等离子体中自生电场对激波面和界面不稳定性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体激波与界面相互作用在惯性约束聚变和天体物理中都是一个重要问题。本文主要研究等离子体中自生电场在激波与界面相互作用过程中对激波面不稳定性和界面不稳定性(如:Rayleigh-Taylor不稳定性)所产生的新的影响。
     本文将等离子体激波面视作有厚度的阵面来研究其受扰后的稳定性。因此,我们首先用双流体方程和Maxwell方程组对等离子体激波面结构进行了数值模拟,得到了二维轴向激波面结构和一维强激波结构,并给出了非中性等离子激波的Rankine-Hugoniot关系。在此基础上,将受扰激波面的不稳定性按照扰动波长的大小分为两种情形进行分析。在波长与德拜长度可比的情况下,采用简正模方法,并在全空间取傅氏变换,可得到解析的色散关系。我们发现受扰激波面存在类似Langmiur波和离子声波的不稳定模式,其不稳定性由等离子体激波面上的平衡量梯度和(或)自生电场驱动。在扰动波长与离子间碰撞平均自由程可比的情况下,只在垂直激波运动方向取傅氏变换,可得到关于扰动量的微分方程组,辅以适当的边界条件,构成特征值问题。从所构成的特征值问题和所求色散关系可发现,此时的受扰激波面具有类似Rayleigh-Taylor (R-T)不稳定性的不稳定性模式。
     当采用双流体方程和Maxwell方程组来描述等离子体时,在等离子体激波与界面相互作用的另一面——界面不稳定性的演化中也存在类似的自生电场。以R-T不稳定性为例,我们发现考虑流体可压缩性时,该电场均对R-T不稳定性具有致稳作用。在研究上述问题时,我们对流体可压缩性对R-T不稳定性的影响进行了系统地分析,并给出了新的结论。文中分别讨论了表征流体可压缩性的两个参数(绝热指数和分界面上的平衡压力)对R-T不稳定性的增长率的影响。认为仅考虑绝热指数的影响时,其对不稳定性的致稳或退稳效应取决于上下层流体间的相对可压缩性;仅考虑分界面上平衡压力的影响时,压力越小,可压缩性越大,R-T不稳定性增长率越大,具退稳作用。
The interaction of a plasma shock with an interface is an important problem in the iner-tial confinement fusion and in astrophysical phenomenon such as supernovae. In this paper,we investigate new effects of a self-generating electric field in a plasma on the instability ofthe shock front and interface in the evaluation of the shock-interface interactions.
     In this paper, the shock front is treated as a finite thickness region to investigate thestability of the perturbed shock. So, the plasma shock structure is investigated at first.The Rankine-Hugoniot relations of the non-neutral plasma shock are derived, and the two-dimensional axial shock and the one-dimensional strong shock structures are numerical sim-ulated with a set of two-?uids equations and Maxwell equations. With these shock struc-tures, the instability of the perturbed shock front is analyzed in two cases according to theperturbed wavelength. When the wavelength is comparable to the Debye length, an ana-lytic dispersion relation can be obtained through the normal mode analysis and the Fouriertransform in all dimensions. There are instability modes that similar to the Langmiur waveand ionic sound wave in the perturbed shock fronts. The instability is driven by the self-generating electric field and (or) the gradients of the equilibrium parameters in the shockfronts. When the wavelength is comparable to the ion-ion collisional mean free path, theFourier transform is performed only in the dimension, which are perpendicular to the shockpropagation direction. Together with appropriate boundary conditions, a set of differentialequations for the perturbed quantities constitute an eigenvalue problem essentially. Aftersolving the eigenvalue problem, the dispersion relations of the instable modes are plotted.The instability of the perturbed shock front with large wavelength is found to be similar tothe Rayleigh-Taylor instability (RTI).
     On the other hand of the plasma shock-interface interaction, the evolution of theinterfacial instability, the self-generating field will be emerged also as the plasma describedby the two-?uids equations and Maxwell equations. Taking RTI as an example, the fieldhas stabilized effects on the linear region of the RTI, when the compressibility of the?uid is considered. At the same time, we analyzed the compressibility effects on the RTIsystematically, and concluded new results. The effects of the two parameters representedthe compressibility of the ?uid (the ratio of specific heats and the equilibrium pressure at the interface) on the RTI growth rate are analyzed respectively. When the ratio of specificheats are considered only, the stabilized or destabilized effects on the RTI depend on therelative compressibility of the upper heavy ?uid and lower light ?uid. When the equilibriumpressure at the interface is considered only, the less pressure indicates more compressibilityof the fluid, and larger growth rate. The effects of the equilibrium pressure at the interfaceon the RTI are destabilized.
引文
[1] R.柯朗, K. O.弗里德里克斯,李维新等译.超声速流与冲击波.北京:科学出版社, 1986.
    [2]国家自然科学基金委员会数学物理科学部.力学学科发展研究报告.北京:科学出版社, 2007.
    [3] Hilbun W M. Shock waves in nonequilibrium gases and plasmas: [PhD Dissertation].Alabama, USA: Air Force Institute of Technology, 1997.
    [4] Bivolaru D, Kuo S P. Observation of supersonic shock wave mitigation by a plasmaaero-spike. Phys. Plasmas, 2002, 9(2):721–723.
    [5] Osipov A I, Uvarov A V. Kinetic and gasdynamic process in nonequilibrium molecularphysics. Sov. Phys. Usp., 1992, 35(11):903–923.
    [6] Zel’dovich Y B, Raizer Y P,张树才译.激波和高温流体动力学现象物理学.北京:科学出版社, 1980.
    [7] X. A.拉赫马杜林, C. C.谢苗诺夫,魏中磊译.激波管.北京:国防工业出版社,1965.
    [8] Greenberg O W, Sen H K, Treve Y M. Hydrodynamic model of diffusiona effects onshock structure in a plasma. Phys. Fluids, 1960, 3(3):379–386.
    [9] Greenberg O W, Treve Y M. Shock wave and solitary wave structure in a plasma.Phys. Fluids, 1960, 3(5):769–785.
    [10] Jaffrin M Y, Probstein R F. Structure of plasma shock wave. Phys. Fluids, 1964,7(10):1658–1674.
    [11] D. A. Tidman and N. A. Krall. Shock waves in collisionless plasmas. New York, USA:Wiley-Interscience, 1971.
    [12] Schneider S H. Numerical Study of strong plasma shock waves produced in an elec-tromagnetic shock tube. Phys. Fluids, 1972, 15(5):805–814.
    [13] Abe K. Srong plasma shock structures based on the Navier-Stokes equations. Phys.Fluids, 1975, 18(9):1125–1129.
    [14] Tidman D A, Burton L L. Magnetic field generation by ablation waves or shockspropagating in inhomogeneous plasma. Phys. Rev. Lett., 1976, 37(21):1397–1399.
    [15] M. A. Liberman, and A. L. Velikovich. Physics of shock waves in gases and plasmas.Berlin, Germany: Springer-Verlag, 1986.
    [16] Taylor G I. The instability of liquid surfaces when accelerated in a direction perpen-dicular to their planes. I. Proc. R. Soc. A, 1950, 201:192–196.
    [17] Meshkov E E. Instability of the interface of two gases accelerated by a shock wave.Sov. Fluid Dyn., 1969, 4:101–108.
    [18] Anderson M, Puranik B, Oakley J, et al. Shock tube investigation of hydrodynamicissues related to inertial confinement fusions. Shock Waves, 2000, 10(5):377–387.
    [19] Eliasson V. On focusing of strong shock waves: [PhD Dissertation]. Stockholm,Sweden: Royal Institute of Technology, 2005.
    [20]王淦昌.人造小太阳:受控惯性约束聚变.北京:清华大学出版社, 2001.
    [21] MeyerterVehn J. Prospects of inertial confinement fusion. Plasma Phys. Control.Fusion, 1997, 39(12B):B39–B45.
    [22] Peyser T A, Murray S D, Miller P L, et al. Review of experiments and calculations ofthe compressible Richtmyer-Meshkov instability from a single-mode, nonlinear initialperturbation. in: Proceedings of the 6th International Workshops on the Physics ofCompressible Turbulent Mixing, Marseille, France, 1997.
    [23]孙琪,周斌,沈军,吴广明. ICF研究中Rayleigh-Taylor不稳定性试验用靶.强激光与粒子束, 2004, 16(12):1535–1539.
    [24] Miles A R. The effect of initial conditions on the nonlinear evolution of perturbedinterfaces driven by strong blast waves: [PhD Dissertation]. College Park, USA: Uni-versity of Maryland, 2004.
    [25]葛全文. ICF中流体不稳定性的数值模拟研究与Hamilton-Jacobi方程的运动网格方法: [博士学位论文].北京:中国工程物理研究院, 2005.
    [26] Sinkevich O A. Stability of a plane, ionizing shock wave in a magnetic field. Fluiddynamics, 1972, 14(1):122–128.
    [27] L. N. Tsintsadzea P K S, Tsintsadze N L. Corrugation instability of radiative shockwaves in a relativistically hot plasma. Phys. Plasmas, 1997, 4(11):3923–3927.
    [28] Bates J W, Montgomery D C. The D’yakov-Kontorovich instability of shock wavesin real gases. Phys. Rev. Lett., 2000, 84(6):1180–1183.
    [29] Ryutov D D. Destabilizing effect of thermal conductivity on the Rayleigh–Taylorinstability in a plasma. Phys. plasmas, 2000, 7(12):4797–4800.
    [30] Casanova M, Larroche O. Kinetic simulation of a collisional shock wave in a plasma.Phys. Rev. Lett., 1991, 67(16):2143–2146.
    [31] D’yakov S P. Stability of shock waves. Zh. Eksp Teor. Fiz., 1954, 27:288.
    [32] Kontorovich V M. The question on stability of shock waves. Journal of Experimentaland Theoretical Physics, 1957, 6(1):1179.
    [33] Xu N, Wang L, Hu X. Extreme electrostatic phenomena in a single sonoluminescingbubble. Phys. Rev. Lett., 1999, 83(12):2441–2444.
    [34] Li F, Havnes O. Shock waves in a dusty plasma. Phys. Rev. E, 2001, 64(6):066407(6).
    [35] Zhuang S. Shock wave propagateion in periodically layered composites: [PhD Disser-tation]. Los Angeles, USA: California Institute of Technology, 2002.
    [36]胡希伟.等离子体理论基础.北京:北京大学出版社, 2006.
    [37] Hu Y, Hu X. The properties and structures of a plasma non-neutral shock. Phys.Plasmas, 2003, 10(7):2704–2711.
    [38] He Y, Hu X, Hu Y. Rankine-Hugoniot relations of an axial shock in cylindrical non-neutral plasma. Phys. Plasmas, 2006, 13(9):092116(5).
    [39] Landau and Lifshitz. Fluid Mechanics. Pergamon Press, 1987.
    [40] T. J. M.博伊德, J. J.桑德森,戴世强, 陆志云译.等离子体动力学.北京:科学出版社, 1977.
    [41] Munro D H. Rippled shock front solutions for testing hydrodynamic stability simula-tions. Phys. Fluids B, 1989, 1(1):134–141.
    [42] Larroche O. Kinetic simulation of a plasma collision experiment. Phys. Fluids B,1993, 5(8):2816–2840.
    [43] S. L. Braginskii. Transport processes in a plasma, in Reviews of Plasma Physics. NewYork: Academic, 1965.
    [44] Larroche O. Initial-value-problem solution for isolated rippled shock fronts in arbitrary?uid media. Phys. Rev. E, 2004, 69(5):056313(16).
    [45]刘儒勋,王志峰.数值模拟方法和运动界面追踪.合肥:中国科学技术大学出版社,2001.
    [46]刘儒勋,舒其望.计算流体力学的若干新方法.北京:科学出版社, 2003.
    [47] Menikoff R, Plohr B J. The Riemann problem for ?uid ?ow of real materials. Rev.Mod. Phys., 1989, 61(1):75–130.
    [48] Neumann V, Richtmyer R D. A method for the numerical calculation of hydrodynam-ical shocks. J. Appl. Phys., 1950, 21:380–385.
    [49] Chen G Q. Shock capturing and related numerical methods in computational ?uiddynamics. Acta Math. Univ. Comenianae, 2001, 70(1):51–73.
    [50] Yang Y, Zhang Q. Small amplitude theory of Richtmyer–Meshkov instability. Phys.Fluids., 1994, 6(5):1856–1873.
    [51] Richtmyer R D. Taylor instability in shock acceleration of compressible ?uids. Comm.Pure Appl. Math., 1960, 8:297–319.
    [52] Rayleigh L. Investigation of the character of the equilibrium of an incompressibleheavy ?uid of variable density. Proc. London Math. Soc., 1883, 14:170–177.
    [53]张钧,常铁强.激光核聚变靶物理基础.北京:国防工业出版社, 2004.
    [54] Kull H J. Theory of the Rayleigh-Taylor instability. Physics Reports, 1991,206(5):197–325.
    [55] S. Chandrasekhar. Hydrodynamic and hydromagnetic stability. New York: DoverPublications Inc., 1981.
    [56] Bernstein I B, Book D L. Effect of compressibility on the Rayleigh–Taylor instability.Phys. Fluids, 1982, 26(2):453–458.
    [57] Sharp D H. An overview of Rayleigh-Taylor instability. Physica D, 1984, 12:3–18.
    [58] Baker L. Compressible Rayleigh–Taylor instability. Phys. Fluids, 1983, 26(4):950–952.
    [59]秦承森.可压缩性对Rayleigh-Taylor不稳定性的影响.爆炸与冲击, 2001,21(3):193–197.
    [60]秦承森.流体可压缩性对Rayleigh-Taylor不稳定性影响机理分析.爆炸与冲击,2004, 24(1):1–6.
    [61]秦承森.可压缩流体的Rayleigh-Taylor和Kelvin-Helmholtz不稳性.力学学报,2004, 36(6):655–663.
    [62] Livescu D. Compressible effects on the Rayleigh–Taylor instability growth betweenimmiscible ?uids. Phys. Fluids, 2004, 16(1):118–127.
    [63] Munro D. Analytic solutions for Rayleigh–Taylor instability growth in smooth den-sity gradients. Phys. Rev. A, 1988, 38(3):1433–1445.
    [64] Ribeyre X, Tikhonchuk T, Bouquet S. Compressible Rayleigh–Taylor instabilities insupernova remnants. Phys. Fluids, 2004, 16(12):4661–4670.
    [65] Takabe H, Montierth L, Morse R L. Self-consistent eigenvalue analysis ofRayleigh–Taylor instability in an ablating plasma. Phys. Fluids, 1983, 26(8):2299–2307.
    [66] Takabe H, Mima K, Montierth L, et al. Self-consistent growth rate of theRayleigh–Taylor instability in an ablatively accelerating plasma. Phys. Fluids, 1985,28(12):3676–3682.
    [67] Kilkenny J D, Glendinning S G, Haan S W, et al. A review of the ablative stabilizationof the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion.Phys. plasmas, 1994, 1(5):1379–1389.
    [68] Castillo J L, Huerta M A. Effect of resistivity on the Rayleigh-Taylor instability in anaccelerated plasma. Phys. Rev. E, 1993, 48(5):3849–3866.
    [69] Mikaelian K O. Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov insta-bilities. Phys. Rev. E, 1993, 47(1):375–383.
    [70] Qiu X M, Huang L, Jian G D. Synergistic mitigation of the Rayleigh–Taylor instabil-ity in Z-pinch implosions by sheared axial ?ow and finite Larmor radius effect. Phys.Plasmas, 2003, 10(7):2956–2961.
    [71] Zhang W L, Wu Z W, Li D. Effect of shear ?ow and magnetic field on theRayleigh–Taylor instability. Phys. Plasmas, 2005, 12(4):042106(5).
    [72] Evans R G. The in?uence of self-generated magnetic fields on the Rayleigh–Taylorinstability. Plasma Phys. Control. Fusion, 1986, 28(7):1021–1024.
    [73] Hueckstaedt R M, Jr. J H H. Interfacial instabilities driven by self-gravity: first numer-ical results. Mon. Not. R. Astron. Soc., 2001, 327:1097–1102.
    [74] Hueckstaedt R M, Jr. J H H, V.E.Lovelace R. Self-gravity driven instabilities at accel-erated interfaces. Ann. N.Y. Acad. Sci., 2005, 1045:246–259.
    [75] Brouillette M. The Richtmyer-Meshkov instability. Annu. Rev. Fluid Mech., 2002,34:445–468.
    [76] Zhang Q, Sohn S I. Nonlinear theory of unstable ?uid mixing driven by shock wave.Phys. Fluids, 1997, 9:1106–1124.
    [77] Houas L, Meshkov E E, Jourdan G. Overview of diagnostic methods used in shock-tube investigations of mixing induced by Richtmyer-Meshkov instability. ShockWaves, 1999, 9:249–257.
    [78] Younas. Review of numerical simulation of mixing due to Rayleigh-Taylor andRichtmyer-Meshkov instabilities. in: Proceedings of the 8th International Workshopson the Physics of Compressible Turbulent Mixing, California, USA, December, 2001.
    [79]胡业民.等离子体激波结构与非线性极化率对参量过程的影响: [博士学位论文].合肥:中国科学技术大学, 2003.
    [80] Elizarova T G, Shirokov I A, Montero S. Numerical simulation of shock-wave structurefor argon and helium. Phys. Fluids, 2005, 17(6):068101(3).
    [81] Cash J R. Diagonally implicit Runge-Kutta formulae for the numerical integrationof nonlinear two-point boundary value problems. Comput. Math. with Appls., 1984,10(2):123–137.
    [82] Cash J R. Numerical integration of nonlinear two-point boundary value problems us-ing iterated deferred corrections-I. Comput. Math. with Appls., 1986, 12A(10):1029–1048.
    [83] Bennett W H. Magnetically self-focussing streams. Phys. Rev., 1934, 45:890–897.
    [84] Thornhill J W, Whilney K G, Deeney C, et al. Phenomenological modeling of turbu-lence in Z-pinch implosions. Phys. Plasmas, 1994, 1(2):321–330.
    [85] Heinrich Freistu¨hler, and Anders Szepessy, editors. Advances in the theory of shockwaves. New York, USA: Springer-Verlag, 2001.
    [86] E. Kamke,张鸿林译.常微分方程手册.北京:科学出版社, 1977.
    [87] Mikaelian K O. Density gradient stabilization of the Richtmyer-Meshkov instability.Phys. Fluids A., 1991, 3(11):2638–2643.
    [88]叶文华,张维岩,陈光南,晋长秋,张钧. Rayleigh-Taylor和Richtmyer-Meshkov不稳定性的FCT方法数值模拟.计算物理, 1998, 15(13):277–282.
    [89] Borghesi M, Campbell D H, Schiavi A, et al. Electric field detection in laser-plasmainteraction experiments via the proton imaging technique. Phys. Plasmas, 2002,9(5):2214–2220.