光电一体化处理氯酚废水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在经氟树脂改性的新型二氧化铅大面积电极上,开展了有毒难降解有机污染物处理技术的应用基础研究。采用光化学氧化技术、阴阳两极的协同电化学处理技术、光电一体化的复合高级氧化技术对氯酚进行处理。
     对模拟污染物—对氯苯酚(CP)进行光催化氧化降解实验研究。对比了不同氧化体系对CP及溶液COD的降解效果;单独UV、单独H_2O_2对CP废水降解能力有限,H_2O_2/UV、UV/H_2O_2/air体系降解率明显提高。增加H_2O_2投加量可以加快UV/H_2O_2反应的初始反应速度。污染物初始浓度增加,氯酚的降解率减少,但是绝对的降解量和降解速率增加。pH值对污染物和COD降解影响较小。
     进行电化学氧化降解实验研究。采用的电极和工艺体系对CP的处理显示了很好的催化活性和稳定性。阴阳两极协同工艺(ACE)降解工艺较单独的阳极氧化(AE)工艺更能达到有机物的彻底氧化。ACE工艺能平均提高氯酚降解率15%左右,在反应初期协同作用更为明显。废水COD去处率提高100%,ACE工艺在促进污染物降解的同时,更促进了降解中间产物的降解。
     在此基础上发展的光电一体化工艺,存在显著的协同效应,对CP和COD的协同作用的增强因子分别达到了125.3%和129.8%。曝氧速率、电流、pH值、初始浓度、温度等因素对光电一体化降解苯酚都有较明显的影响。而且,联合工艺对中间有毒产物如苯醌也能得到很好的降解。
     开展了污染有机物降解机理和动力学的研究。实验借助高效液相色谱、离子色谱等手段对光电化学反应过程中产生的活性物种做了分析鉴定,作用产生的主要为羟基自由基(~·OH)和H_2O2,并作了间接定量测定。通过有机物和COD去除速率与~·OH反应速率显著相关性,证实了羟基自由基对有机物的亲电反应在光电催化降解反应中起重要的作用。从分析降解中间产物出发,通过假设和简化,推导了氯酚部分氧化降解的动力学模型,能很好的说明各影响因素对氯酚降解的影响。
This work describes the methodological development of photocatalysis, anodic oxidation, paired electrocatalysis, and their coupling processes with photochemical technology and electrocatalysis, which helped to build up the technical platform of electrochemical methods for environmental application.
    Photooxidation of chlorophenol (CP) were conducted by the application of three different photochemical processes (UV, H2O2 H2O2/UV UV/ H2O2/air). The effects of reaction conditions such as the dosage of H2O2, initial chlorophenol, initial pH, were investigated in terms of CP degradation and chemical oxygen demand (COD) removal.
    A novel paired electrocatatlysis in the presence of ferrous ion that named anode-cathode electrocatalysis (ACE) was developed. It was found that CP degradation rate could be enhanced by 15% compared with that of individual anodic oxidation under similar conditions, and the promotion for COD was around 100%. The effects of pH, concentration and current on CP degradation were discussed, based on which the conditions for the synergetic effects were given.
    The combination of electrocatalysis and UV radiation greatly accelerated the removal efficiency. According to the pseudo-first-order reaction rate constant, the promoting factor for CP and COD abatement was 125.3% and 129.8%, respectively. Operating conditions were optimized to make the main reactions occurred in harmony. Higher removal rate was achieved when current is 0.7 A. Temperature has an effect on the CP degradation. However, considering the overall effect, it is advisable to carry out the process at ambient temperature. UV-assisted method can save the running cost to a certain degree and make the techniques possible for industrial application.
    The degradation behaviors of CP under process of anode electrocatalysis(AE), ACE and UV-ACE were compared, through which a possible degradation pathway was proposed. Strong oxidant, hydroxyl radical (OH), was generated through the reduction of oxygen on the surface of the cathode. A simplified mathematical model for CP and benzoquinone evolution was developed according to the proposed pathway, which could be well served to explore the influencing factors.
引文
Abdullah M., Low G. K., Matthews R. W. Effect of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J. Phys. Chem.,1990, 94: 6820-6825.
    Anders, M.W. Bioactivation offoreign compounds. Academic Press Inc: New York, 1985, p259.
    Brillas E., Bastida R. M., Liosa E. Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFE O_2-fed cathode. J. Electrochem. Soc., 1995, 142:1733-1741.
    Brillas E., Calpe J. C., Casado J. Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Res., 2000, 34(8): 2253-2262.
    Brillas E., Eva M., Juan C. Iron (Ⅱ) catalysis of the mineralization of aniline using a carbon-PTFE O_2-Fed cathode. J. Electrochem. Soc., 1996, 143: L49-L52.
    Brillas E., Mur E., Sauleda R., Sànchez L., Peral J., Domènech X., Casado J. Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton processes. Appl.Catal. B: Environ., 1998a, 16: 31-42.
    Brillas E., Sauleda R., Casado J. Degradation of 4-Chlorophenol by anodic oxidation,electro-Fenton, Photoelectro-Fenton and peroxi-coaguation process. J. Electrochem. Soc.,1998b, 145: 759-765.
    Brillas E., Sauleda R., Casado J. Use of an acidic Fe/O_2 cell for wastewater treatment: degradation of aniline. J. Electrochem. Soc. 1999, 146(12): 4539-4543.
    BnlilzR E, Sauleda R. Caeado J. UaeoJ an Acidic Fe/O_2Cell for wastewater treatment;Degradation of Aniline. Electrochim Soc.1999, 146(12): 4539.
    Caizares P., Dominguez J.A., Rodrigo M A, Villasefior J., Bodriguez J., Effect of the current intensity in the electrochemical oxidation of aqueous phenol wastes at an activated carbon and steel anode. Ind. Eng. Chem. Res., 1999, 38: 3779-3785.
    Chiang L.-C., Chang J. E., Wen T.-C. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Res., 1995, 29(2): 671-678.
    Chiang L.-C., Chang J.-E., Chung C.-T. Electrochemical oxidation combined with physical-chemical pretreatment processes for the treatment of refractory landfill leachate.Environ. Eng. Sci., 2001, 18(6): 369-379
    Chih-Hsiang. L., Shyh-Fang. K., et al., Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H202/UV process. J. Chemosphere, 44:1193~1200
    Chou Shanshan, Huang Yao-Hui, Lee Shen-Nan, Huang Gaw-Hao, Huang Chih-Pin. Treatment of high strength hexamine-containing wastewater by electro-Fenton method. Water Res. 1999,33(3): 751-759.
    Comninellis Ch., Pulgarin C. Anodic oxidation of phenol for waste water treatment. J. Appl. Electrochem., 1991, 21: 703-708.
    Comninellis Ch., Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochem. Acta, 1994, 39(11-12): 1857-1862.
    Comninellis C., Nerini A. Anodic oxidation of phenol in the presence of NaCl for wastewater treatment.J. Appl. Electrochem., 1995, 25:23-28
    De Sucre V. S., Watkinson A. P. Anodic oxidation of phenol for waste water treatment. Can.J.Chem. Eng., 1981, 59: 52-59.
    Do J. S., Yeh W. C. In situ degradation of formaldehyde with electrogenerated hypochlorite ion. J. Appl. Electrochem., 1994, 25: 483-489.
    Do .J.S, Yeh W.C. Paired E1 ectrooxidative Degradation of Phenol with in Situ Electrogenerated Hydrqen Peuxide and HyPochlorite. Appl Electrochem, 1996. 26.673
    
    
    Feng J., Houk L. L., Johnson D. C. Electrocatalysis of anodic oxygen-Transfer reaction: the electrochemical incineration of benzoquinone. J. Electrochem. Soc., 1995, 142:3626-3631.
    Fenmando J., Beltran, et al., Industrial Wastewater Advanced Oxidation, Part2. Ozone Combined with Hydrogen Peroxide or UV Radiation. J. Wat. Res. 1997, 31(10): 2415~2428
    Flesazr B., Ploszynska J. An attempt to define benzene and phenol electrochemical oxidation mechanism. Electrochim. Acta, 1985, 30: 31-42.
    Ganun M,Gregor C H.Schelie S.Chemical Oxidative Process for Purifying Flesazr B., Ploszynska J. An attempt to define benzene and phenol electrochemical oxidation mechanism.Electrochim. Acta, 1985, 30:31-42.
    Gattrell, M., Kirk, D. W. The electrochemical oxidation of aqueous phenol at a glassy carbon electrode. The Canadian Journal of Chemical Engineering 1990, 68: 997-1003.
    Gherardini L., Michaud P.A., Panizza M., Comninellis Ch., Vatistas N. Electrochemical oxidation of 4-chlorophenol for wastewater treatment. Definition of normalized current efficiency(Φ). J. Electrochem. Soc., 2001, 148(6): D78-D62.
    Gnann M., Gregor C. H., Schelle S. Chemical oxidative process for purifying highly contained wastewater. WO Patent 93/08129, Peroxid-Chemie Gmbh, DE.
    Goi A., Trapido T. Hydrogen peroxide photolysis, Fenton reagent and photo-Fenton for the degradation of nitrophenols: a comparative study. Chemosphere, 2002, 46(6): 913-922.
    Houghton, Jennifer, Biopolymers in wastewater treatment Current opinion in biotechnology. Volume: 10, Issue: 3, June, 1999, pp. 259-262.
    Hsiao Y. L., Nobe K. Hydroxylation of chlorobenzene and phenol in a packed bed flow reactor with electrogenerated Fenton's reagent. J. Appl. Electrochem., 1993b, 23: 943-946.
    Hsiao Y. L., Nobe K. Oxidative reactions of phenol and chlorobenzene with in situ electrogenerated Fenton's reagent. Chem. Eng. Comm., 1993a, 126: 97-110.
    Highly Contained wastewater, WO Patent 93/08229 Peroxid Chemic GmbH.DE Gloyna, Eviron. Sci. & Tech. 1990.24 (6): 768
    Hsiao Y. L., Nobe K. Hydroxylation of chlorobenzene and phenol in a packed bed flow reactor with electrogenerated Fenton's reagent. J. Appl. Electrochem., 1993b, 23: 943-946.
    Hsiao Y. L., Nobe K. Oxidative reactions of phenol and chlorobenzene with in situ electrogenerated Fenton's reagent. Chem. Eng. Comm., 1993a, 126: 97-110.
    Jen J.-F., Leu M.-F., Yang T. C. Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography. Journal of Chromatography A,1998, 796: 283-288.
    Jing S., Chen C.-P. In situ Oxidative degradation of formaldehyde with electrogenerated hydrogen peroxide. J. Eiectrochem. Soc., 1993, 140: 1632-1637.
    J.S.Do and W-C Yeh. Paired electrooxidative degradation of phenol with in situ electrogerered hydrogen peroxide and hypochlorite J.Appl.Electrochem.1996, 26 673-678.
    Juang Lain-Chuen(庄连春), Tseng Dyi-Hwa (普迪华). Journal of Chinese institute of Environmental Engineering (中国环境工程学刊), 1997, 7 (3): 253~262
    Katoh M., Nishiki Y., Nakamatsu S. Polymer electrolyte-type electrochemical ozone generator with an oxygen cathode. J. Appl. Electrochem., 1994, 24: 489-494.
    Kim S. M., Vogelpohl A. Degradation of organic pollutants by the photo-Fenton process, Chem. Eng. Technol., 1998, 21(2): 187-191.
    Kirk D. W., Sharifian H., Foulkes F. R. Anodic oxidation of aniline for waste water treatment. J. Appl. Electrochem., 1985, 15: 285-292.
    Kiwi J., Pulgarin C, Peringer P. Effect of Fenton and Photo-Fenton reactions on the degradation and biodegradation and biodegradability of 2 and 4-nitrophenols in water treatment. Appl. Catal. B: Environ., 1994, 3(4): 335-350.
    
    
    Tahar N. B., Savall A. Mechanistic aspects of phenol electrochemical degradation by oxidation by oxidation on a Ta/PbO_2 anode. J. Electrochem. Soc 1998, 145:3427-3434.
    Legrini O., Oliveros, E., Braun, A. M. Photochemical process for water treatment. Chem. Rev., 1993, 93: 671-698.
    Legube B., Karpel Vel Leitner N. Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catalysis Today, 1999, 53:61-72.
    Letrini O., Olibveros E., Braun A. M. Photochemical Process for Water Treatment. Chem. Rev., 1993, 93(2): 671-698.
    Litter M. I. Heterogeneous photocatalysis transition metal ions in photocatalytic systems. Appl. Catal. B: Environ., 1999, 23:89-114.
    Liu H., Cheng S. A., Zhang J. Q., Cao C. N. Titanium Dioxide as photocatalyst on porous nickel: adsorption and the photocatalytic degradation of sulflsalicylic acid. Chemosphere, 1999, 38(2): 283-292.
    Luck F. Wet air oxidation: past, present and future. Catalysis Today, 1999, 53: 81-91.
    Moctezuma, E; Leyva, E; Monreal, E; Villegas, N; Infante, D. Photocatalytic degradation of the herbicide "paraquat". Chemosphere. Volume: 39, Issue: 3, August, 1999, pp. 511-517
    N.J.Karrer, G.Ryhiner and E.Heinzle, Applicability test for combined biological chemical treatment of wastewaters containing biorefractory compounds,Wat. Res. Vol.31,No.5,pp. 1013-1020,1997
    O.Legrini, E.Olibveros, and A.M.Braun: Photochemical Process for Water Tahar N. B, Savall A. Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide: a comparison of the activities of various electrode formulation. J. Appl. Electrochem., 1999, 29: 277-283.
    Oturan M. A., Oturan N., Lahitte C., Trevin S. Production of hydroxyl radicals by electrochemically assisted Fenton's reagent: Application to the mineralization of an organic micropollutant, pentachlorophenol. J. Electroanal. Chem., 2001, 507: 96-102.
    Panizza M., Michaud P. A., Cerisola G., Comninellis Ch. Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. Journal of Electroanalytical Chemistry., 2001, 507: 206-214.
    Polcaro A. M., Palmas S. Electrochemical oxidation of chlorophenols. Ind. Eng. Chem. Res., 1997, 36: 1791-1798.
    Sharifian H, Kirk D K. Elecrtochemical oxidation of phenol. J. Electrochem. Soc. 1986, 33: 921-924.
    Simond O., Schaller V., Comninellis Ch. Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochimica Acta, 1997, 42(13-14): 2009-2012.
    Sudoh M., Kodera T., Hino H., Shimamura H. Oxidative degradation rate of phenol in an undivided bipolar electrolyzer. Journal of Chemical Engineering of Japan, 1988, 21: 536-538.
    Tahar N. B., Savall A. Mechanistic aspects of phenol electrochemical degradation by oxidation by oxidation on a Ta/PbO_2 anode. J. Electrochem. Soc., 1998, 145: 3427-3434.
    Tennakoon C L K. Electrochemical treatment of human waste in a packed-bed reactor.J Appl Electrochem, 1996,26:18~29
    Treatment: Chemical Reviews, Vol.93, No.2, 1993, 671—698
    Pelegrini R., Peralta-Zamora P., De Andrade A. R., Reyes J. Electrochemically assisted photocatalytic degradation of reactive dyes. Appl. Catal. B: Environ. 1999, 22: 83-90.
    Rafagopalan Venkataclr, Robert W.Peter: Chemical Oxidation Technologies: Ultraviolet Light/Hydrogen Peroxide, Fenton Reagent, and Titanium Dioxide-Assisted Photocatalysis: Hazardous Waste & Hazardous Materials, Vol.10, No.2, 1993, 107-149
    Rajeshwar K., Ibanex J. G., Swain G. M. Electrochemistry and the Environment. J. Appl. Electrochem., 1994, 24: 1077-1091.
    
    
    S.Trasatti Electrochemistry and environment: the role of electrocatalysis Int. J.Hydrogen energy. 1995, 20 835-844
    Sun S. G., Lin Y. Kinetic aspects of oxidation of isopropanol on Pt electrodes investigated by in situ time-resolved FTIR spectroscopy. J. Eiectroanal. Chem., 1994, 375: 401-404.
    Tahar N. B., Savall A. Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide: a comparison of the activities of various electrode formulations. J. Appl. Electrochem. 1999, 29: 277-783.
    Trasatti S. Electrochemistry and environment: the role of electrocatalysis. Int. J. Hydrogen Energy, 1995, 20: 835-844.
    Treimer S. E., Feng J., Johnson D. C. Photoassisted electrochemical incineration of selected organic compounds. J. Electrochem. Soc., 2001, 148(7): E321-E325.
    Vinodgopal K., Stafford U., Gray K. A., Kamat P.V. Electrochemically assisted photocatalysis. 2. The role of oxygen and reaction intermediates in the degradation of 4-chlorophenol on immobilized TiO_2 particulate films. J. Phys. Chem. 1994, 98: 6797-6803.
    Wabner D., Grambow C. Reactive intermediates during oxidation of water at lead dioxide and platinum electrodes. J. Electroanal. Chem., 1985:195: 95-108.
    William H Glaze, Ozone: Sci. and Eng, 1987, 9:335
    Wu Z. C., Zhou M. H. Partial degradation of phenol by advanced electrochemical oxidation process. Environ Sci Technol, 2001, 35 (13): 2698-2703.
    Y.L.Hsiao ,K.Nobe (1993) Hydroxylation of chlorobenzene and phenol in the a packed bed flow reactor with electrogenerated Fenton's reagent J.Appl.Electrochem. 23 943-946
    Yue P. L., Legrini O. Photochemical degradation of organics in water. Water Pollut. Res. J. Can., 1992, 27(1): 123-137.
    Zhou M H ,Wu Z C,Wang D H.A novel Electro-catalytic Method for organic pollutants Degradation. Chinese Chemical Letter,2001,12(10);929-932
    曹瑾,光化学概论,高等教育出版社,北京,1985
    陈繁忠.电催化氧化法降解水中有机物的研究进展.中国给水排水,1999,15(3):24~26
    陈延禧.电解工程.天津科学技术出版社,天津:1993,pp129.
    戴清,郭妍,袁春伟,奚荣彪,林保平.二氧化碳多孔薄膜对含氯苯酚的电助光催化降解.
    催化学报,1999,20(3):317-320.
    雷乐成,汪大翬。水处理高级氧化技术,化学工业出版社,北京,2001.
    李荻,电化学原理.北京:北京航空航天出版社,1999,393.
    刘石生,丘泰球.超声在废水处理中的应用.应用声学,2001,20(2):43-46.
    刘鸿,冷文华,吴合进,成少安,吴鸣,张鉴清,李文钊,曹楚南.光电催化降解磺基水杨酸的研究.催化学报,2000,21(3):209-212.
    冀滨弘,章非娟.难降解有机污染物的处理技术.重庆环境科学,1998,20(5):36-40.
    宋卫峰,吴斌,倪亚明.形稳阳极电解处理有机废水机理及其动力学的研究.上海环境科学,2001,20(2):78-81_
    苏月来,张建中,谢雨生,徐向阳.有毒难降解有机物废水处理的生物强化技术.环境污染与防治,1998,21(1):36-39.
    
    
    贾金平,廖军,方海军.光电化学法处理水中腐殖酸的初步研究.上海环境科学,1997,16(3):24-26,29.
    贾金平,叶建昌,张舒茶.活性炭纤维电极法处理草浆造纸黑液的应用研究.上海环境科学,2000,19(3):120-123.
    贾金平,杨骥,廖军.活性炭纤维(ACF)电极法处理染料废水的探讨.上海环境科学,1997a,16(4):19-22.
    贾金平等.活性炭纤维电极电解法处理印染废水的应用研究.上海环境科学,1997b,16(5):24~27
    贾金平等.活性炭纤维电极法处理染料废水机理研究.环境科学,1997c,18(6):31~34
    施汉昌,赵胤慧,冀静平。氯酚废水的生物处理技术的研究与进展,化学通报,1998,8:1~5
    韦朝海,侯轶.难降解毒性有机污染物废水高级氧化技术.环境保护,1998,(11):29-31.
    吴合进,吴鸣,谢茂松,刘鸿,杨民,孙福侠,杜鸿章.增强型电场协助光催化降解有机污染物.催化学报,2000,21(5):399-403.
    吴祖成,李伟。UV/H2O2系统光催化氧化降解苯酚废水,化工学报,2001,52(3):277~280
    许文林,王雅琼.固定床电化学反应器研究进展.化工冶金,1995,16(3):263-270.
    杨柳燕等.复合催化电解法处理染料工业废水.中国环境科学,1998,18(6):557~560
    钟理,陈建军.高级氧化处理有机污水技术进展.工业水处理,2002,22(1):1-4.
    周家军等.络合萃取法处理甲苯硝化废水.环境导报,1995,(3):17-18.
    周明华、吴祖成,电化学高级氧化工艺降解有毒难生化有机废水,化学反应工程与工艺,第17卷第3期,2001,9
    周明华,吴祖成,祝巨,叶倩,傅锦.基于均相光化学氧化的光电一体化降解硝基酚的研究.催化学报,2002,23(4):376-380.
    朱乐辉等.染料废水及其治理.环境与开发,1994,9(3):299~301