柴油机多孔喷油器各孔喷油规律及内部流动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于柴油机多孔喷油器,由于加工工艺的误差及结构和液力条件的不同,各孔间的喷油规律存在一定的差异。这将引起燃烧室内燃油不均匀的空间及时间分布,进而影响柴油机的燃烧和排放特性。当前常用的喷油规律测试设备和方法,虽可给出多孔喷油器总的喷油规律较为精确的测试结果,但对于各孔喷油规律间的可能差异,却难以提供较有价值的信息。虽已有相关学者对各孔喷油规律的测试设备和方法进行过相关研究,但当前经试验验证的、能够测量柴油机实际喷射过程、响应特性较好且易于应用的相关测试装置及方法还鲜见报道。
     当前,虽已有大量学者对喷嘴内的流动特性进行过相关模拟分析,但其研究主要集中于喷射条件、喷嘴结构参数、针阀的运动及不同的燃料等对喷嘴内流动特性的影响方面,且多是基于单孔喷嘴或各孔均布的多孔喷嘴进行的。由于加工工艺的误差及结构和液力条件的不同,柴油机多孔喷油器各孔的内部流动特性会存在一定的差异。然而,还鲜有人进行过上述相关研究。由于各孔内部流动特性的差异必然会导致各孔喷射特性的差异,进而影响各喷束的雾化、蒸发和混合,并最终影响发动机的整机性能,因此,很有必要对其进行系统研究。
     基于此,根据质量守恒定律、伯努利方程、喷孔出口平均流速和流量系数间的关系、流量系数和喷雾动量流间的关系及动量守恒理论等,提出了一种基于喷雾动量流的柴油机多孔喷油器各孔喷油规律瞬态测试方法。基于所提出的测试方法,搭建了各孔喷油规律瞬态测试台架,其中:采用具有较高响应特性的压电晶体力传感器对各孔的喷雾冲击力进行测试,与喷雾直接冲击的目标板通过螺纹拧紧在传感器的头部;通过磁性表座对力传感器-目标板组件进行固定,力传感器-目标板组件相对喷雾轴线的夹角及相对喷孔出口的距离是可调节的;采用自行开发的数据采集系统对相关数据进行测录;采用夹持在压力室上游喷油嘴外圆的外卡式压力传感器对喷油压力进行测试。在不同的运行工况下,试验验证了所提测试方法的可行性,并分析了测试台架结构参数对喷孔喷油规律测试的影响。建立了喷嘴内部流动的三维气液两相流空穴模型,并通过各孔喷油规律测试结果,对所建模型的预测精度进行了验证。通过试验和数值模拟相结合的方法,研究了燃油温度、喷孔结构参数及喷射条件对各孔喷油规律及其差异的影响,并分析了喷射条件和喷孔结构参数对各孔内部流动特性的影响。
     试验结果显示:利用所提出的测试方法,可对喷油器各孔的喷油规律进行较为精确的测试,当喷孔出口与目标板距离及目标板与喷雾轴线夹角分别为10mm和90°时,不同工况下基于各孔喷油规律测试结果得到的循环喷油量与实测值的相对误差均小于5%;当目标板与喷雾轴线夹角小于100°及喷孔出口与目标板距离小于12mm时,不同传感器位置处所测得的喷油规律曲线具有较高吻合度;对于多孔喷油器,喷孔轴线与针阀轴线夹角较大的喷孔,其喷油始点将推迟,喷油终点将提前,循环喷油量将变小;随着燃油温度的升高,各孔的喷油始点将逐渐推迟,喷油速率将逐渐降低,喷油持续期将逐渐变短,各孔的循环喷油量及其不均匀系数将逐渐降低。
     数值模拟结果表明:流入喷孔内的燃油包括由压力室上游流入的部分和由压力室底部流入的部分,但随着喷孔轴线与针阀轴线夹角的增加,进入喷孔的上述两部分燃油均逐渐减少,喷孔出口的平均流速逐渐降低;在针阀的开启阶段,针阀升程的增加对各孔内的空化效应均具有强化作用;在针阀的关闭阶段,随着针阀的下落,各孔内的空化效应也是略有增加的,且该现象在较小针阀升程时尤为明显;随着喷油压力和喷孔直径的增加,各孔内的空化效应均逐渐增强,但随着喷油背压、喷孔入口导圆半径及喷孔长度的增加,各孔内的空化效应均逐渐减弱。随着喷油压力、喷孔入口导圆半径及喷孔直径的增加,各孔的喷油速率和循环喷油量均逐渐提高;随着喷油背压和喷孔长度的增加,各孔的喷油速率和循环喷油量均逐渐降低;随着喷油压力、喷孔直径和喷孔长度的增加,各孔的流量系数均逐渐降低;随着喷油背压和喷孔入口导圆半径的增加,各孔的流量系数逐渐提高。
For a multi-hole diesel injector, there are injection rate diversities among nozzle holes due to the inaccuracies in workmanship and the differences in structure parameters and hydraulic conditions among nozzle holes, which will lead to the non-uniform spatial and temporal distributions of the fuel within the combustion chamber and affect the combustion and emission characteristics of diesel engine. The measuring methods and equipments used for injection rate determination commonly can give the accurate testing result of the total injection rate of a multi-hole diesel injector, but they can't provide any information about the possible differences in injection rates among nozzle holes. A small number of scholars have ever carried out some relative researches about the measuring methods and equipments used for the measurement of injection rate of each nozzle hole, however, there are few reports about the methods and equipments validated experimentally which could measure the real injection process, have adequate response characteristics and the potential to be applied easily.
     So far, a lot of scholars have carried out the simulation researches on the internal flow characteristics of diesel injector. However, these studies were mainly focused on the influences of injection conditions, structure parameters of diesel injector, needle valve movement and different fuels on the internal flow characteristics. For a multi-hole diesel injector, the diversities of the internal flow characteristics among nozzle holes do exist due to the inaccuracies in workmanship and the differences in hydraulic conditions among nozzle holes. Nevertheless, few scholars have ever carried out the above related researches. Due to the significant effects of the differences in internal flow characteristics among nozzle holes on injection characteristics of each nozzle hole, fuel atomization, fuel evaporation, fuel-air mixing and combustion process, it is necessary to conduct the above related researches.
     Based on the mass conservation law, Bernoulli's equation, the relationship between the mean velocity at the outlet and the discharge coefficient, the relationship between the discharge coefficient and the spray momentum flux, the momentum conservation law and so on, a transient measuring method for injection rate of each nozzle hole based on spray momentum flux is proposed. According to the measuring method proposed, the experimental rig used for the determination of injection rate of each nozzle hole is built. Calibrated piezoelectric force sensors were employed to detect the spray impact forces by means of circular targets screwed directly on the sensor heads. A magnetic stand used for the positioning of the target-sensor assembly was equipped with a distance adjusting screw and an angle adjustment knob, which allow the target-sensor assembly to be moved and to be rotated, respectively. A self-developed data acquisition system is employed to measure and record the related parameters. A clamp-on pressure sensor clamped on the cylinder of sac upstream is used to measure the injection pressure. The reliability and stability of the measuring method proposed are validated experimentally under different operating conditions, meanwhile, the influences of the measurement procedure details on the determination of the injection rate are analyzed. A three-dimensional gas-liquid two-phase model of cavitation flow is developed, and it's prediction accuracy is validated based on the existing experimental data. Combining the bench experiment and the numerical simulation, the influences of fuel temperature, structure parameters of nozzle hole and injection conditions on the injection rate of each nozzle hole and the discrepancies in injection rates among nozzle holes are studied. At the same time, the influences of the structure parameters of nozzle hole and injection conditions on the internal flow characteristics of each nozzle hole are analyzed.
     The experimental results show that:using the measuring method proposed, the injection rate of each nozzle hole can be measured accurately. With the distance between the outlet and the target of10mm and the angle between the target and spray axis of90°, the relative errors between the cycle fuel injection quantity obtained based on the measurement of the injection rate of each nozzle hole and the experimental result are less than5%under different operating conditions. When the distance between the outlet and the target, the angle between the target and spray axis are less than12mm and100°, respectively, the injection rate time-histories measured at different positions of the force sensor are close to one another for the same nozzle hole. For the multi-hole diesel injector, the injection start will be delayed, the injection end will be advanced, and the cycle fuel injection quantity will be decreased with the increment of the angle between nozzle hole axis and needle axis. With the increase of fuel temperature, the injection start of each nozzle hole will be delayed, the injection duration will be shortened, meanwhile, injection rate, cycle fuel injection quantity and non-uniform coefficient of cycle fuel injection quantities among nozzle holes will be decreased.
     The numerical simulation results show that:the fuel flowing into a nozzle hole includes two portions entering it from the sac upstream and the sac bottom, respectively. With the increment of the angle between nozzle hole axis and needle axis, the above two parts will be reduced gradually, and the mean flow velocity at the outlet will be decreased little by little. During the opening phase of the needle, the cavitation effect of each nozzle hole is enhanced gradually. During the closing phase of the needle, the cavitation effect of each nozzle hole is increased slightly, which is particularly apparent for the smaller needle valve lift. With the increment of the injection pressure and the orifice diameter, the cavitation effect of each nozzle hole is enhanced gradually. But with the increment of the injection back pressure, the corner radius at the inlet and the orifice length, the cavitation effect of each nozzle hole is decreased little by little. With the increase of the injection pressure, the corner radius at the inlet and the orifice diameter, the injection rate and the cycle fuel injection quantity of each nozzle hole are increased gradually. But with the increase of the injection back pressure and the orifice length, the injection rate and the cycle fuel injection quantity of each nozzle hole are decreased by degrees. With the increment of the injection pressure, the orifice diameter and the orifice length, the discharge coefficient of each nozzle hole is reduced gradually. But with the increase of the corner radius at the inlet and the injection back pressure, the flow coefficient of each nozzle hole is increased little by little.
引文
[1]高宗英,朱剑明.柴油机燃料供给与调节[M].北京:机械工业出版社.2009.
    [2]Hossainpour S, Binesh A R. Investigation of fuel spray atomization in a DI heavy-duty diesel engine and comparison of various spray breakup models[J]. Fuel,2009(88):799-805.
    [3]Alahmer A. Influence of using emulsified diesel fuel on the performance and pollutants emitted from diesel engine[J]. Energy Conversion and Management,2013(73):361-369.
    [4]Rao G A P, Kaleemuddin S. Development of variable timing fuel injection cam for effective abatement of diesel engine emissions[J]. Applied Energy,2011(88):2653-2662.
    [5]Singh A P, Agarwal A K. Combustion characteristics of diesel HCCI engine:An experimental investigation using external mixture formation technique[J]. Applied Energy,2012(99): 116-125.
    [6]Wu H W, Wu Z Y. Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen[J]. Energy,2012(47):411-420.
    [7]郭树满.高压共轨柴油机燃油喷射控制系统的开发及喷油一致性的研究[D].博士学位论文.天津:天津大学,2011.
    [8]Postrioti L, Mariani F, Battistoni M. Experimental and numerical momentum flux evaluation of high pressure Diesel spray[J]. Fuel,2012(98):149-163.
    [9]Dernotte J, Hespel C, Foucher F, Houille S, Mounaim-Rousselle C. Influence of physical fuel properties on the injection rate in a Diesel injector[J]. Fuel,2012(96):153-160.
    [10]Armas O, Mata C, Martinez-Martinez S. Effect of diesel injection parameters on instantaneous fuel delivery using a solenoid-operated injector with different fuels[J]. Rev. Fac. Ing. Univ. Antioquia,2012(64):9-21.
    [11]Hiroyasu H. Experimental and Theoretical Studies on the Structure of Fuel Sprays in Diesel Engines[C]. In:Proceeding of ICLASS-91, Gaithersburg. MD. USA,1991.
    [12]Bergwerk W. Flow pattern in diesel nozzle spray holes[J]. Proceedings of the institution of mechanical engineers,1959(25):655-660.
    [13]Ranz W E. Some experiments on orifice sprays[J]. The Canadian Journal of Chemical Engineering,1958(4):175-181
    [14]Reitz R D, Bracco F V. Mechanism of atomization of a liquid jet[J]. Physics of Fluids,1982(10): 1730-1742.
    [15]玉木伸茂等.喷油嘴喷孔空穴现象对液体喷束雾化的影响[J].国外内燃机车,1998(8):23-29.
    [16]Fimml W, Chmela F G, Pirker G, Wimmer A. Influence of cavitation in the injection nozzle on combustion in diesel engines[J]. International Journal of Engine Research,2010(11):375-390.
    [17]Bosch W. The fuel rate indicator:a new instrument for display of the characteristic of individual injection[C]. SAE Paper 660749,1966.
    [18]黄礴.柴油机喷油规律的微机测试分析[J].湖南大学学报,1996,,23(1):85-89.
    [19]张志强,赵福全,胡宗杰,等.基于长管法的柴油多次喷油规律及喷雾特性[J].内燃机学报,2012,30(4):330-335.
    [20]Jangsik K, Choongsik B. Effect of nozzle hole geometry on non-evaporating diesel spray characteristics at high-pressure injection[J]. Atomization and Sprays,2012,22(1):1-21.
    [21]Lee J, Min K. Effects of Needle Response on Spray Characteristics in High Pressure Injector Driven by Piezo Actuator for Common-Rail Injection System[J]. Journal of Mechanical Science and Technology,2005(19):1194-1205.
    [22]Catania A E, Ferrari A, Manno M, Spessa E. Experimental Investigation of Dynamics Effects on Multiple-Injection Common Rail System Performance[J]. ASME Trans, J Eng Gas Turb Power,2008,130(3):032806.
    [23]Guanjun Y, Liguang L, Jun D, et al. Research on the effect of the parameters of common-rail system on the injection rate[J]. Lecture Notes in Electrical Engineering,2013(189):411-420.
    [24]Radu R, Gheorghe M, Petru C, et al. Comparative analysis of two injection systems fueled with biodiesel[C]. SAE Paper 2012-01-1657,2012.
    [25]Costa M, Allocca L, Montanaro A, et al. Multiple Injection in a Mixed Mode GDI Boosted Engine[C]. SAE Paper 2010-01-1496,2010.
    [26]Zeuch W. Neue Verfahren zur Messung des Einspritzgesetzes und Einspritz-Regelmassigkeit von Diesel-Einspritzpumpen[J]. MTZ,1961(9):415-420.
    [27]Arcoumanis C, Baniasad M S. Analysis of Consecutive Fuel Injection Rate Signals Obtained by the Zeuch and Bosch Methods[C]. SAE Paper 930921,1993.
    [28]Takamura A, Ohta T, Fukushima S, et al. A Study on Precise Measurement of Diesel Fuel Injection Rate[C]. SAE Paper 920630,1992.
    [29]Ishikawa S, Ohmori Y, Fukushima S, et al. Measurement of Rate of Multiple-Injection in CDI Diesel engines[C]. SAE Paper 2000-01-1257,2000.
    [30]Ikeda T, Ohmori Y, Takamura A, Sato Y,. Measurement of the Rate of Multiple Fuel Injection with Diesel Fuel and DME[C]. SAE Paper 2001-01-0527,2001.
    [31]周龙保.内燃机学[M].北京:机械工业出版社.2005.
    [32]Marcic M. A new method for measuring fuel-injection rate[J]. Flow Measurement and Instrumentation,1999(10):159-165.
    [33]LI Bo, LI Yunqiang, WANG Defu. Fuel Spray Dynamic Characteristics of GDI High Pressure Injection System[J]. CHINESE JOURNAL OF MECHANICAL ENGINEERING,2012(2): 335-361.
    [34]Chung N H, Oh B G, Sunwoo M H. Modelling and injection rate estimation of commom-rail injectors for direct-injection diesel engines[J]. Processings of the institution of mechanical engineers, Part D:Journal of automobile engineering,2008(6):1089-1101.
    [35]Payri R, Tormos B, Salvador F J, Plazas A H. Using one-dimensional modelling codes to analyse the influence of diesel nozzle geometry on injection rate characteristics[J]. International Journal of Vehicle Design,2005(1):58-78.
    [36]江海清,刘永长,贺萍,宋军.用蜂窝轮法测量喷油规律的差异分析[J].车用发动机,1994(4):33-36.
    [37]乔新勇,刘建敏,李胜东,张小明.采用人工神经网络对柴油机喷油规律的检测研究[J].无损检测,2004(8):408-410.
    [38]Durst F, Ismailov M, Trimis D. Measurement of instantaneous flow rates in periodically operating injection systems[J]. Experiments in Fluids,1996(20):178-188.
    [39]Brenn G, Durst F, Trimis D, Weclas M. Methods and Tools for Advanced Fuel Spray Production and Investigations [J]. Atomization and Sprays,1997(2):43-75.
    [40]Ismailov M, Murad M, Schock, Harold J. Quantification of instantaneous diesel flow rates in flow generated by a stable and controllable multiple injection system(ROSA) [C]. SAE Paper 2004-01-0028,2004.
    [41]吴亚兰,唐娟,兰欣.新型柴油机喷油规律测试系统的设计[J].农机化研究,2007(6):203-204.
    [42]Murad M, Ismailov M. Dynamic sonar instantaneous flow meter (DISF) for quantification of diesel multi-burst injection with high temporal and volumetric resolution[C]. SAE Paper 2006-01-1550,2006.
    [43]Armas O, Mata C, Martinez-Martinez S. Effect of diesel injection parameters on instantaneous fuel delivery using a solenoid-operated injector with different fuels[J]. Rev. Fac. Ing. Univ. Antioquia,2012(64):9-21.
    [44]Dernotte J, Hespel C, Foucher F, et al. Influence of physical fuel properties on the injection rate in a diesel injector[J]. Fuel,2012(96):153-160.
    [45]Marcic M. Sensor for Injection Rate Measurements [J]. Sensors,2006(6):1367-1382.
    [46]Marcic M. Measuring method for diesel multihole injection nozzles[J]. Sensors and Actuators A, 2003,107 (2):152-158.
    [47]Payri F, Payri R, Salvador F J, et al. Comparison between Different Hole to Hole Measurement Techniques in a Diesel Injection Nozzle[C]. SAE Paper 2005-01-2094; 2005.
    [48]Marcic M. Deformational injection rate measuring method[J]. Review of scientific instruments, 2002(9):3373-3377.
    [49]Payri R, Guardiola C, Salvador F J, Gimeno J. Critical cavitation number determination in diesel injection nozzles[J]. Exp. Tech,2004(3):49-52.
    [50]高原,黄魏迪,高雅,等.基于喷雾特性及质量均匀性的油嘴喷孔加工一致性方法研究[J].内燃机工程,2012(4):36-40.
    [51]Rife J, Heywood J B. Photographic and preformance studies of diesel combustion with a rapid compress machine[C]. SAE Paper 740948; 1974.
    [52]Hiroyasu H, Arai M. Structures of fuel sprays in diesel engines[C]. SAE Paper 900475; 1990.
    [53]Payri F, Bermudez V, Payri R, Salvador F J. The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles[J]. Fuel,2004(83):419-431.
    [54]Desantes J M, Payri R, Salvador F J, Soare V. Study of the influence of geometrical and injection parameters on diesel sprays characteristics in isothermal conditions[C]. SAE Paper 2005-01-0913; 2005.
    [55]Naber J, Siebers D L. Effects of gas density and vaporisation on penetration and dispersion of diesel sprays[C]. SAE Paper 960034; 1996.
    [56]Li Genbao, Cao Jianming, Li Minglong, et al. Experimental study on the size distribution characteristics of spray droplets of DME/diesel blended fuels[J]. Fuel Processing Technology, 2012(104):352-355.
    [57]Li T, Nishida K, Hiroyasu H. Droplet size distribution and evaporation characteristics of fuel spray by a swirl type atomizer[J]. Fuel,2011 (90):2367-2376.
    [58]Suh H K, Park S W, Lee C S. Effect of piezo-driven injection system on the macroscopic and microscopic atomization characteristics of diesel fuel spray[J]. Fuel,2007(86):2833-2845.
    [59]Desantes J M, Payri R, Salvador F J, Gil A. Development and validation of s theoretical model for diesel spray penetration[J]. Fuel,2006(85):910-917.
    [60]Payri R, Ruiz S, Salvador F J, Gimeno J. On the dependence of spray momentum flux in spray penetration:momentum flux packets penetration model[J]. Journal of mechanical science and technology,2007(21):1100-1111.
    [61]Rajaratnam N. Turbulent jets[M]. Amsterdam:Elsevier,1974.
    [62]Greeves G, Dober G, Tullis S, Milovanovic N, Zuelch S. Nozzle momentum efficiency definition, measurement and importance for diesel combustion[C]. ILASS, Como Lake, Italy, 2008.
    [63]Postrioti L, Mariani F, Battistoni M. Experimental and numerical momentum flux evaluation of high pressure diesel spray[J]. Fuel,2012(98):149-163.
    [64]Postrioti L, Mariani F, Battistoni M, Mariani A. Experimental and numerical evaluation of diesel spray momentum flux[C]. SAE Paper 2009-01-2772; 2009.
    [65]Postrioti L, Battistoni M. Evaluation of Diesel Spray Momentum Flux in Transient Flow Conditions[C]. SAE Paper 2010-01-2244; 2010.
    [66]Bai C, Gosman A. Development of methodology for spray impingement simulation[C]. SAE Paper 950283; 1995.
    [67]刘建新,杜慧勇,李民,等.柴油机燃油喷雾动量的测量与分析[J].洛阳工学院学报,2002(3):48-50.
    [68]Payri R, Salvador F J, Gimeno J, Zapata L D. Diesel nozzle geometry influence on spray liquid-phase fuel penetration in evaporative conditions[J]. Fuel,2008(87):1165-1176.
    [69]Desantes J M, Payri R, Salvador F J, Gimeno J. Measurement of spray momentum for the study of cavitation in diesel injection nozzles[C]. SAE Paper 2003-01-0703; 2003.
    [70]Payri R, Garcia A, Domenech V, Durrett R, Plazas A H. An experimental study of gasoline effects on injection rate, momentum flux and spray characteristics using a common rail diesel injection system[J]. Fuel,2012(97):390-399.
    [71]Payri R, Garcia J M, Salvador F J, Gimeno J. Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics[J]. Fuel,2005(84): 551-561.
    [72]杜慧勇,刘建新,李民,等.一种研究喷油嘴油束发展过程的新方法[J].热科学与技术,2002(1):71-75.
    [73]Payri R, Ruiz S, Salvador F J, Gimeno J. On the dependence of spray momentum flux in spray penetration:momentum flux packets penetration model[J]. Journal of mechanical science and technology,2007(21):1100-1111.
    [74]Desantes J M, Payri R, Salvador F J, Gimeno J. Prediction of spray penetration by means of spray momentum flux[C]. SAE Paper 2006-01-1387; 2006.
    [75]Desantes J M, Payri R, Garcia J M, Salvador F J. A contribution to the understanding of isothermal diesel spray dynamics[J]. Fuel,2007(86):1093-1101.
    [76]Desantes J M, Payri R, Salvador F J, Gil A. Development and validation of a theoretical model for diesel spray penetration[J]. Fuel,2006(85):910-917.
    [77]Salvador F J, Ruiz S, Gimeno J, Morena D L. Estimation of a suitable Schmidt number range in diesel sprays at high injection pressure[J]. International Journal of Thermal Sciences,2011(50): 1790-1798.
    [78]Sangiah D K, Ganippa L C. Application of spray impingement technique for characterisation of high pressure sprays from multi-hole diesel nozzles[J]. International Journal of Thermal Sciences,2010(49):409-417.
    [79]Ganippa L C, Andersson S, Chomiak J. Transient measurement of discharge coefficients of diesel nozzles[C]. SAE Paper 2000-01-2788; 2000.
    [80]Ricou F P, Spalding D B. Measurements of entrainment by axisymmetrical turbulent jets[J]. J. Fluid Mech,1961(11):21-32.
    [81]Winter J, Dittus B, Kerst A, Muck O, Schulz R, Vogel A. Nozzle hole geometry-a powerful instrument for advanced spray design[C]. In:THIESEL international conference on thermo- and fluid dynamic processes in diesel engines, Valencia, Spain,2004.
    [82]Kampmann S, Dittus B, Mattes P, Kirner M. The influence of hydro grinding at VCO nozzles on the mixture preparation in a DI diesel engine[C]. SAE paper 960867; 1996.
    [83]Arcoumanis C, Flora H, Gavaises M, Badami M. Cavitation in real-size multi-hole diesel injector nozzles[C]. SAE paper 2000-01-1249; 2000.
    [84]Chaves H, Knapp M, Kubitzek A. Experimental study of cavitation in the nozzle hole of diesel injectors using transparent nozzles[C]. SAE Paper 950290; 1995.
    [85]Soteriou C E, Andrews R J, Smith M. Direct injection diesel sprays and the effect of cavitation and hydraulic flip on atomization[C]. SAE Paper 950080; 1995.
    [86]Suh H K, Lee C S. Effect of Cavitation in Nozzle Orifice on the Diesel Fuel Atomization Characteristics[J]. International Journal of Heat and Fluid Flow,2008(29):1001-1009.
    [87]Sou A, Hosokawa S, Tomiyama A. Effects of Cavitation in a Nozzle on Liquid Jet Atomization[J]. International Journal of Heat and Mass Transfer,2007(50):3575-3582.
    [88]Nurick, W. H. Orifice cavitation and its effect on spray mixing[J]. Journal of Fluids Engineering, 1976(4):681-687.
    [89]Mitroglou N, Gavaises M, Nouri J M, Arcoumanis C. Cavitation inside enlarged and real-size fully transparent injector nozzles and its effect on near nozzle spray formation[C]. DIPSI Workshop 2011 on Droplet Impact Phenomena & Spray Investigation, Bergamo, Italy,2011.
    [90]Oda T, Goda Y, Kanaike S, Aoki K, Ohsawa K. Experimental Study about internal Cavitating Flow and Primary Atomization of a Large-Scaled VCO Diesel Injector with Eccentric Needle[C]. ICLASS 2009,11th Triennial International Annual Conference on Liquid Atomization and Spray Systems, Vail, Colorado USA, July 2009.
    [91]Oda T, Hiratsuka M, Goda Y, Kanaike S, Ohsawa K. Experimental and Numerical Investigation about internal Cavitating Flow and Primary Atomization of a Large-Scaled VCO Diesel Injector with Eccentric Needle[C]. ILASS-Europe 2010,23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, September 2010.
    [92]Gavaises M, Andriotis A, Papoulias D, Mitroglou N, Theodorakakos A. Characterization of string cavitation in large-scale Diesel nozzles with tapered holes[J]. Physics of Fluids,2009(21): 052107.
    [93]Laoonual Y, Yule A J and Walmsley S J. Internal Fluid Flow and Spray Visualizaiton for a Large-Scale VCO Orifice Injector Nozzle[C]. ILASS-Europe, Zurich,2-6 September,2001.
    [94]Knox-Kelecy A L, Farrell P V. Spectral Characteristics of Turbulent Flow in a Scale Model of a Diesel Fuel Injector Nozzle[C]. SAE Paper 930924; 1993.
    [95]Arcoumanis C, Gavaises M, Nouri J M, Abdul-Wahab E, Horrocks R W. Analysis of the Flow in the Nozzle of a Vertical Multi-Hole Diesel Engine Injector[C]. SAE Paper 980811; 1998.
    [96]Kato M, Kano H, Date K, Oya T, Niizuma K. Flow Analysis in Nozzle Hole in Consideration of Cavitation[C]. SAE Paper 970052; 1997.
    [97]Kim J H, Nishida K, Yoshizaki T, Hiroyasu H. Characterization of Flows in the Sac Chamber and the Discharge Hole of a D.I. Diesel Injection Nozzle by Using a Transparent Model Nozzle[C]. SAE Paper 972942; 1997.
    [981 Keller A P. Cavitation Scale Effects-Empirically Found Relations and the Correlation of Cavitation Number and Hydrodynamic Coefficients[C]. Proceedings, CAV 2001,4th International Symposium on Cavitation, California Institute of Technology, Pasadena, California, USA,2001.
    [99]O'Hern T J. Cavitation Inception Scale Effects:I. Nuclei Distributions in Natural Waters. II.Cavitation Inception in a Turbulent Shear Flow. PhD Thesis, California Institute of Technology Pasadena, California,1987.
    [100]Lockett R D, Liverani L, Thaker D, Jeshani M, Tait N P. The characterisation of diesel nozzle flow using high speed imaging of elastic light scattering[J]. Fuel,2013(106):605-616.
    [101]Liverani L, Arcoumanis C, Yanagihara H, Sakata I, Omae K. Imaging of the flow and cavitation formation in a transparent real-size six-hole nozzle under realistic conditions[C]. Proceedings of the 7th International Conference on Modeling and Diagnostics for Advanced Engine Systems, COMODIA 2008, July 28-July 31:453-460.
    [102]Badock C, Wirth R, Fath A, Leipertz A. Investigation of cavitation in real size diesel injection nozzles[J]. International Journal of Heat and Fluid Flow,1999(20):538-544.
    [103]Roth H, Giannadakis E, Gavaises M, Arcoumanis C, et al. Effect of Multi-Injection Strategy on Cavitation Development in Diesel Injector Nozzle Holes[C]. SAE Paper 2005-01-1237; 2005.
    [104]Takenaka N, Kawabata K, Kawabata Y, Lim I C, Sim C M. Visualization of cavitation phenomena at a nozzle and a seat in a fuel injection nozzle by neutron radiography[C].8th World Conference on Neutron Radiography, WCNR-8,2008:349-357.
    [105]何志霞,袁建平,李德桃,梁凤标.柴油机喷嘴结构优化的数值模拟分析[J].内燃机学报,2006(1):35-41.
    [106]He Z X, Mu Q M, Wang Q, Yuan J P. Effect of diesel nozzle geometry on internal cavitating flow[J]. Advanced materials research,2010(97-101):2925-2928.
    [107]He Z, Zhong W, Wang Q, et al. An investigation of transient nature of the cavitating flow in injector nozzles[J]. Applied Thermal Engineering,2013(54):56-64.
    [108]Lee W G, Reitz R D. A numerical investigation of traneient flow and cavitation within minisac and VCOdiesel injector nozzles[C]. Proceedings of ASME Internal Combustion Engine Division 2009 Spring Technical Conference, May 3-6,2009, Wisconsin, Milwaukee, USA.
    [109]Lee J W, Min K D, Kang K Y, et al. Effect of piezo-driven and solenoid-driven needle opening of common-rail diesel injectors on internal nozzle flow and spray development[J]. International Journal of Engine Research,2006(6):489-502.
    [110]He Z, Zhong W, Wang Q, et al. Effect of nozzle geometrical and dynamic factors on cavitating and turbulent flow in a diesel multi-hole injector nozzle[J]. International Journal of Thermal Sciences,2013(70):132-143.
    [111]Dorri A, Lamani A, Hoxha A. Influence of hole geometry in the cavitation phenomena of diesel injectors, a numerical investigation[J]. Goriva i maziva,2009,48(3):351-371.
    [112]Benajes J, Pastor J V, Payri R, et al. Analysis of the Influence of Diesel Nozzle Geometry in the Injection Rate Characteristic[J]. Journal of Fluids Engineering,2004(126):63-71.
    [113]ZHANG Jun, DU Qing, YANG Yanxiang. Influence of Diesel Nozzle Geometry on Cavitation Using Eulerian Multi-Fluid Method[J]. Trans. Tianjin Univ,2010(16):033-039.
    [114]He Z, Liu J, Wang Q, Yuan J. A Numerical Study into the Effect of Cavitation Number on the Flow Characteristics in Diesel Nozzle Holes[C]. Asia-Pacific Power and Energy Engineering Conference, APPEEC 2010, March 28,2010-March 31,2010:5449157.
    [115]Ning W, Reitz R, Diwakar R, Lippert A. A Numerical Investigation of Nozzle Geometry and Injection Condition Effects on Diesel Fuel Injector Flow Physics[C]. SAE Paper 2008-01-0936; 2008.
    [116]Wang X, Su W. Numerical investigation on relationship between injection pressure fluctuations and unsteady cavitation processes inside high-pressure diesel nozzle holes[J]. Fuel,2010(89): 2252-2259.
    [117]汪翔,苏万华.柴油高压喷嘴内部的压力波动与不稳定空化现象分析[J].内燃机学报,2010(3):193-198.
    [118]何志霞,王谦,袁建平,李德桃.喷油压力波动对喷嘴内空穴发展影响的CFD分析[J].内燃机工程,2009(1):64-68.
    [119]Salvador F J, Martinez-Lopez J, Romero J V, Rosello M D. Influence of biofuels on the internal flow in diesel injector nozzles[J]. Mathematical and Computer Modelling,2011(54): 1699-1705.
    [120]Kato M, Takeuchi H, Koie K, Sekijima H, et al. A Study of Dimethyl Ether(DME) Flow in Diesel Nozzle[C]. SAE Paper 2004-01-0081; 2004.
    [121]Battistoni M, Grimaldi C N. Numerical analysis of injector flow and spray characteristics from diesel injectors using fossil and biodiesel fuels[J]. Applied Energy,2012(97):656-666.
    [122]Chaves H, Obermeier F. Modelling the Effect of Modulations of the Injection Velocity on the Structure of Diesel Sprays[C]. SAE Paper 961126; 1996.
    [123]Wang T C, Han J S, Xie X B, et al. Parametric Characterization of High-Pressure Diesel Fuel Injection System[J]. J. Eng. Gas Turbines Power,2003(2):421-426.
    [124]汪翔.柴油喷嘴中的不稳定空化过程及其影响射流雾化的基础研究[D].博士学位论文.天津:天津大学,2009.
    [125]刘建敏,乔新勇,张小明.基于人工神经网络的柴油机喷油量检测研究[J].内燃机工程,2002(2):51-53.
    [126]罗福强,高宗英.柴油机瞬变工况瞬时转速及工作过程测量分析系统[J].内燃机工程,1996,17(1):13-17.
    [127]徐波,张宗杰,戚茂国,等.柴油机多孔式喷油嘴中燃油三维流动分析[J].现代车用动力,2005(1):17-21.
    [128]缪雪龙,郑金保,洪建海,等.交叉喷孔喷油嘴喷雾特性的试验[J].内燃机学报,2012,30(5):435-439.
    [129]大西浩之等.多喷孔喷油嘴的喷射特性[J].油泵油嘴技术,1995(4):11-16.
    [130]乔信起,宋永臣,颜淑霞,等.直喷式柴油机喷油特性的测试分析[J].农业机械学报,2004,35(3):37-40.
    [131]Gong Chen. Study of fuel temperature effects on fuel injection, combustion and emissions of direct-injection diesel engines[C].2003 Fall Technical Conference of the ASME Internal Combustion Engine Division, Erie, Pennsylvania USA, September 7-10,2003.
    [132]吴子军,杜巍,刘福水,等.燃油温度对电控单体泵增压柴油机性能影响研究[J].兵工学报,2013,34(6):664-648.
    [133]赵雪菲,李孝禄,方晓敏,等.温度对柴油和二甲醚喷射系统性能的影响[J].农业机械学报,2009,40(6):10-15.
    [134]Wang Y C, Brennen C E. One-dimensional bubbly cavitating flows through a converging diverging nozzle[J]. Journal of Fluids Engineering,1998(1):166-170.
    [135]De Giorgi M G, Bello D, Ficarella A. Analysis of thermal effects in a cavitating orifice using Rayleigh equation and experiments[J]. Journal of Engineering for Gas Turbines and Power, 2010(132):092901.
    [136]Nurick W H. Orifice cavitation and its effect on spray mixing[J]. Journal of fluids engineering, 1976(98):681-687.
    [137]Schmidt D P, Corradini M L. Analytical prediction of the exit flow of cavitating orifices[J]. Atomization and Sprays,1997(6):603-616.
    [138]Yuan W, Sauer J, Schnerr G H. Modeling and Computation of Unsteady Cavitation Flows in Injection Nozzles[J]. Journal of Mechanical Industry,2001(2):383-394.
    [139]Schmidt D P, Rutland C J, Corradini M L. A Fully Compressible, Two-Dimensional Model of Small, High Speed, Cavitating Nozzles[J]. Atomization and Sprays,1999(3):255-276.
    [140]Schmidt D P, Rutland C J, Corradini M L. A Numerical Study of Cavitating Flow through Various Nozzle Shapes[C]. SAE Paper 971597; 1997.
    [141]Alajbegovic A, Grogger H A, Philipp H. Calculation of the Transient Cavitaiton in Nozzle Using the Two-Fluid Model[C]. Proc. ILASS-Americas'99 Annua Conf,1999:373-377.
    [142]Wallis G B. One-dimensional two-phase flow[M]. McGraw-Hill, New York,1969.
    [143]Joseph D D. Cavitation and the state of stress in a flowing liquid[J]. Journal of fluid mechanics, 1998(366):367-378.
    [144]Joseph D D. Cavitation in a Flowing Liquid[J]. Phys Rev E,1995(3):1649-1650.
    [145]Stoffel B, Schuller W. Investigations Concerning the Influence of Pressure Distribution and Cavity Length on Hydrodynamic Cavitation Intensity [J]. ASME-Fluids Engineering Division, 1995(226):51-58.
    [146]Theotanous T G, Sullivan J. Turbulence in 2-Phase Dispersed Flows[J]. Journal of Fluid Mechanics,1982(116):343-362.
    [147]Sato Y, Sekoguchi K. Liquid Velocity Distribution in Two-Phase Bubble Flow[J]. International Journal of Multiphase Flow,1975(2):79-95.
    [148]Fluent Inc.. Fluent User's Guide. Fluent Inc.,2003.
    [149]Lopez de Bertodano M. Turbulent Bubbly Two-Phase Flows in a Triangular Duct. Ph.D. Thesis, Renssealaer Polytechnic Institute, Troy, New York,1992.
    [150]Winklhofer E, Kull E, Kelz E, et al. Comprehensive hydraulic and flow field documentation in model throttle experiments under cavitation conditions[C]. Proceedings of the ILASS-Europe Conference, Zurich,2001:574-579.
    [151]Zhixia He, Wenjun Zhong, Qian Wang, et al. An investigation of transient nature of the cavitating flow in injector nozzles[J]. Applied Thermal Engineering,2013(54):56-64.
    [152]大石行纪,渡边庆人.计算流体力学(CFD)在产品研究和开发中的应用[J].油泵油嘴技术,1995(4):20-24.
    [153]夏兴兰,许喆,郭立新,等.影响喷油嘴喷孔流量系数关键参数的研究[J].现代车用动力,2010(4):7-10.
    [154]Yoda T, Tsuda T. Influence of Injection Nozzle Improvement on DI Diesel Engine[C]. SAE Paper 970356; 1997.
    [155]Kampmann S, Dittus B, Mattes P, Kirner M. The Influence of Hydro Grinding at VCO Nozzles on the Mixture Preparation in a DI Diesel Engine[C]. SAE Paper 960867; 1996.
    [156]胡林峰,夏兴兰,郭立新.喷油嘴偶件内部流动特性的研究.现代车用动力[J],2009(4):7-13.