limitation, anew method, i.e. the phase-shifting interferential method, is proposed for themeasurement of parallel between two planes. The basic principle of the proposedmethod is to introduce an ordered displacement between two coherent light beams inthe interferometer. The position of the interference pattern could be changedaccordingly, while the intensity or phase of the reference light beam is changed. Thenew method could solve the problem of perfect aligent in nanometer photolithography.And make sure the precision of aligent could reach microradian scale when the size oftested planes is1mm. In addition, the algorithm of fringe analysis and the method of eliminating measurement error are studied to eliminate the measuring error and obtainmore reliable results.
     Optical diffraction limit is well-known to limit the resolution of the opticalmeasuring methods based on laser intereference. Up to now, the optical interferencemethod is still the regular method to measure the absolute distance between twoisolated planes. The diffraction limit still limits the applications of opticalmeasurements. A number of workers made further efforts to extend the opticalinterference method to the nanometer-scale gap measurements. However, the methodcan only work on the range of micron magnitude, and the resolution can reach ananometer scale. The surface plasmon resonance (SPR) sensor has high sensitivity,and the sensiticity for angle change around critical angle can reanch a value of1200.It can be used for detecting angular and displacement with high precision. Somemethod had been proposed to detect the nanometer spacing, and the measuredsmallest air gap is about126nm. However, those methods can not work when the airgap is smaller than100nm. In nanolithography, the range of nanogap which can bedetected and adjusted is normally smaller than100nm. The precision of the nanogapdetecting between two planes will directly determine the accuracy of thenanolithography. Hence, the detecting of nanometer sacle has important practicalsignificance and practical value. In this thesis, we extended the resolution of thenanogap measuring method down to nanometer scale, i.e.<100nm. In physical optics,if there is a small displacement between the reflecting plane and the focused plane ofthe objective lens, the reflected beam will have an angle deviation, which isproportional to this displacement. In addition, under SPR condition, the phasedifference between p-and s-polarizations of the beam is proportional to the anglechange of the incident beam as well. Therefore, the nanometer spacing can bemeasured by detecting the phase change between p-and s-polarizations of the beam.The resolution of this method can be as small as1nm due to the high sensitivity ofSPR sensor. We measured the phase difference instead of the reflectivity, and thenumerical simulation shows that the smallest gap can be obtained is smaller than10 nm. The nanoscale positioning detecting method developed in this thesis will be greathelpful for the following near-filed nanolithography.
引文
[1]白春礼.中国纳米科技研究的现状及思考[J].物理,2002,31(2):65
    [2]朱彤.纳米:物质世界的新大陆——访中国科学院纳米科学项目首席科学家白春礼院士[J].科学世界,2001(2):34
    [3]胡琳珍.浅谈纳米科技的发展与应用前景[J].科协论坛(下半月).2008(10)
    [4]沈能珏,孙同年,余声明等.现代电子材料技术[M].北京:国防工业出版社,2000:214-217
    [5]杨国光.近代光学测试技术[M].杭州:浙江大学出版社,1997:575-597
    [6] M. D. Levenson, N. S. Viswanathan, and R. A. Simpson. Improving resolution inphotolithography with a phase-shifting mask [J]. IEEE Trans. Electron. Dev.1982,29(12):1828-1836
    [7] F. Hiroshi, T. Tsuneo, O. Shinji. Spatial filtering for depth of focus and resolutionenhancement in optical lithography [J]. J.Vac.Sci.Technol.B,1991,9(6):3113
    [8] S. R. J. Brueck, Chen XL. Spatial frequency analysis of optical lithographyresolution enhancement techniques [J]. Proc. SPIE,1999,3679:715-725
    [9] R. von Bünau, G. Owen, and R. F. W. Pease. Depth of focus enhancement inoptical lithography [J]. J. Vac. Sci. Technol. B,1992,10:3047-3054
    [10] T. Horiuchi, Y. Takeuchi, MatsuoSet al. Resolution enhancement by obliqueillumination optical lithography using a pupil filter [J]. IEEE IEDM,1993,93:657
    [11]杜惊雷.光学光刻中的邻近效应研究[D]:[博士学位论文].成都:四川大学,1999
    [12] S. R. J. Brueck. Imaging interferometric lithography [J]. Microlithography World,1998, Winter:2-10
    [13] U. Drodofsky, J. Stuhler, et al. Nanometerscale Lithography with ChromiumAtoms using Light Forces [J]. Microelectronic Engineering,1997,35(4):285
    [14] J. J. Mc Celland, W. R. Anderson, R. J. Celotta. Nanofabrication via Atom Opticswith Chromium [J]. SPIE,1997,2995:90
    [15]罗先刚.原子力光刻技术探索研究[D]:[博士学位论文].成都:中国科学院光电技术研究所,2001
    [16] W. D. Phillips, H. Metcalf. Laser deceleration of an atomic beam [J]. Phys. Rev.Lett.,1982,48(9):596-599
    [17] S. Chu, L. Hollberg, J. E. Bjorkholm et al. Three-dimensional viscousconfinement and cooling of atoms by resonance radiation pressure [J]. Phys. Rev.Lett.,1985,55(1):48
    [18] C. Monroe, W. Swann, H. Robinson et al. Very cold trapped atoms ina vapor cell[J]. Phys.Rev.Lett.,1990,65(13):1571
    [19] J. H. Gan, Y. M. Li, X. Z. Chen et al. Magneto-Optical Trap of Cesium Atoms [J].Phys.Lett.,1996,13(11):821
    [20]姚汉民,胡松,邢廷文.光学投影曝光微纳加工技术[M].北京:北京工业大学出版社,2006:83-84
    [21]马平,唐小萍,杨春利.用于MEMS加工的双面深度光刻机对准系统设计[J].电子工业专用设备,2003,32(2):36-39
    [22]梁友生,曹益平,邢廷文.光刻技术进展[J].电子工业专业设备,2004,33(10):30-34
    [23]王权岱,段玉岗,卢秉恒,等. MEMS多层压印工艺中的视频图像对准系统[J].光电工程,2005,32(10):84-88
    [24]严伟,王肇志.底面对准曝光机对准系统设计[J].微纳电子技术,2002,39(10):40-44
    [25]徐振明,贾惠波,齐国生,等.自动投影光刻中的暗场对准[J].清华大学学报,1994,34(5):39-47
    [26] T. MiyatakeI, M. Hirose, T. Shoki, et al. Nanometer scattered-light aligent systemusing SiC X-ray masks with low optical transparency [J]. Journal of Vacuum Science&Technology:B,1998,16(6):3471-3475
    [27] T. MiyatakeI, M. Hirose, T. Shoki, et al. Evaluation of aligent accuracy inprocessed wafers and SiC masks on a scattered-light aligent system for X-ray aligners[J]. Journal of Vacuum Science&Technology: B,1997,15(6):2471-2475
    [28] T. MiyatakeI, T. Li, S. Hirose, et al. Compact synchrotron radiation lithographysystem for70device manufacturing [J]. Journal of Vacuum Science&Technology:B,2001,19(6):2444-2447
    [29] M. Feldman, L. Liu, S. Phani, et al. Performance characteristics of a dual focusX-ray aligent microscope [J]. Journal of Vacuum Science&Technology: B,1995,13(6):2664-2668
    [30] L. Jiang, M. Feldman.Accurate aligent technique for nanoimprint lithography inmetrology, inspection, and process control for microlithogrtaphy XIX[C].Proceedingsof the Society of Photo-Optical Instrumentation Engineers (SPIE).2005,5752:429-437
    [31] B. Fay, J. Trotel, A. Frichet. Optical aligent system for submicron X-raylithography [J]. Journal of Vacuum Science&Technology,1979,16(6):1954-1958
    [32] G. Chen, F. Cerrina, Z. Wu. X-ray lithography two-state aligent system [J].Journal of Vacuum Science&Technology: B,1989,7(6):1995-1999
    [33] G. Chen, J Wallace, R. Nachman, et al. Cxrl aligneran experimentalX-ray-lithography system for quarter-micron feature devices [J]. Journal of VacuumScience&Technology: B,1992,10(6):3229-3234
    [34] H. Zhou, M. Feldman, R. Bass. Subnanometer aligent system for X-raylithography [J]. Journal of Vacuum Science&Technology: B,1994,12(6):3261-3264
    [35] D. C. Flanders, H. I. Smith, S. Austin. A new interferometric aligent technique [J].Applied Physics Letters,1977,31(7):426-428
    [36] M. Nelson, J. L. Kreuzer, G. Gallatin Design and test of a through-the-maskaligent sensor for a vertical stage X-ray aligner [J]. Journal of Vacuum Science&Technology: B,1994,12(6):3251-3255
    [37] J. Itoh, T. Kanayama, N Atoda, et al.An aligent system for synchrotron radiationX-ray lithography [J]. Journal of Vacuum Science&Technology: B,1988,6(1):409-412
    [38] M. Suzuki, A. Une.An optical-heterodyne aligent technique for quarter-micronX-ray lithography [J]. Journal of Vacuum Science&Technology: B,1989,7(6):1971-1976
    [39] M. Tabata, T. Tojo. High-precision interferometric aligent using checker grating[J]. Journal of Vacuum Science&Technology: B,1989,7(6):1980-1983.
    [40] L. Raleigh. On the manufacture and theory of diffraction gratings [J]. Phil Mag,1874,47(310-311):81-93,193-205
    [41] M. C. King, D. H. Berry.Photolithographic mask aligent using moire techniques[J]. Journal of Vacuum Science&Techno-logy: B,1972,11(6):2455-2458
    [42] J. G. Goodberlet, B. L. Dunn. Deep-ultraviolet contact photolithography [J].Journal of Vacuum Science&Technology: B,2000,53(6):99-105
    [43] A. Moel, E. E. Moon, R. D. Frankel, et al. Novel on-axis interferometric aligentmethod with sub-10precision [J]. Journal of Vacuum Science&Technology: B,1993,11(6):2191-2194
    [44] N. H. Li, W. Wu, S. Y. Chou. Sub-20-aligent in nanoimprint lithography usingMoire fringe [J]. Nano Letters,2006,6(11):2626-2629
    [45] M. Hlbergerm, I. Bergmair, Schwingerw, et al. A Moire method for high accuracyaligent in nanoimprint lithography [J]. Microelectronic Engineering,2007,84(2007):925-927
    [46] K. Hara, S. Kimura. An aligent technique using diffracted moire signals [J].Journal of Vacuum Science&Technology: B,1989,7(6):1977-1979
    [47] Y. Uchida, S. Hattori, T. Nomura. An automatic mask aligent technique usingmoire interference [J]. Journal of Vacuum Science&Technology: B,1987,5(1):244-247
    [48] J. H. Bruning, D. R. Herriott, et al. Digital wavefront measuring interferometerfor testing optical surfaces and lenses [J]. Applied optics,1974,13(11):2693-2703
    [49] K. Pramod. Rastogi. Optical Measurement Techniques And Application[M].Boston: Artech House,1997
    [50]殷纯永.现代干涉计量技术[M].天津:天津大学出版社,1999
    [51]郁道银,谈恒英.工程光学[M].北京:机械工业出版社,2005
    [52]杨国光等.近代光学测试技术[M].第二版杭州:浙江大学出版社,2001
    [53] G. Lai and T. Yatagai. Generalized phase-shifting interferometry [J]. Opt. Soc.Am. A,1991,8:822-826
    [54]朱日宏,陈磊,王青,高志山,何勇.移相干涉测量术及其应用[J].应用光学,2006,27(2):85-88
    [55] N. Ohyama, S. Kinoshita, A. Cornejo-Rodriguez, T. Honda, and J. Tsujiuchi.Accuracy of phase determination with unequal reference shift,” J. Opt. Soc. Am. A,1988,5:2019-2025
    [56] C. J. Morgan. Least-squares estimation in phase-measurement interfere-ometry[J]. Opt. Lett.1982,7:368-370
    [57] K. Hibino, B. F. Oreb, D. I. Farrant, and K. G. Larkin. Phase-shifting algorithmsfor nonlinear and spatially nonuniformphase shifts [J]. Opt. Soc. Am. A,1997,14:918-930.
    [58] Y. Surrel. Design of algorithms for phase measurement by the use of phasestepping [J]. Appl. Opt.1996,35:51060
    [59] Y. Surrel. Phase-shifting algorithms for nonlinear and spatially nonuniform phaseshifts: comment [J]. Opt. Soc. Am. A,1998,15:1227-1233
    [60] Y. Surrel. Fringe analysis [C]. in Photomechanics, Topics in Applied Physics, Vol.77, P. K. Rastogi, ed.(Springer-Verlag,2000:55-102
    [61] P. Gao, B. Yao, N. Lindlein, K. Mantel, I. Harder, and E. Geist. Phase-shiftextraction for generalized phase-shifting interferometry [J]. Opt. Lett.2009,34:3553-3555
    [62] L. Z. Cai, Q. Liu, and X. L. Yang. Generalized phase-shifting interferometry witharbitrary unknown phase steps for diffraction objects [J]. Opt. Lett.2004,29:183-185(2004).
    [63] X. F. Xu, L. Z. Cai, Y. R. Wang, et al. Simple direct extraction of unknown phaseshift and wavefront reconstruction in generalized phase-shifting interferometry:algorithm and experiments [J]. Opt. Lett.2008,33:776-778
    [64] A. Téllez-Qui ones and D. Malacara-Doblado. Inhomogeneous phase shifting: analgorithm for non-constant phase displacements [J]. Appl. Opt.,2010,49:6224-6231
    [65] K. Freischlad and C. L. Koliopoulos. Fourier description of digitalphase-measuring interferometry [J]. J. Opt. Soc. Am. A,1990,7:542-551
    [66] A. Téllez-Qui ones, D. Malacara-Doblado, and J. García-Márquez, Basic Fourierproperties for generalized phase shifting and some interesting detuning insensitivealgorithms [J]. Appl. Opt.,2010,50:4083-4090
    [67] Peter de Groot. Measurement of transparent plates with wavelength-tunedPhase-shifting interferometry [J]. APPlied Optics,2000,39(16):2658-2663
    [68] Y. Ishii, R. Onoder. Phase-shifting interferometer for distance measurement usinga Tunable external-cavity laser diode [J]. SPIE,1999,3749:436-437
    [69] P. Hariharan, B. F. Oreb, and T. Eyui. Digital phase-shifting interferometry: asimple error-compensating phase calculation algorithm [J]. Appl. Opt.,1987,26:2504-2506
    [70] J. Schmit and K. Creath. Extended averaging technique for derivation oferror-compensating algorithms in phase-shifting interferometry [J]. Appl. Opt.,1995,34:3610-3619
    [71] M. Servín, D. Malacara, J. L. Marroquín, and F. J. Cuevas. Complex linear filtersfor phase shifting with very low detuning sensitivity [J]. J. Mod. Opt.,1997,44:1269-1278
    [72] K. G. Larkin and B. F. Oreb. Design and assessment of symmetricalphase-shifting algorithms [J]. J. Opt. Soc. Am. A,1992,9:1740-1748
    [73] M. Miranda and B. V. Dorrío. Fourier analysis of two-stage phase-shiftingalgorithms [J]. J.Opt. Soc. Am. A,2010,27:276-285
    [74] A. Patil, R. Langoju, and P. Rastogi. Statistical study and experimentalverification of high-resolution methods in phase-shifting interferometry [J]. J. Opt.Soc. Am. A,2007,24:794-813
    [75] R. Langoju, A. Patil, and P. Rastogi. Statistical study of generalized nonlinearphase step estimation methods in phase-shifting interferometry [J]. Appl. Opt.,2007,46:8007-8014
    [76] D. Malacara, M. Servín, and Z. Malacara, Interferogram Analysis for OpticalTesting [M]. CRC Press,2005
    [77] S. Nakamura, Numerical Analysis and Graphic Visualization with MATLAB [M].Prentice-Hall,1995
    [78] T. M. Apostol, Mathematical Analysis [M]. Addison-Wesley,1974
    [79] M. P. Kothiyal, C. Delisle. Polarization component phase shifters in phaseshifting interferometry: error analysis.[J]. Opt.Aeta,1986,33(6):787-793
    [80] J. Nocedal and S. J. Wright, Numerical Optimization [M]. Springer,1999
    [81] C. R. Vogel. Computational Methods for Inverse Problems [J].SIAM,2000
    [82] K. Madsen, H. B. Nielsen, and O. Tingleff. Methods for non-linear least squaresproblems [M]. IMM, Technical University of Deark,2004
    [83] Zhiqiang Liu, Takeshi Gemma, Saori Udagawa et al. Double sourceinterferometer for Reducing spurious noise fringes[C]. SPIE,2004,5531:193-202
    [84] S. Gorthi and P. Rastogi. Fringe projection techniques: whither we are?[J]. Opt.Laser. Eng.2010,48:133
    [85] A. Patil, R. Langoju, and P. Rastogi. Statistical study and experimentalverification of high-resolution methods in phase-shifting interferometry [J]. J. Opt.Soc. Am. A24,2007:794–813
    [86] P. Jia, J. Kofman, and C. English. Comparison of linear and nonlinear calibrationmethods for phase-measuring profilometry [J]. Opt. Eng.2007,46:043601
    [87] H. Cui, W. Liao, X. Cheng, N. Dai, and T. Yuan. A three-step system calibrationprocedure with error compensation for3D shape measurement [J]. Chin.Opt. Lett.2010,8,33
    [88] A. Téllez-Qui ones and D. Malacara-Doblado. Inhomogeneous phase shifting: analgorithm for non-constant phase displacements [J]. Appl. Opt.2010,49:6224-6231
    [89] A. Téllez-Qui ones, D. Malacara-Doblado, and J. GarcíaMárquez. Basic Fourierproperties for generalized phase shifting and some interesting detuning insensitivealgorithms [J]. Appl. Opt.2011,50:4083-4090
    [90] A. Patil, R. Langoju, and P. Rastogi. Statistical study and experimentalverification of high-resolution methods in phase-shifting interferometry [J]. J. Opt.Soc. Am. A,2007,24:794-813
    [91] M. Miranda and B. V. Dorrío. Fourier analysis of two-stage phase-shiftingalgorithms [J]. J.Opt. Soc. Am. A,2010,27:276-285
    [92] J. Xu, Q. Xu, and L. Chai. Iterative algorithm for phase extraction frominterferograms with random and spatially nonuniform phase shifts [J]. Appl. Opt.2008,47:480-485
    [93] P. D. Groot, et al. Apparatus and method for mechanical phase shiftinginterferometry [J]. United States Patent,2006,7,030:995
    [94]钱克矛,伍小平.相移技术中五步等步长Stoilov算法的性能分析[J].光学技术,2001,27(l):13-16
    [95] P. Hariharan, B. F. Oreb, et al. Digital Phase-shifting interferometry: a simpleerror-compensating phase calculation algorithm [J]. Applied Opties,1987,26(12):2504-2506
    [96]何勇,朱日宏,陈磊.基于区域生长理论的波面解包算法研究[J].光学技术,2006,32(4):594-597
    [97]杨国光.近代光学测试技术[M].浙江:浙江大学出版社,1996
    [98」L. L. Deek, J. A. Soobitsky. Phase-shifting via wavelength tuning in very largeaperture inierferometers [J]. SPIE,1999,3782:432-442
    [99] P. S. Fairman, B. F. Oreb, et al.300-mm-aperture Phase-shifting Fizeauinterferometer. Optical Engineering [J].1999,38(8):1371-1380
    [100] D. Malacara-Doblado and B. V. Dorrío. Family of detuning-insensitivephase-shifting algorithms [J]. J. Opt. Soc. Am. A,2000,17:1857-1863
    [101] J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel.Digital wavefront measuring interferometry: some systematic error sources [J].Appl.Opt.1983,22:3421-3432
    [102] H. Raether. Surface Plasmons [M]. Springer-Verlag, Berlin,1988,Chap.2, p.10.
    [103] E. D. Palik, Handbook of Optical Constants of Solids [M].Academic, San Diego,1985:286.
    [104] E. De Bruijn, P. H. Kooyman, and J. Greve. Determination of dielectricpermittivity and thickness of a metal layer from a surface plasmon resonanceexperiment [J]. Appl. Opt.1990,29(13):1974
    [105] T. Tsang, T. Srinivasan-Rao, and J. Fischer. Surface-plasmon field-enhancedmultiphoton photoelectric emission from metal films [J]. Phys. Rev. B,1991,43:8870-8878
    [106] E. E. Moon, L. Chen, P. N. Everett, M. K. Mondol, and H. I. Smith. Nanometergap measurement and verification via the chirped-Talbot effect [J]. J. Vac. Sci.Technol. B,2004,22:3378
    [107] T. Kohno, N. Ozawa, K. Miyamoto, T. Musha, High precision optical surfacesensor, Appl. Opt.1988,27:103-108
    [108] E. D. Palik. Handbook of Optical Constants of Solids [M]. San Diego,1985:286
    [109] X. Liu, Z. Cao, Q. Shen, and S. Huang. Optical sensor based on Fabry-Perotresonance modes [J]. Appl. Opt.2003,42(36):7137
    [110] E. E. Moon, P. N. Everett, M. W. Meinhold, M. K. Mondol, and H. I.Smith.Novel mask-wafer gap measurement scheme with nanometer-level detectivity [J]. J.Vac. Sci. Technol. B,1999,17:2698
    [111] F. Villa, T. Lopez-Rios, and L. E. Regalado. Electromagnetic modes in metal-insulator-metal structures [J]. Phys. Rev. B,2001,63:165103
    [112] P. T. Wu, M. C. Wu, and C. M. Wu. A nanogap measuring method beyondoptical diffraction limit [J]. J. Appl. Phys.2007,102:123111
    [113] A. Unger, M. Kreiter. Analyzing the performance of plasmonic resonators fordielectric sensing [J]. J. Phys. Chem. C,2009,113:12243-12251
    [114] P. T. Wu, M. C. Wu, and C. M. Wu. Measurement of the air gap width betweendouble-deck metal layers based on surface plasmon resonance [J]. J. Appl. Phys.2010,107:083111
    [115] T. Sannomiya and J. Voros. Single plasmonic nanoparticles for biosensing [J].Trends Biotechnol.2011,29:343
    [116] M. Piliarik and J. Homola. Self-referencing SPR imaging for most demandinghigh throughput screening applications [J]. Sens. Actuators B,2008,134:353-355
    [117] K. Wang, Z. Zheng, Y. Su, Z. Wang, L. Song, and J. Zhu. Hybrid differentialinterrogation method for sensitive surface plasmon resonance measurement enabledby electro-optically tunable SPR sensors [J]. Opt. Express,2009,17(6):4468-4478
    [118] W. Yuan, H. P. Ho, S. Y. Wu, Y. K. Suen, and S. K. Kong. Polarization-sensitivesurface plasmon enhanced ellipsometry biosensor using the photoelastic modulationtechnique [J]. Sens. Actuators A,2009,151:23-28
    [119] W. K. Kuo, C. H. Chang. Phase detection sensitivity enhancement of surfaceplasmon resonance sensor in a heterodyne interferometer system [J]. Appl. Opt.2011,50:1345-1349
    [120] D.C. Su, M.H. Chiu, C.D. Chen, Simple two-frequency laser [J]. Precis. Eng.1996,18:161-163
    [121] Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou. Differential-phase surface plasmonresonance biosensor [J]. Anal. Chem.2008,80:5590-5595
    [122] E. Kretschmann and H. Raether. Radiative decay of non radiative surfaceplasmons excited by light [J]. Z. Naturforsch. A,1968,23A:2135-2136