血管内支架结构的生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管内支架是用于心血管重度狭窄疾病介入治疗的植入器械,支架结构的力学安全稳定性是血管内支架研究工作的根本性问题。建立支架结构的设计指导及力学性能评价体系是血管内支架结构生物力学研究的重要课题,亟待解决,这对于支架植入手术具有重大的指导意义;此外,临床应用和理论分析都已证实,支架结构的塌陷经常出现在其结构单元的连接筋梁处,这充分说明支架的筋梁、结构单元力学性能对其整体结构的安全稳定性有着至关重要的作用,但这方面的研究却还未见之于文献报道。本文的工作,主要是针对以上两个问题进行的。
     依据支架筋梁断裂、结构单元失稳进而整体结构塌陷的过程,本文提出了一种新的支架结构研究方法,即“筋梁-结构单元”法。该方法对支架筋梁和结构单元两个重要的特征进行优化,提出一种更具生物力学安全稳定性的血管内支架结构。本文工作包括以下三个主要研究内容:
     一、本文首先对支架筋梁进行倒梯形横截面的特征优化。从支架网状结构筋梁的抗弯强度、支架对血管壁的力学损伤以及筋梁表面血流动力学状况三方面进行分析,提出了一个外、内边截面比例系数k值大的倒梯形横截面支架筋梁特征。
     1、对支架网状结构的筋梁横截面进行力学研究,提高筋梁在扩张弯曲变形过程中的抗弯强度。筋梁的外、内边截面比例系数k值越大,其抗弯强度越大,则倒梯形横截面的支架筋梁可有效避免支架受力时出现结构塌陷现象。
     2、支架与血管壁的接触模型的有限元数值计算结果显示,在扩张载荷的作用下,k值较大的模型的支架内应力以及血管壁内应力,均小于k值较小的模型。k值较大的筋梁横截面,可提高支架的抗塌陷性能和血管壁的抗损伤程度。
     3、有研究表明,支架结构筋梁的矩形横截面使得支架表面边角附近,容易形成血液流场的涡流;而支架与血管壁表面的血流动力学模型在k值较大时,支架倒梯形横截面筋梁边角区域无涡流现象,可有效改善血液中细胞、生物大分子等的运动流畅性。
     二、进行支架结构单元的特征优化。从变形能原理、综合生物力学参数多目标函数优化两方面,进行支架结构单元的优化,最终设计出一种由闭口弧形周向结构单元和N形轴向连接结构单元组成的血管内支架。
     1、利用变形能原理分析了支架结构中常见的闭口、平行和开口弧形结构单元,闭口弧形结构单元具有较大的变形能,可吸收较多的球囊扩张能量,可用于抵抗血管回缩压力;同时,闭口弧形结构单元可拥有较大加载位移量,以得到较大的支架扩张半径。
     2、对各种支架周向结构模型进行有限元数值模拟计算,并以模型的弧连接形式、周向单元数、单元轴长和筋梁宽度作为结构特征设计变量,以金属覆盖率、扩张半径、最大应力、轴向回缩率和径向回缩率五个生物力学参数作为目标函数,进行支架周向结构综合生物力学参数的加权优序计算,结果显示在较小的梁宽度、较多周向单元数及较大单元轴长时,闭口弧形结构单元可使支架结构获得良好的综合生物力学性能。
     3、进行不同轴向连接结构的支架弯曲有限元分析,结果显示N形结构单元的支架结构,与弯曲导管的径向相对位移较小、结构最大内应力较小。该结构单元对支架结构贴壁性和柔顺性的贡献,较之直杆、S形、W形和WD形结构单元更为突出。
     三、建立“筋梁-结构单元”支架球囊扩张模型,进行有限元力学分析,并与BX Velocity~(TM)支架进行分析和比较,论证了“筋梁-结构单元”法设计出的支架结构具有更为良好的生物力学安全稳定性。
     1、首先,进行“筋梁-结构单元”支架结构的有限元力学分析。支架结构在球囊扩张载荷作用下,其内部最大应力远小于材料极限强度,轴向、径向回缩率较小,最终扩张半径可达到疏通大血管尺寸要求,可见其综合生物力学性能较为优异。
     2、对BX Velocity~(TM)支架进行有限元分析,其扩张后最大应力值出现在支架结构弯角连接区域,该结果与相关文献一致,论证了论文理论分析以及有限元数值计算方案的正确性和可行性。
     3、对两种支架结构分别使用传统316L不锈钢和WE43镁合金作为材料,进行有限元比较分析。与BX Velocity~(TM)支架结构相比,无论在使用316L不锈钢还是WE43镁合金作为材料时,“筋梁-结构单元”支架的径向回缩率和扩张最大应力等力学性能均更为优异。
     与现有支架结构设计的经验指导性和对比验证方法相比,“筋梁-结构单元”法提出了针对支架筋梁和结构单元的特征优化方法,系统理论地进行支架结构的安全性力学设计,避免了支架的筋梁断裂和结构塌陷;筋梁倒梯形横截面形状和闭合弧形结构单元,是本文提出的支架结构两个重要特征优化设计,也是目前尚未有学者研究过的问题。“筋梁-结构单元”法,为支架结构的设计指导及力学性能评价体系建立了技术框架,具有重大的科学意义和临床应用价值。
Introvascular stent is the interventional treatment implant for cardiovascular stenosis diseases, and security and stability of the mechanical support structure is a fundamental issue in the stent study. To establish the stent structure’s design guidelines and mechanical perfor-mance evaluation system is the important issue about the stent structure biomechanics study need to be solved, which has the great scientific significance and the wide range of clinical applications for stent implantation therapy; in addition, clinical applications and theoretical analysis have comfirmed that the collapse of stent structures often appear in the connecting beams of it’s structural units,which fully shows the beams and structural units of stent have the crucial role in the security and stability of whole stent structure. The research is still rare in the literature, so this work is mainly carried out for both of these issues.
     According to the process of stent’s whole structure collapse by reinforced beam fracture and structural unit instability, this paper presents a new method of stent structure study, namely, "Beam - structural unit" method. The method is to optimize two important features of reinforced beam and structural unit, and to propose a more security and stability of the stent structure. Thesis work includes the following three main elements:
     First, Thesis bracket stent beam reinforcement characteristics of trapezoidal cross-section optimization. The characterial style of stent structure design owns inverted tra-pezoidal beam cross-section with coefficient k about the proportion value between the inner and outer section edge length, through three proposed analysis on beams’bending strength, mechanical damage of vascular wall support and hemodynamic status reinforced beam sur-face.
     1, study on beam cross-section of stent network structure can reinforce the beam bending strength. Trapezoidal cross-section beam of stent structure can effectively avoid the stress conditions in a structural material collapse phenomenon. The larger the coefficient value k, the greater the bending strength of stent.
     2, finite element numerical results show that stent contact with the vessel wall model under load in the expansion, k value of the larger stress within stent and the vessel wall are less than k value of the smaller stress whith the model, which can improve stent’s anti-collapse proper- ties and decrease the damage of vascular wall.
     3, studies showed that the corner in the rectangular cross-section beam surface of stent struc-ture made of is easy to form the corners of blood flow near the vortex. In this paper, the sur-face of the stent with the larger k value and the blood vessel wall in the dynamic model of blood flow don't have the vortex, which can effectively improve the blood cells, other bio-logical macromolecules, and emboli fluidity of movement.
     Second, research is proposed about the stent circumferential and axial connection struc-ture. From two aspects between the deformation energy principle and integrated biomechani-cal parameters multi-objective optimization, stent is finally composed of close-arc circumfe-rential connecting elements and the N-shaped axial connecting structural units.
     1, deformation energy principle is used to analyze the common close-arc, parallel-arc and open-arc beam element in stent structure. Closed-arc beam element with large strain energy, can absorb more energy from balloon expansion, resistretract the vessel pressure; it have a larger load displacement to get the larger expansion radius of stent.
     2, taked the five radial biomechanical properties, such as metal coverage, expanding radius, the maximum stress within the stent, the axial retraction rate and radial recoil rate to the ob-jective function, and taked the four characteristic parameters, such as the beam’s arc con-necting form, the circumferential unit number, unit axial length and beam width to the design variables, stent circumferential structure is optimizatively designed. Through the weighted priority order calculation of integrated bio-mechanical properties, the result shows the closed-arc radial connecting beam unit in the smaller beam width and more to the circumfe-rential unit number, and the larger unit axial length of the result of stent design of the struc-ture can achieve a good overall biomechanical properties.
     3, FEM anlysis of bending experiment on the different axial connection stent structure show that the relative radial displacement of contact surface between N-shaped axial connection stent structure and the catheter is smaller, less stress within stent structure; and give that con-tributions on N-shaped axial connection stent structure for flexibility and adherent are more prominent, compared with straight-shaped, S-shaped, W-shaped and WD-shaped structure.
     Finally, to establish the balloon model of“Beam-structural unit”stent is provided to have the FEM analysis, and to analyze and compare with BX Velocity~(TM) stent. The result demonstrate the stent structure designed by“Beam-structure unit”method, which all have a more favorable biomechanical security and stability both with new biomedical materials WE43 and with the traditional 316L stainless steel.
     1,“Beam-structure unit”stent is taken to FEM analysis. The maximum stress within the stent under balloon loads is much smaller than its ultimate strength of materials, its axial retraction rate and radial recoil rate is smaller, and its ultimately expand radius to support the large blood vessels can be size requirements, which make it get the more excellent synthet-ic biomechanical performance.
     2, BX Velocity~(TM) stent is taken to FEM analysis. The maximum stress value appear in the re-gion of stent beam’s frame corner, consistent with the results in related literature, which demonstrate the correctness and feasibility of theory and FEM simulaiton in the paper.
     3, two stent structure is comprartive analyze by FEM, differently taked WE43 magnesium alloy and traditional 316L stainless steel as material. Compared with BX Velocity~(TM) stent structure, both in the use of WE43 magnesium alloy and traditional 316L stainless steel as material,“Beam-structure unit”stent has more excellent mechanical properties such as radial recoil rate and maximum stress during expansion.
     Compared with the existing experience gduidance and contrast verification method of stent structure design,“Beam-structure unit”method proposed to characteristics optimize for the stent reinforced beam and structural unit. This method support system theory to guide the mechanical security design, to avoid reinforced beam fracture and stent structural collapse; reinforced beam of trapezoidal cross-section and closed-arc shape structural unit are two im-portant optimal features of stent structure proposed in this paper, and are the issues that scho-lars have not yet studied. "Beam-structural unit" method establishs a technology framework for the stent structure’s design guidelines and mechanical performance evaluation system, and is of great scientific significance and clinical application value.
引文
[1] The global burden of disease(2004 update) [EB]. World Health Organization, 2008: 11
    [2]岑人经,刘泳涛,范毅方.动脉血管中的血液流动问题[J].暨南大学学报,2000, 21(1): 11-14
    [3]岑人经,贺继刚,袁华等.血管内介入治疗中的血流动力学问题[J].医用生物力学,2003,18(2): 114-119
    [4]吴效明,劳永华,岑人经.心率变化对肺癌介入治疗药物灌注率的影响[J].华南理工大学学报,2003,31: 33-36
    [5] Lao Yonghua, Lin Jiangguo, Wu Jianhua, et al. Numerical Simulation of Colliding Par-ticle Distribution in Flow Chamber[J]. Beijing: Proceedings of 7th Asian-Pacific Conference on Medical and Biological Engineering (APCMBE), IFMBE, 2008, in Beijing, 19(5) : 171-173
    [6] Fang Ying, Lao Yonghua, Wu Jianhua, et al. A Theoretical Model for Binary Adhesion of Cells in Flows[J]. Beijing: Proceedings of 7th Asian-Pacific Conference on Medical and Bio-logical Engineering (APCMBE), IFMBE, 2008, 19(5): 164-166
    [7] Shuchman M, Trading. Restenosis for thrombosis? New questions about drug-eluting stents[J]. New England Journal of Medical, 2006, 355: 1949-1952
    [8]王勇.药物洗脱支架面临的问题及展望[J].心血管病学进展,2007,28(2) : 168-171
    [9]余元勋,胡玲玲,余国斌.中国医学分子微量元素学[M].安徽科学技术出版社,2009 : 430-441
    [10]张高会,张平则,潘俊德.镁及镁合金的研究现状与进展[J].世界科技研究与发展,2003,25(1): 72-78
    [11]曾荣昌,柯伟,徐永波等. Mg合金的最新发展及应用前景[J].金属学报,2001,37(7): 673-674
    [12]高家诚,王强,彭建等.医用Mg-RE合金血管内支架的研究进展[J]..材料导报,2007,21(Z2) : 132-135
    [13]黄晶晶,张广道,任伊宾等. AZ31B可降解镁合金的研究[J].功能材料,2007,38(5) : 1880-1883
    [14]吕树铮,陈韵岱.冠脉介入诊治技巧与器械选择[M].人民卫生出版社,2003 :135-146
    [15] Raval A, Choubey A, Engineer C, et a1. Development and assessment of 316LVM car-diovascular stents[J]. Materials Science and Engineering Annals, 2004, 386: 331-343
    [16] Santin M. In vitro host response assessment of biomaterials for cardiovascular stent manufacture[J].. Journal of materials science: materials in medicine, 2004, 15: 473-477
    [17] Lally C, et al. Cardiovascular scent design and vessel stresses: a finite element analy-sis[J]. Journal of Biomechanics, 2005, 38: 1574-1581
    [18] Migliavacca F, et al. A predictive study of the mechanical behavior of coronary stents by computer modeling[J]. Medical Engineering& Physics, 2005, 27: 13-18
    [19] Dotter CT, Jukins MP. Transluminal treatment of arteriosclerotic obstruction[J]. Circula-tion, 1964, 30: 654
    [20] Dotter CT. Transluminally placed coilspring endarterial tube grafts, longterm patency in canine popliteal artery[J]. Invest Rediol, 1969, 4: 329
    [21]陈奕安.心血管支架设计与分析之研究[D].台湾:国立中山大学,2004
    [22] Dotter CT, Buschmann RW, McKinney MK, et al. Tramsluminal expandable nitinol coil stent grafting: Preliminary report[J]. Radiology, 1983: 147-259
    [23] Cragg A, Lung G, Rysavy J, et al. Nonsurgical placement of arterial endoprostheses: a new technique using nitinol wire[J]. Radiology, 1983: 147-261
    [24] JC Palmaz, RR Sibbitt, SR Reuter, et al. Expandable intrahepatic portacaval shunt stents: early experience in the dog[J]. American Journal of Toentgen, 1985,145:821-825
    [25] Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L, et al. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty[J]. New England Journal of Medical, 1987, 316:701-706.
    [26] Morice MC, Serruys PW, Sousa JE, et al. Randomised, double-blind study with the siro-limus-eluting Bx Velocity? balloon expandable stent in the treatment of patients with de no-vo native coronary artery lesions[R]. Stockholm, Sweden: The World Congress of Cardiology, 2001
    [27] Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? [J]. Heart, 2003, 89: 651
    [28] Waksman R, Pakala R, Kuchulakanti PK, et al. Safety and efficacy of bioabsorbablemagnesium alloy stents in porcine coronary arteries[J]. Catheterization and Cardiovascular Interventions,2006,68(4): 607-617
    [29] Carlo MD, Griffiths H, Goktekin O, et al. Drug-eluting bioabsorbable magnesium stent[J]. Journal of Interventional Cardiology, 2004, 17(6): 391-395
    [30] Peeters P, Bosiers M, Verbrist J, et al. Preliminary results after application of absorbable metal stents in patients with critical limb ischemia[J]. Journal of Endovascular Therapy, 2005, 12(1): 1-5
    [31] Zartner P, Cesnjevar R, Singer H, et al. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby[J]. Catheterization and Cardi-ovascular Interventions, 2005, 66: 590
    [32] Erbel R, Carlo MD, Bartunek J, et al. Temporary scaffolding of coronary arteries with bio-absorbable magnesium stents: a prospective, nono-randomised multicentretrial[J]. Lancet, 2007, 369: 1869-1876
    [33] Craig Bonsignore. A decade of evolution in stent design[RJ]. Pacific Grove, CA: Inter-national Conference on Shape Memory and Superelastic Technologies, SMST, 2004: 519-528
    [34] Frank AO, Walsh PW, Moore JE. Computational fluid dynamics and stent design[J]. Ar-tificial Organs, 2002, 26: 614-625.
    [35] GA Holzapfel, M Stadler, TC Gasser, Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent de-signs[J]. Journal of Biomechanical engineering, 2005, 127:166-180
    [36] Migliavacca F, Petrini L, Colombo M. Mechanical behavior of coronary stents investi-gated through the finite element method[J]. Journal of Biomechanics, 2002, 35(6):803-8l1
    [37] Petrini L, Migliavacca F, Auricchio F, et a1. Numerical investigation of the intravascular coronary stent flexibility[J]. Journal of Biomechanics, 2004, 37(4): 495-501
    [38] Zhi YH, Wang XM, Yue ZF, et al. The FEM simulation of mechanical properties charac-terization of the stent under the quasi-static loading /unloading[J]. Mat.-wiss.u. Werkstofftech, 2007, 38(10): 862-867
    [39] Dumoulin C, Cochelin B. Mechanical behavior modeling of balloon-expandable stents[J]. Journal of Biomechanics, 2000, 33(11): 1461-1470
    [40]AURICCHIO LORETO MD, SACCO E. Finite element analysis of a stenotic artery re-vascularization through a stent insertion[J]. Computer Methods in Biomechanics and Bio-medical Engineering, 2001, 4(5): 249-263
    [41] Chua SND, MacDonald BJ, Hashmi MSJ. Finite element simulation of stent expan-sion[J]. Materials Processing Technology, 2002, 120: 335-340
    [42] Chua SND, MacDonald BJ, Hashmi MSJ. Finite element simulation of stent and balloon interaction, Materials Processing Technology, 2003, 143-144: 59l-597
    [43] Natarajan S, Mokhtarzadeh-Dehghan MR. A numerical an d experimental study of peri-odic flow in a mod el of a corrugated vessel with application to stented arteries[J]. Medical Engineering&Physics, 2000, 22; 555-566
    [44] Wentzel JJ, Whelan DM, Van der Giessen WJ. Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution[J]. Journal of Biomechanics, 2000, 33(10): 1287-l295
    [45] Elave F, Finet G, Boivina M. Mechanical properties of coronary stents determined by using finite element analysis[J]. Journal of Biomechanics, 2001, 34: 1065-l075
    [46] LALLY C, DOLAN F, PRENDERGAST PJ. Cardiovascular stent design and vessel stresses: a finite element analysis[J]. Journal of iomechanics, 2005, 38(8): 1574-1581
    [47] WALKE PZ, FILIPIAK J. Experimental and numerical biomechanical analysis of vas-cular stent[J]. Journal of Materials Processing Technology, 2005, 164-165: 1263-1268
    [48] Rogers C, Tseng DY, Squire JC, et al. Balloon-artery interactions during stent placement: a finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury[J]. Circle Research, 1999, 84(4): 378
    [49] Berry JL, Manoach E, Mekkaoui C,et al. Hemodynamics and wall mechanics of a com-pliance matching stent: in vitro and in vivo analysis[J]. Journal of Vascular Intervention Ra-diology, 2002, 13(1): 97
    [50] LaDisa JFJ, Guler I, Olson LE, et al. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation[J]. An-nals of Biomedical Engineering, 2003, 31: 972-980
    [51] M Gay, L Zhang et al. Stent modeling using immersed finite element method[J]. Com-puter methods in applied mechanics and engineering, 2006, 195:4358
    [52] Liang DK, Yang DZ, Qi M, et al. Finite element analysis of the implantation of a bal-loon-expandable stent in a stenosed artery[J]. International Journal of Cardiology, 2005, 104: 314-318
    [53]张庆宝,王伟强,齐民等.冠状动脉支架紧缩反弹行为有限元分析[J].北京生物医学工程,2006,25(4): 366-370
    [54]王伟强,杨大智,齐民.冠状动脉抗压缩性能的有限元分析[J].生物医学工程学杂志,2006,23(5): 1008-1012
    [55]张庆宝,王伟强,齐民.不同材料的冠状动脉支架膨胀行为分析[J].功能材料,2007,1(38): 130-134
    [56]黄远,李林安,刘文西.医用心血管支架的非线性有限元分析[J].中国生物医学工程学报,2003,22(2): 139-148
    [57]王跃轩,易红,倪中华,顾兴中.医用血管支架生物力学性能分析方法研究[J].东南大学学报,2005,35(2): 216-221
    [58]申翔,倪中华.生物可降解镁合金支架的扩张性能[J].东南大学学报,2008,38(1): 49-53
    [59]王小平,焦延鹏,崔福斋.新型可降解金属血管支架的有限元力学分析[J].机械设计与研究,2007,23(5): 59-62
    [60]周承倜,董何彦.微型网状结构支架的力学性能研究[J].应用力学学报,2004,21(3): 1-9
    [61]杨杰,黄楠,杜全兴等.描述血管支架力学性能的新概念-形状系数[J].生物医学工程学杂志,2006,23(1): 74-77
    [62]宁静,曾攀,雷丽萍.血管支架膨胀过程中的塑性变形行为[J].清华大学学报,2008,48(5): 781-784
    [63]宁静,曾攀,雷丽萍.血管支架紧缩行为的非线性有限元分析[J].中国医疗器械杂志,2008,32(1) : 10-13
    [64]张博,万敏,姚秀君等.血管内支架设计和检测中必不可少的助手[J].中国医疗器械杂志,2008,32(4): 284-287
    [65]戚文航.迎接新世纪的调整[J].中华心血管病杂志,2001,29(2): 284-287
    [66]田志强,陈锐华.用于冠状动脉腔内成形术的新型药物涂层支架[J].医学研究生学报,2003, 16(11): 858-860
    [67]戴文铿.血管支架塑性成形分析[D].台湾:国立中山大学,2004
    [68]任彩霞,常青,李自成.血管重塑与动脉粥样硬化的关系[J].中国动脉粥样硬化杂志,2003,11(2): 168-170
    [69]杨永宗.动脉粥样硬化性心血管基础与临床[M].科学出版社,2004:10-600
    [70] Fung YC. Biomechanics[M].第2版. Springer, 1993:321-383
    [71]张荣利,朱天刚.超声技术在心血管疾病诊治及研究中的应用[J].现代仪器,2008,5: 6-10
    [72]沈卫峰.实用临床心血管疾病介入治疗学[M].上海科学技术出版社,2005: 20-25
    [73]郑峰.再狭窄后恢复和替代血管内皮功能的研究[J].中国临床医药实用杂志, 2004, 20: 51-52
    [74]赵振心,刘道志,张一.血管支架材料及其临床研究进展[J].中国医疗器械研究, 2005, 29(6): 391-395
    [75] Gopinath M, Marc DF, Devang P, et al. Coronary stents: a materials perpective[J]. Bio-materials, 2007, 28: 1689-1710
    [76]周永恒,廖健宏,蒙红云等.血管内支架分类与技术进展[J].华南师范大学学报,2005, 2:136-142
    [77] Allison CM, David C, Julian G. The influence of physical stent parameters upon resteno-sis parameters physiques des stents dans la restenose[J]. Pathologie biologie, 2004, 52:196-205
    [78]李亚智,赵美英,万小朋.有限元法基础与程序设计[M].北京:科学出版社,2004: 1-60
    [79]石钟慈,王鸣.有限元方法[M].北京:科学出版社:4-100
    [80] Smith IM, Griffiths DV.有限元方法编程[M].第三版.王崧,周坚鑫,王来等译.北京:电子工业出版社,2003: 15-40
    [81]王世忠.结构力学与有限元法[M].哈尔滨:哈尔滨工业大学出版社,2003: 20-60
    [82]岳戈. ADINA应用基础与实例详解[M].北京:人民交通出版社,2008: 1-241
    [83] Bathe KJ. ADINA/ADINAT使用手册:自动动态增量非线性分析有限元程序[M].赵兴华译.北京:机械工业出版社,1986:2-345
    [84]刘鸿文,刘鸿.材料力学[M].北京:高等教育出版社,2004: 1-41
    [85]范钦珊,蔡新.工程力学:工程静力学与材料力学[M].北京:机械工业出版社,2006: 20-114
    [86]范钦珊,殷雅俊.材料力学[M].北京:清华大学出版社,2004: 14-126
    [87]杨杰,黄楠,杜全兴,张勇,陈虬.描述血管支架力学性能的新概念-形状系数[J].生物医学工程学杂志,2006,23(1): 74-77
    [88]张新占.材料力学[M].西北工业大学出版社,2005:172-173
    [89]王林,张金钟,黄体钢.冠心病支架术后再狭窄的综合解析[J].医学与哲学,2005,26(7) : 27-29
    [90]林根来,王小林.血管内支架植入后内膜增生过程与防治措施[J].介入放射学杂志,2002,11(2) : 135-138
    [91] TANG Daling, YANG Chun, ZHENG Jie. Local Maximal Stress Hypothesis and Com-putational Plaque Vulnerability Index for Atherosclerotic Plaque Assessment[J]. Annals of Biomedical Engineering, 2005, 33(12): 1789-1801
    [92] T Mukai, T Mohri, K Higashi, et al. Experimental study of a structural magnesium alloy with high absorption energy under dynamic loading[J]. Scripta Materialia, 39(9): 1249~1253
    [93]欧阳墉.血液流变学及其在支架置入术后的变化[J].介入放射学杂志,2002,11(5) : 382-384
    [94]辛朝晖,赵淑芝,王金来等.血流剪切应力和剪切率与动脉粥样硬化斑块形成的关系[J].医学影像学杂志,2005,15(8) : 655-657
    [95]庄磊,王伟娟,刘涛等.血流剪切力对动脉粥样硬化影响的临床研究[J].中国医学影像技术,22(6) : 889-891
    [96]宋润花,张建丽.血液流变学在血栓形成中的作用[J].山西医药杂志,2003,32(2) : 124-125
    [97] JE Moore, JR Berry. Fluid and solid mechanical implications of vascular stenting[J]. Annals of Biomedical Engineering, 2002, 30: 498-508
    [98]梁栋科,杨大智.不同设计心血管支架的血流动力学分析[J].生物医学工程学杂志, 2006, 23(26): 1241-1244
    [99] S Natarajan, MR Mokhatarzadeh-Dehghan. A numerical and experiment study of peri-odic flow in a model of a corrugated vessel with application to stented arteries[J]. Medical Engineering & Physics, 2000, 22: 555-566
    [100]梁栋科,杨大智,齐民.一种血管内支架的有限元模型及计算流体动力学分析[J].生物医学工程学杂志,2007,24(3):549-553
    [101] Gay M, Zhang LT. Numerical studies on fluid-structure interactions of stent deploy-ment and stented arteries[J]. Engineering with Computers, 2008
    [102] Chengti Z, Heya D.Stability and dynamic deformingprocess for structure of coronary artery stents[J]. Journal of Physics, Chemical and Material Science, 2005, 5: 458-462
    [103]劳永华,岑人经,黄岳山等.血管内支架结构截面形状的生物力学实验[J].中国组织工程研究与临床康复, 2009, 13(46): 8442-8445
    [104] Dumoulin C, Cochelin B. Mechanical behaviour modelling of balloon-expandable stents[J]. Journal of Biomechanics, 2000, 33: 1461-1470.
    [105] Zilberman M, Nelson KD, Eberhart RC. Mechanical properties and In vitro degradation of bioresorbable fibers and expandable fiber-Based stents[J]. International Science, 2005
    [106] John Y, Motasim S, Brett C, et al. Degradable implantable medical devices[P].美国: US20060229711 A1, 2006.10.12
    [107] Dirk T. Implantable stents having a plurality of varying parallelogrammic cells and methods for manufacturing the same[P].美国: US20080234794 A1, 2008.09.25
    [108] Gray Larry. International application published under the patent cooperation treaty[P].美国: WO97/26840, 1997.07.31
    [109] Swaminathan J. Structurally variable stents[P].美国: US20060004437 A1, 2006.01.05
    [110] John JF. Surgical stent featuring radiopaque markers[P].美国: US6293966 B1, 2001.09.25
    [111] Pacetti SD. Radiopaque stent composed of a binary alloy[P].美国: WO02/05863 A1, 2002.01.24
    [112] Volker N. Stent having twist cancellation geometry [P].美国: US200601452A1, 2006.04.18
    [113] Koji M, Takashi S. Effects of stent structure on stent flexibility measurements[J]. An-nals of Biomedical engineering, 2005, 33(6): 733-742
    [114] Mortier P, Carlier SG, Impe RV, et al. Numerical study of the uniformity of bal-loon-expnadable stent deployment[J]. Journal of Biomechanical engineering, 2008, 130:021018-1-7
    [115]李田昌,胡大一.冠状动脉内支架进展[J].中国医疗器械信息, 2000, 6(2): 6-13
    [116] Wang WQ, Liang DK, Yang DZ, et al. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method[J]. Journal of Biomechanics, 2006, 39: 21-32
    [117] Jun-ichi K, Masaki A, Masaki N, et al. Incomplete neointimal coverage of siroli-mus-eluting stents: angioscopic findings[J]. Journal of Americ College of Cardio, 2006, 47(10): 2108-2111
    [118] Masamichi T, Takayoshi O, Shigenobu I, et al. Angioscopic differences in neointimal coverage and in persistence of thrombus between sirolimus-eluting stents and bare metal stents after a 6-month implantation[J]. Euro Heart Journal, 2006, 27: 2189-2195
    [119] Wang R, Ravi-Chandar K. Mechanical response of a metallic aortic stent-part II: a beam-on-elastic foundation model[J]. Journal of Apply Mechanics, 2004, 71:706-712
    [120] Chua SND, MacDonald BJ, Hashmi MSJ. Finite element simulation of stent explan-sion[J]. Journal of Materials Process Technology, 2002, 120: 335-340
    [121] Serruys PW, Rensing BJ. Handbook of coronary stents[M]. Fourth Edition. London: Martin dunitz, 2001:1-359
    [122] Rieu R, Barragan P, Masson C, et al. Radial force of coronary stents: A comparative analysis[J]. Catheteriz and Cardiovascular intervene. 1999, 46: 380-391
    [123]陈胜利,郭南山,陈国东等.冠状动脉球囊扩张成形与支架植入的即刻弹性回缩研究[J].实用放射学杂志, 2001, 17(10): 726-728
    [124]李荣钧.模糊多准则决策理论与应用[M].北京:科学出版社, 2002: 34-56
    [125] Marler RT, Arora JS. Survey of Multi-objective optimization methods for engineer-ing[J]. Structure and Multidisciplinary Optimization, 2004, 26: 369-395
    [126]李明,任伟,王俊涛.基于模糊评估的防空兵作战方案最优排序方法[J].兵工自动化,2009,28: 21-23
    [127] Schmitz KP, Behrend D, Behrens P, et al. Comparative Studies of Different Stent De-signs[J]. Progress in Biomedical Research, 1999, 30: 52-58
    [128] Jeffrey WM, Eugenia N, Roxana M, et al. Safty and efficacy of the 2.25-mm Siroli-mus-Eluting Bx Velocity Stent in the Treatment of Patients With De Novo Native Coronary Artery Lesions: the SIRIUS 2.25 Trial[J]. The American Journal of Cardiology, 2006, 98: 1455-1460
    [129] John AO, Simon RD, Mark WIW, et al. Stent Longitudinal Flexibility: a Comparison of 13 Stent Designs before and after Balloon Expansion[J]. Catheterization and Cardiovascular Interventions, 2000, 50: 120-124
    [130] Francesco M, Lorenza P, Valeria M, et al. A Predictive Study of the Mechanical Beha-viour of Coronary Stents by Computer Modelling[J]. Medical Engineering & Physics, 2005, 27: 13-18
    [131] ADINA培训手册[G]. ADINA亚得科技有限公司, 2005
    [132] ADINA Primer入门手册[G]. ADINA亚得科技有限公司, 2005