螯合剂对铅锌尾矿废弃地植物富集铅锌的诱导作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有色金属矿产资源的开采和冶炼产生了大量的尾矿。尾矿堆存形成大片尾矿废弃地,不仅占用大量土地资源,而且容易对周围环境造成二次污染。植物修复技术能够实现多种目的,如稳定尾矿、控制污染、美化环境;而在尾矿废弃地上种植具有多种用途、经济价值较高的植物正逐渐成为一种新兴的尾矿复垦趋势。近年来,螯合剂在重金属污染土壤植物修复中的应用得到了普遍的关注。大量研究表明,螯合剂不仅能够提高污染土壤中重金属的生物有效性,而且能提高植物对重金属的积累。因此,基于以上研究背景设计了一系列试验,主要研究:(1)乙二胺二琥珀酸(EDDS)和乙二胺四乙酸(EDTA)对不同年代尾矿和矿区附近污染土壤中重金属和矿质元素的浸提;(2)以尾矿与土壤按0:100、25:75、50:50、75:25、100:0比例混合作为栽培基质,研究添加EDTA对铅锌尾矿废弃地玉米生长及Pb、Zn积累的影响;(3)在上述试验的基础上,以尾矿与土壤按1:1比例混合作为培养基质,研究单独添加NTA、EDTA以及二者复合添加对蓖麻幼苗生长及Pb、Zn积累的影响;(4)以尾矿与土壤按1:1比例混合作为培养基质,研究单独添加NTA、EDTA以及二者复合添加对Pb、Zn在蓖麻根、茎、叶亚细胞中分布的影响;(5)对覆土铅锌尾矿库中生长的植物重金属含量进行了研究。试图揭示螯合剂提高土壤重金属生物有效性,促进植物对重金属吸收及向地上部运输的作用机理,为螯合剂在植物修复铅锌尾矿废弃地中的应用提供理论依据。主要结果如下:
     (1)浸提实验结果表明,两种螯合剂对两尾矿样品中Pb的浸提率为EDDS大于EDTA;二者对Cu和Zn的浸提率都比较低。两种螯合剂对土壤样品中Cu和Zn的提取效率高于Pb。对矿质元素来说,螯合剂的存在明显增加Mn的提取率,Fe的提取率也有所增加;
     (2)玉米盆栽实验结果表明:抑制玉米生长的主要因素是尾矿极端贫瘠,Pb、Zn含量过高。添加EDTA前,玉米在所有处理中都能正常生长,植株没有出现明显的毒害症状。添加EDTA后玉米生物量显著下降,并且在改良基质中尾矿所占比例越高,下降幅度越大。EDTA可以显著提高玉米对Pb、Zn的积累能力,其中对Pb的积累能力大于Zn。基质比例为50:50时,添加EDTA后玉米对Pb、Zn的积累量虽然比基质100:0低,但是玉米的生物量、株高和根系各指标都比基质100:0下降幅度小。故尾矿和土壤比例为50:50的基质改良方式比较合理,可用于铅锌尾矿废弃地的复垦;
     (3)蓖麻盆栽实验结果表明:添加螯合剂后蓖麻生物量和根系形态参数均显著下降,并且EDTA添加比例越高,下降幅度越大。其中,根系形态参数中根尖数下降最明显,与对照相比差异极显著(P<0.01)。各螯合处理蓖麻叶绿素a、b和叶绿素a+b与对照相比均显著下降(P<0.05),且叶绿素b比叶绿素a下降幅度略大。蓖麻叶片中SOD. CAT和POD三种酶活性均随螯合处理中EDTA添加量的增加先上升后下降。添加螯合剂后蓖麻各部位Pb. Zn含量明显增加,且Pb的增幅比Zn大。添加螯合剂显著提高了蓖麻对Pb. Zn (?)(?)积累能力,其中蓖麻对Pb的积累能力大于Zn。添加螯合剂明显促进了Pb. Zn从根部向地上部的转移,转移系数在添加3mmol/kg EDTA和3mmol/kg NTA处理时达最大值。蓖麻对Pb和Zn有较强的耐性和积累能力,可用于铅锌尾矿废弃地植物修复的进一步研究;
     (4)蓖麻中铅锌的亚细胞分布实验结果表明:Pb. Zn在蓖麻细胞内的分布特征与其吸收和积累Pb. Zn的能力密切相关,施加NTA和EDTA能显著促进Pb. Zn在蓖麻体内的积累并且影响其在各亚细胞组分中的分布。在蓖麻根部,细胞壁是Pb. Zn的主要结合位点,其次为细胞质部分(除单独添加NTA处理外);在茎、叶中,细胞质部分是Pb、 Zn的主要结合位点,其次为细胞壁部分。三种螯合处理下,蓖麻根中Pb、Zn在细胞壁的分布呈加强趋势,有从细胞器向细胞壁转移的趋势;蓖麻茎和叶中Pb、Zn在细胞质的分布呈加强趋势,添加螯合剂促进了Pb、Zn在茎、叶细胞中的区室化;
     (5)对覆土铅锌尾矿库上随表土引入并成功定居的乡土植物研究表明,10种优势植物对Zn、Pb和Cu的富集系数均小于1,其地上部(茎、叶)Zn、Pb和Cu含量均未达到超富集植物的临界含量标准。山油麻、黄毛楤木、商陆、山莓等植物从根部向地上部运输Zn、Cu的能力较强,但积累量较低,对三种金属的吸收均表现为叶>根>茎的规律,是良好的Zn、Cu耐性植物。五节芒对Zn、Pb和Cu表现出一定的富集潜力,且适应性强、生物量大,可用于铅锌尾矿废弃地修复的进一步研究。
     以上试验结果表明:(1)两尾矿样品中,EDDS对Pb的浸提率均大于EDTA,二者对Cu、Zn的浸提率均较低;(2)尾矿和土壤混合比例为1:1时,添加EDTA处理中玉米对Pb、Zn的提取效果最好;(3)添加3mmol/kg EDTA和3mmol/kg NTA的处理中,蓖麻生长所受抑制较小,Pb、Zn积累量较高,螯合提取Pb、Zn的效果最好;(4)螯合剂作用下,在蓖麻根部,细胞壁是Pb、Zn的主要结合位点;在茎、叶中,细胞质部分是Pb、Zn的主要结合位点;(5)覆土铅锌尾矿库定居植物中存在对其植被恢复具有一定修复潜力的乡土植物。
Tailings resulted from mining and smelting activities of non-ferrous metal mineral resources. Tailings storging form great tailings waste lands, which not only occupy land but may also cause secondary pollution of the surrounding environment.Revegetation of tailing waste lands is a general practice to stabilize tailings, prevent secondary pollution and beautify the environment; planting the crops that can be used for multiple application ways, bring high economic value will become a rising current about tailings reclamation. Recently, many researches have been focused on the effects of chelating agents on the phytoremediation of heavy metal contaminated soil. Some researches showed that chelating agents not only were able to increase heavy metal bioavailability in contaminated soils, but also enhanced heavy metals accumulation of plants.These studies were mainly focused on:(1) Extraction of heavy metals and mineral elements in tailing of different times and agricultural contaminated soil around mine area using biodegradable (EDDS) and Non-biodegradable (EDTA) Chelators;(2) Pot experiments were conducted to investigate the growth and lead-zinc accumulation of maize seedlings in amendment substrates mixed with lead-zinc tailings and soil with the addition of EDTA. The ratios of lead-zinc tailings to soil in pot substrates were0:100,25:75,50:50,75:25, and100:0, marked as TA00, TA25, TA50, TA75, and TA100, respectively;(3) Pot experiments were conducted to study the effects of single and combined addition of EDTA and NTA on growth and heavy metal accumulation in castor seedlings, in which the ratio of Pb-Zn tailings to soil in the substrates was1:1;(4) Pot experiments were conducted to study the effects of single and combined addition of EDTA and NTA on the subcellular distribution of Pb and Zn in the roots, stems and leaves of castor seedlings.(5) A Survey on heavy-metal content in plants in lead-zinc tailings dam covering soil. The aim of the present studies is to elucidate the mechanisms of increasing heavy metal bioavailability in soils and increasing heavy metal absorption and translocation from soils to plant shoots by chelating agents, which provides a theoretical basis for the phytoremediation on the lead-zinc tailing waste lands. The main results were shown as following:
     (1) The results of chelating agents extraction showed that the extraction efficiency for Pb by EDDS was higher than EDTA from two mine tailings simples; the extraction efficiency of Cu and Zn by EDDS and EDTA were similar, and all lower. The extraction efficiency of Cu and Zn by EDDS and EDTA was higher than Pb. The extraction rates of Mn increased evidently at the presence of the two chelators, and the solution of Fe were also slightly enhanced.
     (2) The results of pot experiments by maize seedlings showed that the main factors restricting the maize growth were the poor nutrition and rich Pb and Zn with high concentrations in substrates. Maize grew normally in test substrates without EDTA, and no apparent phyotoxity was observed. However, biomass of maize clearly decreased with the addition of EDTA, and the higher decrease degree of the maize biomass was found in the amendment substrates with larger proportion of lead-zinc tailings. The addition of EDTA significantly enhanced the accumulation of Pb and Zn by maize, and the accumulation amount of Pb by maize was higher than that of Zn. The accumulation amount of Pb and Zn in maize was smaller in substrates with50%tailing and50%soil than that in100%tailings, however, the weaker decrease degree of biomass, average of plant height, and root indexes of maize was observed for the former than the latter. We prospose that the amendment of50%soil in tailings seems reasonable for reclamation of lead-zinc tailing waste lands.
     (3) The results of pot experiments by castor seedlings showed that the biomass and root morphological parameters of castor clearly decreased with the addition of chelating agents, and greater decreases in them were observed in castor grown in chelating agents containing higher proportions of EDTA. The decrease of root tips was more evident than the rest of root morphological parameters, and which reached extremely significant level compared with the control at the same time (P<0.01). Compared with the CK treatment, chlorophyll a, b, and a+b decreased significantly(P<0.0.5), the decrease extent of chlorophyll b is more than chlorophyll a. The activity of SOD, CAT and POD increased first and then decreased with the increase of EDTA in chelating agents. The contents of Pb and Zn by castor generally increased with addition of chelating agents, the increment of Pb contents was higher than Zn. The addition of chelating agents significantly enhanced the accumulation of Pb and Zn in castor, and more Pb accumulated than Zn. The addition of chelating agents advanced obviously the translocation of Pb and Zn from roots to shoots in castor, the maximum value of translocation factor of Pb and Zn were got at the addition of3mmol/kg EDTA and3mmol/kg NTA. Castor have strong endurance and the ability of heavy metal accumulation, and it is reasonable for reclamation of Pb-Zn tailing waste lands.
     (4) The results showed that the subcellular distributions of Pb and Zn had significant relationship with the ability of heavy metal uptake and accumulation in castor. The addition of EDTA and NTA could evidently advance the absorption and accumulation of Pb and Zn in castor and affect on their distribution in cell wall and organelle fractions. Most of Pb and Zn was bound to the cell wall fraction and secondly cytoplasm fraction (except the addition of NTA singly) in root of castor. Most of Pb and Zn was bound to cytoplasm fraction and secondly the cell wall fraction in stems and leaves of castor. Under the inducement of EDTA and NTA, there were increasing Pb and Zn bound to cell wall, which mostly came from organelle fraction in roots of castor, there were increasing Pb and Zn bound to cytoplasm fraction in stems and leaves of castor, the addition of EDTA and NTA enhanced the compartmentalizing of Pb and Zn in stems and leaves of castor.
     (5) The study about native plants which followed by topsoil and colonized successfully on lead-zinc tailings dam covering soil showed the accumulation factors of Zn, Pb and Cu about ten species dominant plants were all less than1; Zn, Pb and Cu contents of their shoots and leaves did not reach the standard of hyperaccumulator. Abelmoschus moschatus Medic, Aralia decaisneana Hance, Phytolacca acinosa roxb and Rubus corchorifolius L.f. exhibited higher transportation abilities for Zn and Cu from roots to shoots. But accumulation abilities were low, the accumulation of Zn, Pb and Cu were all listed in the order of leaves> roots> shoots, and three kinds of plants were well metal-tolerant plant. Miscanthus Jloridulus exhibited higher accumulation potentiality for Zn, Pb and Cu, it has strong adaptability and great biomass, can be used for metal immobilization of Pb/Zn tailings waste lands.
     In conclusion, these results indicated:(1)The extraction efficiency for Pb by EDDS was higher than EDTA from two mine tailings, the extraction efficiency of Cu and Zn by EDDS and EDTA were similar, and all lower;(2) When the ratio of lead-zinc tailings to soil was1:1, the extraction effect of Pb and Zn by maize was the most significant in all of amendment substrates;(3) The inhibition that castor growth beared was smaller than rest chelating treatments, and accumulation amount of Pb and Zn by castor was higher than that of rest, the extraction effect of Pb and Zn by castor was the most significant in all of that under the addition of3mmol/kg EDTA and3mmol/kg NTA;(4) Under the inducement of EDTA and NTA, most of Pb and Zn was bound to the cell wall fraction in root of castor, most of Pb and Zn was bound to cytoplasm fraction in stems and leaves of castor;(5) There was some native plants those can be used for revegetation in plants colonization on lead-zinc tailings dam covering soil.
引文
曹心德,魏晓欣,代革联,等.2011.土壤重金属复合污染及其化学钝化修复技术研究进展,环境工程学报,5(7):1441-1453.
    常前发.2003.矿山固体废物的处理与处置,矿产保护与利用,5:38-42.
    陈昌笃.1993.持续发展与生态学.北京:中国科技出版社.
    陈红琳,张世熔,李婷,等.2007.汉源铅锌矿区植物对Pb和Zn的积累及耐性研究.农业环境科学学报,26(2):505-509.
    陈柳燕,张黎明,李福燕,等.2007.剑麻对重金属铅的吸收特性与累积规律初探.农业环境科学学报,26(5):1879-1883.
    陈世宝,朱永官.2004.不同含磷化合物对中国芥菜(Brassica Oleracea)铅吸收特性的影响环境科学学报,24(4):707-712.
    陈同斌,范稚莲,雷梅,等.2002a.磷对超富集植物蜈蚣草吸收砷的影响及其科学意义.科学通报.47(5):1156-1159.
    陈同斌,韦朝阳,黄泽春,等.2002b.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报,47(3):207-210.
    陈同斌,阎秀兰,廖晓勇,等.2005.蜈蚣草中砷的亚细胞分布与区隔化作用.科学通报,50(24):2739-2744.
    陈亚华,李向东,刘红云,等.2002.EDTA辅助下油菜修复铅污染土壤的潜力.南京农业大学学报,25(4):15-18.
    陈志良,仇荣亮,张景书,等.2001.重金属污染土壤的修复技术.环境保护,8:17-19.
    程国玲,胥家珍,马志飞,等.2008.螯合诱导植物修复技术在重金属污染土壤中的应用.土壤.40(1):16-20.
    初宇,杜清福,王建华.2009.3种蔬菜种子萌发与胚根生长对铅胁迫的耐受性.中国蔬菜,18:56-59.
    崔爽.2007.铅超积累花卉的筛选与螯合强化及其应用.中国科学院研究生院博士学位论文,pp.36.
    代宏文,陈荣华,王政一,等.1999.第六次全国土地复垦学术会议论文集.pp:415-425.
    方晓航,仇荣亮.2002.有机螯合剂在镍污染土壤植物修复中的研究进展.环境污染治理技术与设备,3(10):1-5.
    付婷婷,伍钧,漆辉,等.2011.氮肥形态对日本毛连菜生长及Pb累积特性的影响.水土保持学报,25(4):257-260.
    谷明光,黄克虎.2002.重视工业专用型高淀粉玉米品种的选育.玉米科学,10(1):24-25.
    郝秀珍,周东美.2005.金属尾矿砂的改良和植被重建进展.土壤,1:1-5.
    何益波,李立清,曾清如.2006.重金属污染土壤修复技术的进展.广州环境科学,21(4):26-31.
    黄宝荣,刘云国,张慧智,等.2003.化学萃取技术在重金属污染土壤修复中应用的研究.环境工程,(21)4:48-51.
    黄铭洪,骆永明.2003.矿区土地修复与生态恢复土壤学报,40(2):161-169.
    黄铭洪.2003.环境污染与生态修复.北京:科学出版社.
    胡忻,罗璐瑕,陈逸珺.2007.生物可降解的螯合剂EDDS提取城市污泥中Cu、Zn、Pb和Cd.环境科学研究,20(6):110-114.
    康薇,郑进.2011.蓖麻—一种新的铜超积累植物.安徽农业科学,39(3):1449-1451.
    可欣,李培军,巩宗强,等.2004.重金属污染土壤修复技术中有关淋洗剂的研究进展.生态学杂志,23(5):145-149.
    可欣,李培军,张昀,等.2007.利用乙二胺四乙酸淋洗修复重金属污染的土壤及其动力学.应用生态学报,18(3):601-606
    孔凡美,史衍玺,冯固,等.2007.AM菌对三叶草吸收、累积重金属的影响.中国生态农业学报,15(3):92-96.
    蓝崇钰,束文圣,张志权.酸性淋溶对铅锌尾矿金属行为的影响及植物毒性.中国环境科学,1996,16(6):461-465.
    李红艳,唐世荣,郑洁敏.2005.酸模、小头寥和戟叶酸模对铜的耐性和积累特性研究.科技通报,21(4):480-484.
    李洪远,鞠美庭.2005.生态恢复的原理与实践.北京:化学工业出版社.
    李明顺,唐绍清,张杏辉,等.2005.金属矿山废弃地的生态恢复实践与对策.矿业安全与环保,32(4):16-18.
    李荣海,于淼,朱万刚,等.2011.尾矿库扬尘综合治理措施研究.金属矿山,1:142-146.
    李玉双,孙丽娜,孙铁珩.2007.乙二胺四乙酸对孔雀草和一串红铅富集的影响.应用生态学报,18(9):2149-2152.
    廖斌,邓冬梅,杨兵,等.2003.鸭跖草(Commelina communis)对铜的耐性和积累研究.环境科学学报,23(6):797-801.
    廖斌,邓冬梅,杨兵,等.2004.铜在鸭跖草细胞内的分布和化学形态研究.中山大学学报(自然科学版),43(2):72-76.
    廖国礼,吴超,冯巨恩.2004.矿坑废水污灌区河流重金属离子污染综合评价实践.矿冶,13(1):86-90.
    廖晓勇,陈同斌,谢华,等.2004.磷肥对砷污染土壤的植物修复效率的影响:田间实例研究.环境科学学报,24(3):455-462.
    廖晓勇,谢华,陈同斌,等.2007.蜈蚣草的超微结构和砷、钙的亚细胞分布.植物营养与肥料学报, 13(2):305-312.
    廖自基.1989.环境中微量重金属元素的污染危害与迁移转化.北京:科学出版社.
    刘登义,谢建春,杨世勇,等.2001.铜尾矿对小麦生长发育和生理功能的影响.应用生态学报,12(1):126-128.
    刘登义,田胜尼,杨世勇.2002.铜尾矿对5种豆科植物种子萌发和幼苗生长影响的初步研究.应用生态学报,13(5):596-600.
    刘灵芝,李培军,巩宗强,等.2011.矿区分离丛枝菌根真菌对万寿菊吸Cd潜力影响.微生物学通报,38(4):575-582.
    刘源源,李欣,肖鑫,等.2010.尾砂柱连续萃取法去除铅锌选矿尾砂中重金属.环境科学学报,30(7):1439-1444.
    刘云国,李欣,徐敏,等.2002.土壤重金属镉污染的植物修复与土壤酶活性.湖南大学学报(自然科学版),29(4):108-113.
    龙梅,胡锋,李辉信,等.2006.低成本含磷材料修复环境重金属污染的研究进展.环境污染治理技术与设备,7(7):1-10.
    龙新宪,杨肖娥,倪吾钟.2002.重金属污染土壤修复技术研究的现状与展望.应用生态学报,13(6):757-762.
    骆永明.1999.金属污染土壤的植物修复.土壤,5:261-265.
    陆晓怡,何池全.2005a.蓖麻对重金属Cd的耐性与吸收积累研究.农业环境科学学报,24(4):674-677.
    陆晓怡,何池全.2005b.蓖麻对重金属锌的耐性与吸收积累研究.环境污染与防治,27(6):414-416.
    孟跃辉,倪文,张玉燕.2010.我国尾矿综合利用发展现状及前景.中国矿山工程,39(5):4-9.
    聂俊华,刘秀梅,王庆仁.2004.营养元素N、P、K对Pb超富集植物吸收能力的影响.农业工程学报,20(5):262-265.
    钱猛,沈振国,魏岚.2006.螯合剂EDDS和EDTA诱导海州香薷积累土壤重金属的比较研究.农业环境科学学报,25(1):113-118.
    祁由菊,崔德杰.2008.EDTA辅助下地被石竹对铅污染土壤的修复潜力.农业环境科学学报,27(1):0165-0169.
    饶运章,侯运炳.2004.尾矿库废水酸化与重金属污染规律研究.辽宁工程技术大学学报,23(3):430-432.
    任立民,刘鹏,郑启恩,等.2006.广西大新县锰矿区植物重金属污染的调查研究.亚热带植物科学,35(3):5-8.
    沈振国,陈怀满.2000.土壤重金属污染生物修复的研究进展.农村生态环境,16(2):39-44.
    施翔,陈益泰,王树凤,等.2011.3种木本植物在铅锌和铜矿砂中的生长及对重金属的吸收.生态 学报.31(7):1818-1826.
    石娟华.2008.铁尾矿坝沙棘一桑树人工混交林生物量及元素积累与分布研究.河北农业大学,PP,2.
    史宇,何玉科.2003.重金属污染环境的植物修复及其分子机制.植物生理与分子生物学学报.29(4):267-274.
    束文圣,张志权,蓝崇钰.2000.中国矿业废弃地的复垦对策研究.生态科学,19(2):24-29.
    束文圣,叶志鸿,张志权,等.2003.华南铅锌尾矿生态恢复的理论实践.生态学报,23(8):1629-1639.
    束永保,李培良,李仲学.2010.尾矿库溃坝事故损失风险评估.金属矿山,8:156-159.
    宋静,钟继承,吴龙华,等.2006.EDTA与EDDS螯合诱导印度芥菜吸取修复重金属复合污染土壤研究.土壤,38(5):619-625.
    宋静.2002.土壤重金属植物有效性评价及铜污染土壤植物修复研究.中科院南京土壤所博士学位论文.
    宋书巧,周永章.2001.矿业废弃地及其生态恢复与重建.矿产保护与利用,5:43-49.
    宋勇春,冯固,李晓林.2001.接种VA菌根真菌对三叶草利用不同磷源的影响.生态学报,21(9):1506-1511.
    孙健,铁柏清,秦普丰,等.2006.EDTA调控下灯心草和龙须草对铅锌尾矿污染土壤的修复潜力.环境科学研究,19(4):105-110.
    孙琴,倪吾钟,杨肖娥,等.2003.磷对超积累植物-东南景天生长和积累锌的影响.环境科学学报,23(6):818-824.
    孙铁珩,周启星,李培军.2001.污染生态学.北京:科学出版社.
    孙小峰,吴龙华,骆永明,等.2006.EDDS对海州香薷修复重金属复合污染土壤的田间效应.土壤,38(5):609-613.
    孙约兵,周启星,郭观林.2007.植物修复重金属污染土壤的强化措施.环境工程学报,1(3):103-110.
    万敏,周卫,林葆,等.2003.不同镉积累类型小麦根际土壤低分子量有机酸与镉的生物积累的研究.植物营养与肥料学报,9(3):331-336.
    万云兵,仇荣亮,陈志良,等.2002.重金属污染土壤中提高植物提取修复功效的探讨.环境污染治理技术与设备,3(4):56-59.
    王春春,沈振国.2001.Cd在植物体内的积累及其对绿豆幼苗生长的影响.南京农业大学学报,24(4):9-13.
    王发园,林先贵,尹睿.2005.丛枝菌根真菌对海州香薷生长及其Cu吸收的影响.环境科学,26(5):176-182.
    王剑虹,麻密.2002.植物修复的生物学机制.植物学通报,17(6):504-510.
    王利,李永华,姬艳芳,等.2011.羟基磷灰石和氯化钾联用修复铅锌矿区铅镉污染土壤的研究.环境科学,32(7):2114-2118.
    王庆仁,刘秀梅,崔岩山,等.2002.我国几个工矿与污灌区土壤重金属污染状况及原因探讨.环境科学学报,22(3):354-358.
    王显海,刘云国,曾光明,等.2006.EDTA溶液萃取重金属污染土壤的效果及其形态变化特征.环境科学,27(5):1008-1012.
    王仙琴.2000.尾矿库环境因素与防治措施.中国钼业,24(1):44-45.
    王英辉,陈学军,赵艳林,等.2007.铅锌矿区土壤重金属污染与优势植物累积特征.中国矿业大学学报,36(4):487-493.
    汪良驹,刘友良.1998.植物细胞中的液泡及其生理功能.植物生理学通讯,34(5):394-400.
    尾矿设施设计参考资料编写组.1987.尾矿设施设计参考资料.北京:冶金工业出版社.
    魏勇,许开立,郑欣.2009.浅析国内外尾矿坝事故及原因.金属矿山,7:139-142.
    魏树和,周启星.2004.重金属污染土壤植物修复基本原理及强化措施探讨.生态学杂志,23(1):65-72.
    吴龙华,骆永明.2002.铜污染土壤修复的有机调控研究Ⅲ-EDTA和低分子量有机酸的效应.土壤学报,39(5):679-685.
    武正华,张宇峰,王晓蓉,等.2002.土壤重金属污染植物修复及基因技术的应用.农业环境保护,21(1):84-86.
    肖鹏飞,李法云,付宝荣,等.2004.土壤重金属污染及其植物修复研究.辽宁大学学报(自然科学版),31(3):279-283.
    肖璇,呼世斌,张守文,等.2009.EDTA辅助下油菜修复铅、镉单一污染土壤的潜力.西北农业学报,18(3):327-330.
    熊礼明.1993.施肥与植物的重金属吸收.农业环境保护,12:217-222.
    徐明岗,纳明亮,张建新,等.2008.红壤中Cu、Zn、Pb污染对蔬菜根伸长的抑制效应.中国环境科学,28(2):153-157.
    薛生国,陈英旭,林琦,等.2003.中国首次发现的锰超富集植物一商陆.生态学报,23(5):935-937.
    许超,夏北城,林颖.2009.EDTA和柠檬酸对污染土壤中重金属的解吸动力学及其形态的影响.水土保持学报,23(4):146-151.
    王忠强,孟宪民,王升忠,等.2006.泥炭保护根系对不同Pb浓度土壤油菜生长影响的研究.农业环境科学学报,25(3):602-605.
    吴龙华,骆永明,章海波.2001.有机络合强化植物修复的环境风险研究I.EDTA对复合污染土壤中TOC和重金属动态变化的影响.土壤,33(4):189-192.
    杨居荣,鲍子平.1993.镉、铅在植物细胞内的分布及其可溶性结合形态.中国环境科学,13(4):263-268.
    杨世勇,谢建春,刘登义.2004.铜陵铜尾矿复垦现状及植物在铜尾矿上的定居.长江流域资源与 环境,13(5):488492.
    杨卫东,陈益泰.2009.不同品种杞柳对高锌胁迫的忍耐与积累研究.中国生态农业学报,17(6):1182-1186.
    杨肖娥,龙新宪,倪吾钟,等.2002.东南景天(Sedum affredii H)-一种新的锌超富集植物.科学通报,47(13):1003-1006.
    杨晓英,杨劲松,黄铮,等.2007.螯合剂对铅污染土壤上玉米幼苗生长及铅积累特性的影响.农业环境科学学报,26(2):482486.
    杨秀梅,陈保冬,朱永官,等.2008.丛枝菌根真菌(Glomus intraradices)对铜污染土壤上玉米生长的影响.生态学报,28(3):1052-1058.
    乐静,钟松,汪瀚.2010.大红山尾矿库环境风险分析及防治措施.黄石理工学院学报,26(4):7-11.
    曾清如,廖柏寒,杨仁斌,等.2003.EDTA容易萃取污染土壤中的重金属及其回收技术.中国环境科学,23(6):597-601.
    曾群伟,谢殿荣,苏举端,等.2010.尾矿库溃坝的安全监测.工业安全与环保,36(1):4446.
    张翠君.2001.铅锌矿废弃地尾矿砂对银合欢幼苗定居的影响.中国生态农业学报,9(2):57-59.
    张慧智,刘云国,魏薇,等.2004.湖南省矿山尾砂土壤污染现状分析.矿冶工程,24(5):27-30
    张锦瑞,王伟之,李富平,等.2002.金属矿山尾矿综合利用与资源化.北京:冶金工业出版社,pp,9-11.
    张炜鹏,陈金林,黄全能,等.2007.南方主要绿化树种对重金属的积累特性.南京林业大学学报(自然科学版),31(5):125-128.
    张兴凯,王启明,相桂生.2006.金属非金属尾矿库安全现状及分析.中国安全生产科学技术,2:60-62.
    张玉秀,黄智博,柴团耀.2009.鳌合剂强化重金属污染土壤植物修复的机制和应用研究进展.自然科学进展,19(11):1149-1159.
    张志权,束文圣,蓝崇钰,等.2001.土壤种子库与矿业废弃地植被恢复研究:定居植物对重金属的吸收和再分配.植物生态学报,25(3):306-311.
    郑进,康薇.2009.湖北铜绿山古铜矿野生蓖麻重金属含量研究.黄石理工学院学报,25(1):3640.
    中国有色金属尾矿库概论编辑委员会.1992.中国有色金属尾矿库概论.北京:中国有色金属工业总公司.
    周萍,祝丽香.2000.多种用途的植物—蓖麻.中国林副特产,53(2):4849.
    周建民,党志,陈能场,等.2007.NTA对玉米体内Cu Zn的积累及化学形态的影响.农业环境科学学报,26(2):453-457.
    周建民,党志,陶雪琴,等.2005.NTA对玉米体内Cu、Zn的积累及亚细胞分布的影响.环境科学,26(6):126-130.
    周建利,郭晓方,吴启堂,等.2010.活化土壤重金属天然植物螯合剂的筛选.生态学报,30(5):1390-1396.
    周东美,王玉军,郝秀珍,等.2002.铜矿区重金属污染分异规律初步研究.农业环境保护,21(3):225-227.
    周连碧,代宏文,吴亚君.2003.铜矿尾矿库无土植被与有土覆盖农作物种植研究.有色金属,55(增刊):58-62.
    周启星,黄国宏.2001.环境生物地球化学及全球环境变化.北京:科学出版社.
    周启星,宋玉芳.2001.植物修复的技术内涵及展望.安全与环境学报,1(3):48-53.
    周启星,宋玉芳.2004.污染土壤修复原理与方法.北京:科学出版社.
    周世伟,徐明岗.2007.磷酸盐修复重金属污染土壤的研究进展.生态学报,27(7):3043-3050.
    祝玉学.1998.关于尾矿库工程中几个问题的讨论.金属矿山,10:7-8.
    卓青峰,袁文君,林建,等.2011.福建省某尾矿库溃坝分析.矿冶工程,31(2):16-19.
    朱雁鸣,韦朝阳,冯人伟,等.2011.三种添加剂对矿冶区多种重金属污染土壤的修复效果评估—大豆苗期盆栽实验.环境科学学报,31(6):1277-1284.
    祖艳群,李元.2003.土壤重金属污染的植物修复技术.云南环境科学,22:58-61.
    Abdel S I, et al.1994. Chemical characterization of heavy metal contaminated soil in Southeast Kansas.Water Air and Soil Pollution,78(1):73-78.
    Alam M G, Tokuanaga S, Maekawa T.2001. Extraction of arsenic in a contaminated soil using phosphate. Chemasphere,43(8):1035-1041.
    Alberte R S, Thomber J P, Fiscus E L.1977. Water stress effects on the content and organization of chlorophyll in mesophyll and bundle sheach chlorlplasts of maize. Plant Physiol,59:351-353.
    Allen H E, Chen P H.1993. Remediation of metal contaminated soil by EDTA incorporating electrochemical recovery of metal and EDTA. Environment Progress,12(4):284-293.
    Anderson T A, Guthie E.A., Walton B.T.1993. Bioremediation in the rhizophere. Envionment Science Technology,27:2630-2636.
    Ash H J, Gemmell R P, Bradshaw A D.I994. The introduce of native plant species on industrial waste heaps:a test of immigration and other factors affecting primary succession.Journal Appl Ecol. 31:74-84.
    Bell P E, Chaney R L, Angle J S.1991. Free metal activity and total metal concentrations as indices of micronutrient availability to barley [Hordeum vulgare (L.)'Klages']. Plant Soil,130(1-2):51-62.
    Bennett F A, Tyler E K, Brooks R R, etal.1998. Fertilisation of hyperaccumulators to enhance their potential for phytoremediation and phytoming. In:Brooks R R(eds.), Plants that Hyperaccumulate Heavy Metals-Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytoming. Cab International, Oxon, pp.249-259.
    Bennett L E, Burkhead J L, Kerry L H, et al.2003. Pilonsmits analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. Journal of Environmental Quality, 32:432-440.
    Bhatia N P, Adholeya A, Sharma A.1998. Biomass production and changes in soil productivity during long term cultivation of Prosopis juliflora (Swartz) DC inoculated with VA mycorrhiza and Rhizobium spp. in a semi-arid wasteland. Biology and Fertility of Soils,26(3):208-214.
    Blaylock M J, Salt D E, Dushenkov S, et al.1997. Enhanced accumulation of Pb in Indian Mustard by soil-applied chelating agents. Environmental Science and Technology,31(3):860-865.
    Bradshaw A D, Chadwick M J.1980. The restoration of land:the ecology and reclamation of derelict and degraded land. Oxford:Blakwell Scientific Publications.
    Bradshaw, A D,1997. Restoration of mined lands-using natural processes. Ecological Engineering, 8:255-269.
    Brian E. Reed, Patrick C.Carriere, Roderic Moore.1996.Flushing of Pb (Ⅱ) contaminated soil using HC1, EDTA, and CaCl2 Journal of Environmental Engineering.1:48-50.
    Brooks R R, Lee J, Reeves R D, et al.1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plant. Journal of Geochemical Exploration,7:49-57.
    Brooks R R.1998. Plants that hyperaccumulate heavy metals:their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. Oxford, UK:CAB International, pp. 47-49.
    Brundrett M C. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154:275-304.
    Brune A, Urbach W, Dietz K J.1994. Compartmentation and transport of zinc in barley primary leaves as basic mechanism involved in zinc tolerance. Plant, Cell and Environment,17:153-162.
    Bucheli-Witschel M, Egli T.2001. Environmental fate and microbial degradation of aminopolycarboxy-lic acids. FEMS Microbiology Reviews,25(1):69-106.
    Cacador S M, Martins-Loucao M A.2006. Arbuscular mycorrhizal fungi enhance root cadmium and copper accumulation in the roots of the salt marsh plant Aster tripolium L. Plant and Soil, 285(1):161-169.
    Chaney R L.1983. Plant uptake of inorganic waste constituents. In:Parr JF. ed. Land Treatment of Hazardous Wastes. Park Ridge, New Jersey, USA:Noyes Data Corporation, pp.50-76.
    Chanety R L, Malik M, Li Y M, et al.1997. Phytoremediation of soil metals. Current Opinion in Biotechnology,8:279-284.
    Chen B D, Jakobsen I, Roos P, et al.2005a. Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil. Plant Soil,275:349-359.
    Chen B D, Roos P, Borggaard O K, et al.2005b. Mycorrhiza and root hairs in barley enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer. New Phytologist,165:591-598.
    Chen H, Cutright T. 2001. EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus.Chemosphere,45:21-28.
    Chen Y H, Shen Z G, Li X D, etal.2004. The use of vetiver grass in the phytoremediation of soils contaminated with heavy metals. Applied Geochemistry,19:1553-1565.
    Chen Y X, Lin Q, Luo Y M, et al.2003. The role of citric acid on the phytoremediation of heavy metal contaminated soil.Chemosphere,50(6):807-811.
    Chiu K K, Ye Z H, Wong M H.2005. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere.60:1365-1375.
    Chowdhuyr S R, Choudhuri M A.1985. Hydrogen peroxide metabolism as an index of water stress tolerance in jute. Plant Physiol,5:503-507.
    Dahmani, M H, Valorta F, Gelie B, et al.2000. Strategies of heavy metal uptake by three plant species growing near a metal smelter.Environmental Pollution,109:231-238.
    Deng D M, Shu W S, Zhang J, et al.2007. Zinc and cadmium accumulation and tolerance in population of Sedum alfredii. Environmental Pollution,147:381-386.
    Deram A, Petit D, Robinson B.2003. Natural and Induced Heavy-Metal Accumulation by Arrhenatherum elatius:Implications for Phytoremediation. Commu soil Sci Plant Anal,31 (3&4):421-431.
    Epstein A L, Gussman C D, Blaylock M J, etal.1999. EDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil. Plant and Soil,208(1):87-94.
    Ferguson K D, Erickson P M.1988. Pre-mine prediction of acid mine drainage. In:Salomons W, Forstner U eds. Chemistry and Biology of Solid Waste. Berlin:Springer-Verlag, pp.24-43.
    Fernandes M C,Cox L,Hermosin M C, et al,2003. Adsorption-desorption of metalaxyl as affecting dissipation and leaching in soils:role of mineral and organic components. Pest Management Science, 59(5):545-552.
    Fest EPMJ, Temminghoff EJM, Griffioen J, et al.2005. Proton buffering and metal leaching insandy soils. Environmental Science & Technology,9:7901-7908.
    Finkelman R B, Giffin D E.1986. Hydrogen peroxide oxidation:an improved method for rapidly assessing acid-generating potential of sediments and sedimentary rocks. Recreation and Revegetation Research,5:521-534.
    Garbisu C, Alkorta I.2001. Phytoextraction:a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology,77:229-236.
    Gardiner D T.1993. Revegetation status of reclaimed abandoned mined land in western North. Dakota. Arid Soil Research and Rehabilitation,7:79-84.
    Gisbert C, Ros R, De Haro A, et al.2003. A plant genetically modified that accumulates Pb is especially promising for phytoremediation Biochem. Biophys. Res.Commun.,303(2):440-445.
    Grcman H, Velikonja-Bolta S, Vodnik D, et al. EDTA enhanced heavy metal phytoextraction:metal accumulation, leaching and toxicity. Plantand Soil,2001,235:105-114.
    Grcman H, Vodnik D, Velikonja- Bolta S, et al.2003.Ethylenediamine dissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. Journal of Environmental Quality,32:500-506.
    Guo G L, Zhou Q X, Ma L Q.2006. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils:A review. Environmental Monitoring and Assessment, 116(1/3):513-528.
    Hansen D, Duda P.J., Zayed A., et al.1998. Selenium removal by constructed wetlands:role of biological volatilization. Environmental Science & Technology,32:591-597.
    Hans J W, Hans J J.1980. Subcellular distribution and chemical form of cadmium in bean plant. Plant Physiology,65 (3):480-482.
    Heaton ACP, Rugh C L.Wang N.1998. Phytoremedlation of mercury and methylmereury-polluted soils using genetieally engineered plants. J Contam,7(4):497-509.
    Hinsinger.2001. Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere. In:Gobran G R,Wenzel W W, Lombi E. (ed), Trace Elements in the Rhizosphere. CRC Press, pp.25-41.
    Hong P K A, Li C, Banerji S, et al.2002. Feasibility of metal recovery from soil using DTPA and its biostability. J.Hazard. Mat. 94(3):253-272.
    Huang J W, Blaylock M J, Kapulnik Y, et al.1998. Phytoremediation of uranium contaminated soils:role of organic acids in triggering uranium hyperaccumulation in plants. Environmental Science & Technology,32:2004-2008.
    Huang J W, Chen J, Berti WR, etal.1997. Phytoremediation of lead contaminated soils:role of synthetic chelates in lead phytoextraction. Environ Sci Technol,31(3):800-805.
    Jiang L Y, Yang X E, He Z L.2004. Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens.Chemosphere,55:1179-1187.
    Jiang X J, Luo Y M, Zhao Q G, etal.2003. Soil Cd availability to Indianmustard and environmental risk following EDTA addition to Cd-contaminated soil. Chemosphere,50:813-818.
    Jung S J, Jang K H, Siho E H, et al.2005. Characteristics of sulfur oxidation by a newly isolated Burkholderia spp. J. Microbiol. Biotechn.,15:716-721.
    Kayser A, Wenger K, Keller A, et al.2000. Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil:the use of NTA and sulfur amendments. Environmental Science & Technology,34: 1778-1783.
    Komrek M, Tlusto P, Szkov J, et al.2007. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Chemosphere,67:640-651.
    Kos B, Letan D.2003. Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environmental Science & Technology,37(3):624-629.
    Kramer U, etal.1996. Free histidine as a metal chelator in plants that accumulate nickel. Nature, 379:635-638.
    Krmer U, Pickering I J, Prince R C, et al.2000. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspispecies. Plant Physiology,122:1343-1353.
    Kulbhushan B.2003. Economics of waste lands afforestation in India, a review. New Forests,26(2): 101-136.
    Kumar P.1995. Rhizofiltration:The use of plants to remove heavy metals from aqueous streams. Environmental Science & Technology,29:239-245.
    Kupper H, Zhao F J, McGrath S P.1999. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiology,119(1):305-311.
    Lan C Y, Shu W S, Wong M H.1998. Reclamation of a Pb/Zn mine tailings in Guangdong Province, R.R.China:the role of river sediment and domestic refuse. Bioresource Technology,65:117-124.
    Levy D B, Redente E F, Uphoff G D.1999. Evaluating the phytotoxicity of Pb-Zn tailings to big bluesteam (Andropogon gerardii vitman) and switchgrass (Panicum virgatum L.). Soil Science, 164(6):365-375.
    Li M S.2006. Ecological restoration of mine land with particular reference to the metalliferous mine wasteland in China:A review of research and practice. Science of the Total Environment,357:38-53.
    Liphadzi M.S., Kirkham M.B., Mankin K.R., et al.2003. EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant and Soil,257:171-182.
    Li Q F, Du W B, Li Z A, et al.2006. Heavy metals accumulation in mining area's Miscanthus sinensis populations and its relationship with soil characters. Chinese Journal of Ecology,25(3):255-258.
    Li X L, Feng G.2001. Arbuscular mycorrhizal ecology and physiology. Beijing Huawen Press, pp.358.
    Liu D, Islam E, Li T Q, et al.2008. Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance. Journal of Hazardous Materials,153:114-122.
    Lombi E, Hamon R.E., McGrath S.P., et al.2003. Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques. Environmental Science and Technology,37(5):979-984.
    Lombi E, Zhao F, Mc Grath S, et al.2001. Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytologist,149:53-60.
    Luan Z K, Tang H X.1992. Chemical process of acid drainage in the aquactic syetem of coppy mine area. J Environmental sciences (China),4 (3):42-48.
    Luo C L, Shen Z G, Li X D.2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere,59(1):1-11.
    Luo C L, Shen Z G, Li X D, et al.2006. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere, 63:1773-1784.
    Lusk C H.2002. Leaf area accumulation helps juvenile evergreen trees tolerate shade in a temperate rainforest.Oecologia,132:188-196.
    Lusvardi G, Malavasi G, Menabue L, et al.2002. Removal of Cadimium ion by means of synthetic Hydroxyapatite. Waste Management,22:853-857.
    Lytle CM, Lytle FW, Yang N, et al.1998. Reduction of Cr (VI) to Cr(Ⅲ) by wetland plants:Potential for in situ heavy metal detoxification.Environmental Science and Technology,32:3087-3093.
    Madrid F, Liphadzi M S, Kirkham M B.2003. Heavy metal displacement in chelate-irrigated soil during phytoremediationJournal of Hydrology,272:107-119.
    Mark C S, John P.1998. Ex-situ remediation of a metal-contaminated superfund soil using selective extractants. Journal of Environment Engineering,7:639-645.
    Mcbride M B, Martinez C Z.2000. Copper phytoremediation in a contaminated soil:Remediation tests with adsorptive materials. Environmental Science Technology,34(20):4386-4391.
    Meers E, Ruttens A., Hopgood M J, et al.2005. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere,58:1011-1022.
    Mertens J, Luyssaert S, Verheyen K.2005. Use and abuse of trace metal concentrations in plants tissue for biomonitoring and phytoextraction. Environmental Pollution,138(1):1-4.
    Moreno F N, Anderson C W N, Stewart R B, et al.2004. Phytoremediation of mercury-contaminated mine tailings by induced plant-mercury accumulation. Environmental Practice,6(2):165-175.
    Mulligan C N, Yong R N, Gibbs B F.2001. Remediation technologies for metal-contaminated soils and groundwater:an evaluation. Engineering Geology,60:193-207.
    Neumann P M, De Souza M P, Pickering I J, et al.2003. Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant Cell and Environment,26:897-905.
    Ni C Y, Chen Y X, Lin Q, et al.2005. Subcellular localization of copper in tolerant and non-tolerant plant. Journal of Environmental Science,17(3):452-456.
    Nowack B, Schulin R, Robinson B H.2006. Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol,40(17):5225-5232.
    Papassiopi N, Tambouris S, Kontopoulos A.1999. Removal of heavy metals from calcareous contaminated soils by EDTA leaching. Water, Air and Soil Pollution,109:1-15.
    Paul R, Lucas B, Japenga J.2002. Potentials and drawbacks of chelate-enhanced phytoremediation of soils.Environmental Polution,116:109-121.
    Peng K J, Li X D, Luo C L, et al.2006. Vegetation composition and heavy metal uptake by wild plants at three contaminated sites in Xiangxi area, China. Journal of Environmental Science and Health Part A, 40:65-76.
    Peters T H,1988. Mine tailings reclamation. In colimiter's experience with the reclaiming of sulphide tailings in the sudbury area [A].In:Salomons, W.(eds).Environmental Management of Soil Waste [C].Ontario, Canada:Springer-Verlag Berlin Heidelberg, pp.152-165.
    Polettini A, Pomi R, Rolle E.2007. The effect of operating variables on chelant-assisted remediation of contaminated dredged sediment. Chemosphere,66:866-877.
    Penalosa J M. Carpena R O, Vazquez S, et al.2007. Chelate-assisted phytoextraction of heavy metals in a soil contaminated with a pyritic sludge. Sci Total Environ,378(1-2):199-204.
    Piha M I, Vallack H W, Reeler B M, et al.1995. An ash low input approach to vegetation establishment on mine and coal wastes in semi-arid regions. I. Tin mine tailings in Zimbabwe. Journal of Applied Ecology,32:372-381.
    Pulford I D, Watson C.2003. Phytoremediation of heavy metal-contaminated land by trees:A review. Environment International,29:529-540.
    Qiu R L, Zhao X, et al.2008 Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere,74:6-12.
    Quartacci M F, Baker A J M., Navari-Izzo F.2005. Nitriloacetate and citric acid-assisted phytoex-traction of cadmium by Indian mustard (Brassica juncea (L.) Czernj.Brassicaceae). Chemosphere, 59:1249-1255.
    Robinson B H, Brooks R R, Clothier B E.1999. Soil amendments affecting nickel and cobalt uptake by Berkheya coddii: Potentialuse for phytomining and phytoremediation. Annals of Botany.84:689-694.
    Robinson BH, Brooks RR, Howes AW, et al.1997. The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. Journal of Geochemical Exploration,60:115-126.
    Romkens P, Bouwman L, Japenga J, et al.2002. Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environment Pollution,116:109-121.
    Salt DE, Blaylock M, Kumar N, et al.1995. Phytoremediation:A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology,13:468-474.
    Salt D E, Smith R D, Raskin I.1998. Phytoremediation. Annual Review of Plant Physiology & Plant Molecular Biology,49:643-668.
    Salvarredy-Aranguren M M, Probst A, Roulet M, et al.2008. Contamination of surface waters by mining wastes in the Milluni Valley (Cordillera Real, Bolivia):mineralogical and hydrological influences. Applied Geochemistry,23:1299-1324.
    Sandalio L M, Dalurzo H C, Gomez M, et al.2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot,52:2115-2126.
    Santos F S, Hernandez-Allica J, Becerril J M, et al.2006. Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens.Chemosphere,65:43-50.
    Shen Z G, Li X D Wang C C, et al.2002. Lead phytoextraction from contaminated soil with high-biomass plant species. Journal of Environment Quality,31:1893-1900.
    Shu W S, Xia H P, Zhang Z Q, et al.2002. Use of vetiver and three other grasses for revegetation of Pb/Zn mine tailings:field experiment. International Journal of Phytoremediation,4(l):47-57.
    Shu W S, Ye Z H, Lan CY, et al.2001. Acidification of lead/zinc mine tailings and its effect on heavy metal mobility. Environment International,26:389-394.
    Sleep B E, Me Clure P D.2001. Removal of volatile and semivolatile organic contamination from soil by air and stream flushing. Journal of Contaminant Hydrology.50(1-2):21-40
    Somashekaraiah B V, Padamajaes K, Prasad R K.1992. Phytotoxicity of cadmium ions on germination seedings of mung bean [Phaseolus vulgarize):Involvement of lipid peroxides in chlorophyll degradation. Plant Physiol,65:85-89.
    Soudek P, Tykva R, VanSk T.2004. Laboratory analyses of 137Cs uptake by sunflower, reed and poplar. Chemosphere,55:1081-1087.
    Sun J, Tie B Q, Qin P F, et al.2006. Investigation of contaminated soil and plants by heavy metals in Pb-Zn mining area. Journal of Plant Resources& Environment,15(2):63-67.
    Suresh B., Ravishankar G 2004. Phytoremediation-a novel and promising approach for environmental clean-up. Critical Reviews in Biotechnology,24:97-124.
    Takahashi R, Yamayoshi K, Fujimoto N, etal.1999. Production of (S,S)-Ethylenediamine-N,N'- disuccinic acid from Ethylenediamine and Fumaric Acid by Bacteria. Biosci. Biotechnol. Biochem. 63:1269-1273.
    Tandy S, Bossart K, Mueller R, et al.2004. Extraction of heavy metals from soils using biodegradable chelating agents.Environ Sci Technol,38(3):937-944
    Tandy S, Schulin R, Nowack B.2006. Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration. Environmental Science Technology, 40(8):2753-2758.
    .Tassi E, Pedron F, Barbafieri M, et al.2004. Phosphate-assisted phytoextraction in As-contaminated soil. Engineering in Life Sciences,4(4):341-346.
    Tokunaga S, Harkuta T.2002. Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere,46(1):31-38
    Vandevivere P C, Hammes F, Verstraete W, et al.2001. Metal decontamination of soil, sediment, and sewage sludge by means of transition metal chelant [S,S]-EDDS. J Environmental Engineering-Asce, 127(9):802-811.
    Vandevivere P C, Saveyn H, Verstraete W, et al.2001. Biodegradation of metal-[S,S]-EDDS complexes. Environmental Science Technology,35(9):1765-1770.
    Vassil A D, Kapulnik Y, Raskin I, et al.1998. The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiology,117(2):447-453.
    Verkleij JAC, Schat H.1990. Mechanisms of metal tolerance in higher plants//Shaw A J, ed. Heavy Metal Tolerance in Plants:Evolutionary Aspects. Boca Roca, Frorida:CRC Press, Inc., pp.179-194.
    Walker D J, Clemente R, Roig A, et al.2003. The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environmental Pollution,122:303-312.
    Wangeline A L, Burkhead J L, Hale K L, et al.2004. Overexpression of ATP sulfurylase in Indian mustard:effects on tolerance and accumulation of twelve metals. Journal of Environmental Quality, 33:54-60.
    Wasay S A, Barrington S, Tokunaga S,1998. Remediation of soils polluted by heavy metal using salts of organic acids and chelating agents. Environmental Technology.19:369-380.
    Wasay S A, Barrington S, Tokunage S.2001. Organic acids for the in situ remediation of soils polluted by heavy metals:soil flushing in columns. Water, Air and Soil Pollution,127(1/4):301-314.
    Wei C Y, Chen T B.2002. The ecological and chemical characterictics of plants in the areas of high arsenic levels. Acta Phytoecologica Sinica,26(6):695-700.
    Wenger K, Kayser A, Gupta SK, et al.2002. Comparison of NTA and elemental sulfur as potential soils amendments in phytoremediation. Soil and Sediment Contamination,11:655-672.
    Wong J W C, Ip C M and Wong M H.1998. Acid forming capacity of lead-zinc mine tailings and its implications for mine rehabilitaiton. Environmental Geochemistry & Health,20(3):149-155.
    Wong M H.1986. Reclamation of wastes contaminated by copper, lead and zinc. Environmental Management,10:707-713.
    Wu F B, Zhang G P, Dominy P.2003. Four barley genotypes respond differently to cadmium:Lipid peroxidation and activities of antioxidant capacity. Environ. Exp. Bot 50:67-77.
    Wu L H, Li H, Luo Y M, et al.2004a. Nutrients can enhance phytoremediation of copper-polluted soil by Indian mustard. Environmental Geochemistry and Health,26:331-335.
    Wu L H, Luo Y M, Xing X R, et al.2004b. EDTA enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agricultural Ecosystem Environment,102:307-318.
    Ye Z H, Wong JWC, Wong M H, et al.1999. Lime and pig manure as ameliorants for revegetating lead/zine rmne talings:A green house study. Biores.Tech,69:35-43.
    Zayed A, Lytle CM, Qian JH, etal.1998. Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta,206:293-299.
    Zhang Z Q, Shu W S, Lan C Y, et al.2001. Soil seed bank as an input of seed source in revegetation of lead/zinc mine tailings. Restoration Ecology,9:378-385.
    Zhu Y L, Zayed A M, Qian J H, et al.1999.Phytoremediation of trace elements by wetland plant Ⅱ:Water hyacinth. J Environ.Qual.,28:339-344.