音调感知的听觉外周激光干涉研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
音调是听觉系统感知声音刺激最重要的知觉特征。音调的变化所形成的旋律,是构成音乐世界的基础。然而迄今为止,音调的物理本质仍然是一个悬而未决的问题。不仅如此,音调感知发生的部位也充满了争论。最初音调被认为是信号的频率,这一观点得到了听觉外周的频率分析功能的支持,但是并不能解释包含多个频率成分的复杂音所引起的音调感知现象。随着神经科学的发展,更多的研究者认为音调感知发生在神经系统中,音调是信号的时域特征。近十年来,耳蜗的非线性动力学理论重新解释了音调漂移现象,再次指出听觉外周可能参与音调提取过程。目前,这些非线性动力学理论所预期的现象还缺少听觉外周的生理实验检验。一旦音调感知现象在听觉外周中被观察到,一方面可以增强人们对于音调听觉感知机理的理解,另一方面也将极大地促进电子耳蜗等听力康复技术的发展。
     过去,听觉音调感知的研究主要局限于心理声学实验,这些研究揭示了“基频缺失”“音调漂移”等重要的听觉音调感知特征。但是这些音调感知特征的机理和发生的部位并不清楚,本文是第一个在听觉外周上研究音调感知现象的生理实验。作者于2009年开始设计生理实验所需的耳蜗振动测量系统。为了克服现有激光干涉测量的非线性失真在研究研究音调表达上的缺陷,满足实验要求的高精度和线性性,作者提出了新的相位解调方法将动态相位测量转化为连续的时间间隔测量,并且引入时间数字转化技术测量时间间隔。经过两年多的努力,搭建完成基于时间数字转化技术的高精度外差式激光干涉测量系统,性能测试的实验结果证实实际振动测量精度高于0.5nm。此后,针对耳蜗测量中实际的问题,作者改进了干涉光路:采用电路模块代替参考光路产生相位解码所需的参考信号,增加了激光的能量利用效率;增加了一个分光比调节器,利用偏振光性质提高系统的光信号的信噪比,使激光干涉仪能够适用于弱反射率(0.01%);整合了观察用的显微镜和干涉测量光路。改进后的系统能够精确地记录具有生物活性的耳蜗对声音刺激的响应。利用这套耳蜗振动测量系统,作者在2013年进行了音调感知现象的实验检验。通过对耳蜗基底膜振动波形时序分析,可以明显观察到音调漂移现象。这就说明音调感知确实有听觉外周的参与,音调通过时域信息来表达的可能性更大。
     本研究工作得到国家自然科学基金项目(批准号:60874099)和国家自然科学基金委员会重大研究计划“视听信息的认知计算”(批准号:90820001)支持。
Pitch is the most important perceptual feature of sound. Melody which formed by the change in pitch is the basis of music. However, the physical nature of pitch is still an open question. Moreover, it is also full of controversy that where pitch perception occurs. Initially pitch is considered to be the frequency of signal; this view is supported by the function of frequency analysis of auditory periphery but fail to explain pitch perception of complex tone contained multiple frequency components. With the development of Neuroscience, the researchers believe that the pitch perception occurs in the nervous system and pitch is some characteristics in time domain. Over the past decade, the nonlinear dynamics of cochlea reinterpret the pitch shift effect, to point out again that the auditory periphery may be involved in the pitch extraction process. Presently, there is no physiological experiment on auditory periphery to test these nonlinear dynamics theories. If the pitch perception phenomena is observed on the auditory periphery, on the one hand can enhance the understanding of pitch, on the other hand, will greatly promote the development of auditory research.
     As auditory systerm is sensitive to the change of pitch, psychoacoustic experiments have been the primary methods to research pitch perception. The most important phenomena of pitch perception, such as missing fundamental and pitch shift effect, are all discovered in psychoacoustic experimental studies. This dissertation is the first physiological experimental study of pitch perception on the auditory periphery. We began to design the measurement system for cochlea in2009, and presented a scheme of heterodyne interferometer based on direct time interval measurement. In order to meet the requirements of high resolution and linearity, we proposed a novel phase demodulation method to convert dynamic phase measurement to the continuous measurememt of time interval and introduced time-to-digital converter to measure time intervals.After two years elaborate preparation, the high resolution heterodyne interferometer based on time-to-digital converter was completed in2011. The results of performance tests confirmed that the recorded vibration of interferometer is less than0.5nm and the interferometer has better linearity than the traditional phase demodulation method. After that, the interferometer was improved to solve some problems in pratical measurement. First, instead of the referenc optical path, a circuit module was used to generate the reference signal which is needed in phase decoding. More energe of laser were used for measurement. Then, a splitting ratio adjustor was used to enhance the signal to nosie ratio of optical system. After optimizing the splitting ratio, the interferometer can measure object with faint reflection (0.01%). Finally, a microscope was intergrated with interferometer to form a system which could faithly record the resopse of live cochlea under sound stimulus. Based on the cochlear vibration measurement system, some physiological experiments about pitch perception were completed on auditory periphery. We did not found resonance spectral line of three frequency resonce. And the pitch shift effect was observed on the auditory periphery if the pitch is defined by the reciprocal of time interval. The results demonstrated that the auditory periphery participates in pitch extraction process. The physical nature of pitch is preferred to be some information in time domain.
     This work is supported by the National Natural Science Foundation of China (Grant No60874099) and "Cognitive Computing of Visual and Auditory Information" of NSFC (Grant No90820001).
引文
[1]Hunt F. V. Origins in acoustics. Woodbury,New York:Acoustical Society of America,1992
    [2]Plack C.J., Oxenham A.J., Fay R.R. Pitch:Neural Coding and Perception. Oxenham,New York:Springer Verlag,2005
    [3]Lindsay R. B. The story of acoustics. J. Acoust. Soc. Am.1966,39:629-644
    [4]Moore B.C.J. An Introduction to the Psychology of Hearing. London:Academic, 2003
    [5]von Bekesy G. Direct observation of the vibrations of the cochlear partition under a microscope. Acta Otolaryngol.1952,42:197-201
    [6]von Bek6sy G. Experiments in Hearing (E.G. Weaver, Trans.). New York:McGraw-Hill,1960
    [7]Nutall A.L., Fridberger A. Instrument for studies of cochlear mechanics:From von Bekesy forward. Hearing Reasearch.2012,293:3-11
    [8]Licklider J.C.R. "Periodicity" Pitch and "Place" Pitch. J. Acoust. Soc. Am. 1954,26(5):945-945
    [9]Licklider J.C.R. A Duplex Theory of Pitch Perception. J. Acoust. Soc. Am. 1951,23(1):147-147
    [10]Licklider J.C.R. A Duplex Theory of Pitch Perception. Experientia. 1951,7(4):128-34
    [11]Schouten J.F. Ristma R.J., Cardozo B.L. Pitch of the Residue. J.Acoust. Soc. Am. 1962,34:1418-1424
    [12]Cariani P.A. Delgutte B. Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. J. Neurophysiol.1996,76:1698-1716
    [13]Rhode, W.S. Inter-spike intervals as a correlate of periodicity pitch in cat cochlear nucleus. J. Acoust. Soc. Am.1995,97,2414-2429
    [14]Cedolin L. Delgutte B. Pitch of complex tones:rate-place and interspike interval representation in the auditory nerve. J. Neurophysiol.2005,94:347-362
    [15]Evans E.F. The frequency response and other properties of single fibres in the guinea-pig cochlear nerve. The Journal of physiology.1972,226(1):263
    [16]Evans E.F., Wilson J.P. Cochlear tuning properties:concurrent basilar membrane and single nerve fiber measurements. Science.1975,190(4220):1218-1221
    [17]Whitfield I.C. Auditory cortex and the pitch of complex tones. J. Acoust. Soc. Am. 1980,67:644-647
    [18]Bendor D., Wang X.Q. The neuronal representation of pitch in primate auditory cortex. Nature.2005,436(25):1161-1165
    [19]Yost W.A., Patterson R., Sheft S. A time domain description for the pithc strength of iterated rippled noise. J. Acoust. Soc. Am.1996,99(2):1066-1078
    [20]Yost W.A., Pitch of iterated rippled noise. J. Acoust. Soc. Am.1996,100(1):511-518
    [21]Meddis R., O'Mard L. A unitary model of pitch perception. J. Acoust. Soc. Am. 1997,102(3):1811-1820
    [22]Meddis R. A cascade auto correlation model of pitch perception. 2008,124(4)2186-2195
    [23]Rose R.M., Bernstein I.S., Holaday J.W. Plasma testosterone, dominance, rank and aggressive behavior in a group of male rhesus monkeys. Nature.1971,231:366-368
    [24]Rose R.M., Gordon T.P., Bernstein I.S. Plasma testosterone levels in the male rhesus:Influences of sexual and social stimuli. Science.1972,178:643-645
    [25]De Boer E. Pitch of Inharmonic Signals. Nature.1956,178:536-536
    [26]Wightman F. The pattern-transformation model of pitch. J. Acoust. Soc. Am. 1973,54:407-416
    [27]Wightman F. Pitch and stimulus fine suructure. J. Acoust. Soc. Am. 1973,54:397-406
    [28]Terhardt E. Pitch, consonance and harmony. J. Acoust. Soc. Am.1974,55:1061-1069
    [29]Terhardt E. Calculating virtual pitch. Hear. Res.1979,1:155-182
    [30]Terhardt E., Stoll G., Seewann M. Pitch of complex signals according to virtual-pitch theory:tests,examples,and predictions.1982,71(3)671-678
    [31]Patterson R.D., Uppenkamp S., Johnsrude I.S. et.al. The processing of temporal pitch and melody information in auditory cortex. Neuron.2002,36:767-776
    [32]Balaguer-Ballester E., Clark N.R., Coath M. et.al. Understanding Pitch Perception as a Hierarchical Process with Top-Domn Modulation. Computational Biology. 2009,5(3):e1000031
    [33]Cedolin L., Delgutte B. Spatiotemporal Representation of the Pitch of Harmonic Complex Tones in the Auditory Nerve.2010,30(38):12712-12724
    [34]Bendor D. Understanding How Neural Circuits Measure Pitch. 2011,31(9):3141-3142
    [35]Cartwright J.H.E., Gonzalez D.L, Piro O. Pitch perception:A dynamical-systems perspective. Proc. Natl. Acad. Sci. U.S.A 2001,98(9):4855-4859
    [36]Cartwright J.H.E., Gonzalez D.L, Piro O. Nolinear Dynamics of the Perceived Pitch of Complex Sounds. Phys. Rev. Lett.1999,82(26):5389-5392
    [37]Julicher F., Andor D., Duke T. Physical basis of two-tone interference in hearing. Proc. Natl. Acad. Sci. U.S.A 2001,98(16):9080-9085
    [38]Martignoli S., Stoop R. Local Cochlear Correlations of Perceived Pitch. Phys. Rev. Lett.2010,105(4):048101
    [39]Stohl S.J., Throckmorton C.S., Collins L.M. Investigating the effects of stimulus duration and context on pitch perception by cochlear implant users. J. Acoust. Soc. Am.2009,126(1):318-326
    [40]Gockel H.E., Carlyon R.P. Pitch discrimination interferenc between binaural and monaural or diotic pitches. J. Acoust. Soc. Am.2009,126(1):281-290
    [41]Ries D.T., DiGiovanni J.J. Effects of recurrent tonal information on auditory working memeory for pitch. Hear. Res.2009,255(1-2):14-21
    [42]Moore D.R. et.al. The Oxford Handbook of Auditory Science:Hearing. USA:Oxford University Press,2010,pp71
    [43]Moore B.C.J Hearing. London:Academic Press,1995,pp267
    [44]Deutsch D., Dooley K. Absolute pitch is associated with a large auditory digit span: A clue to its genesis(L). J. Acoust. Soc. Am.2013,133(4):1859-1861
    [45]Houtsma A.J.M., Goldstein J.L. The Central Origin of the Pitch of Complex Tones:Evidence from Musical Interval Recognition. J. Acoust. Soc. Am. 1971,51(2):520-529
    [46]Smoorenburg GR Pitch Perception of Two-Frequency Stimuli. J. Acoust. Soc. Am. 1970,48(4):924-942
    [47]Johnstone B.M., Boyle A.J.F Basilar Membrane Vibratin Examined with the Mossbauer Technique.1967,158:389-390
    [48]Johnstone B.M., Yates G.K. Basilar Membrane tuning cureve in the guinea pig. 1974,55(3):584-587
    [49]Ruggero M., Temchin A.N. Unexceptional sharpness of frequency tuning in the human cochlea.Proc. Natl. Acad. Sci. U.S.A 2005,102(51):18614-18619
    [50]Cooper N.P., Rhode W.S. Basilar membrane mechanics in the hook region of cat and guinea-pig cochleae:sharp tuning and nonlinearity inthe absence of baseline position shifts. Hear. Res.1992,63:163-190
    [51]Cooper N.P., Rhode W.S. Nonlinear mechannics at the apex of guinea-pig cochlea. Hear. Res.1995,82:225-243
    [52]Kemp D.T. Stimulated acoustic emissions from within the human auditory system. J. Acoust. Soc. Am.1978,64:1386-1391
    [53]Cooper N.P., Rhode W.S. Two-tone suppression in apical cochlear mechanics. Auditory Neurosci.1996,3:123-134
    [54]Cooper N.P., Rhode W.S. Mechanical respones to two-tone distortion products in the apical and basal turns of the mammalian cochlea. J. Neurophysiol. 1997,78:261-270
    [55]Ruggero M.A., Robles L., Rich N.C. Two-Tone Suppression in the Basilar Membrane of the Cochlea:Mechanical Basis of Auditory-Nerve Rate Suppression. J.Neurophysiol.1992,68:1087-1099
    [56]He W.X., Nuttall A.L., Ren T.Y. Two-tone distortion at different longitudinal locations on the basilar membrane. Hear. Res.2007,228:112-122
    [57]Robles L., Ruggero M.A. Mechanics of the Mammalian Cochlea. Physiol.Rev. 2001,81(3)1306-1352
    [58]Gold T. Hearing. Ⅱ.The physical basis of the action of the cochlea. Proc. R. Soc. Lond. B. Biol. Sci.1948,135:492-498
    [59]Brownell W.E., Bader C.R., Bertrand D. et.al. Evoked mechanical responses of isolated cochlear outer hair cells. Science.1985,227:194-196
    [60]Dallos P., Evans B.N. High-frequency motillity of motility of outer hair cells and the cochlear amplifier. Science.1995,267:2006-2009
    [61]Zheng J., Shen W.X., He D.Z.Z et.al. Prestin is the motor protein of cochlear outer hair cells. Nature.2000,405:149-155
    [62]Liberman M.C., Gao J.G., He D.Z.Z et.al. Prestin is required for electromotility of the outer hair cell and for teh cochlear amplifier. Nature.2002,419:300-304
    [63]Kennedy H.J., Crawford A.C., Fettiplace R. Force generation by mammalian hair bundles suppports a role in cochlear amplification. Nature.2005,433:880-883
    [64]Prakash R., Ricci A.J. Hair bundles teaming up to tune the mammalian cochlea. Proc.Natl. Acad. Sci. U.S.A 2008,105(48):18651-18652
    [65]Kern A., Stoop R. Essential Role of Coupling between Hearing Nonlinearities. Phys. Rev. Lett.2003,91:128101
    [66]Eguiluz V.M., Ospeck M., Choe Y., Hudspeth A.J., Magnasco M.O. Essential Nonlinearities in Hearing. Phys. Rev. Lett.2000,84:5532-5535
    [67]Stoop R., Kern A. Two-Tone Suppression and Combination Tone Generation as Computations Performed By the Hopf Cochlea. Phys. Rev. Lett 2004,93:268103
    [68]Camalet S., Duke T., Julicher F., Prost J. Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proc. Natl. Acad. Sci. U.S.A 2000,97(7)3183-3188
    [69]Carwright J.H.E., Gonzalez D.L, Piro O. Universality in three-frequency resonances. Phys. Rev. E.1999,59(3):2902-2906
    [70]Michelson, Albert Abraham & Morley, Edward Williams. On the Relative Motion of the Earth and the Luminiferous Ether. American Journal of Science.1887,34: 333-345
    [71]Khanna S.M., Hao L.F. Nonlinearity in the apical turn of living guinea pig cochlea. Hear. Res.1999,135:89-104
    [72]Cooper N.P. An improved heterodyne laser interferometer for use in studies of cochlear mechanics.1999,88:93-102
    [73]Jacob S., Johansson C., Ulfendahl M., Fridberger A. A digital heterodyne laser interferometer for studying cochlear mechanics.2009,179:271-277
    [74]Eom T.B., Kim K.A., Kang C.S., Park B.C. A simple phase-encoding electronics for reducing the nonlinearity error of a heterodyne interferometer.2008,19:075302
    [75]Bertotti F.L., Hara M.S., Abatti P.J. A simple method to measure phase difference between sinusoidal signals. Rev. Sci. Instrum.2010,81:115106
    [76]Hong S.S., Freeman D.M. Doppler optical coherence microscopy for studies of cochlear mechanics. J. Biomed. opt.2006,11(5):054014
    [77]Dandridge A., Tveten A.B. Noise reduction in fiber optic interferometer systems. Appl. Opts.1981,20(14):2337-2339
    [78]Recio A., Rich N.C., Narayan S.S. et.al. Basilar-membrane responses to clicks at the base of the chinchilla cochlea. J. Acoust. Soc. Am.1998,103(4):1972-1989
    [79]Robles L., Ruggero M.A., Rich N.C. Two-Tone Distortion on the Basilar Mebrane of the Chinachilla Cochlea. J Neuorphysiol.1997,77:2385-2399
    [80]Raphael Y., Altschuler R.A. Structure and innervation of the cohclea. Brain Research Bullletin.2003,60:397-422