钛硅分子筛的合成、改性及其催化丙烯环氧化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在廉价体系中,水热法合成了小晶粒钛硅分子筛TS-1,并采用不同有机碱对小晶粒TS-1进行改性,进一步提高了其催化活性。通过考察酸碱性对丙烯环氧化反应性能的影响,提出了可能的反应机理。根据实验室小试得到的反应条件对丙烯环氧化反应进行了中试放大,分析了中试催化剂失活的原因,并研究了其再生条件。得到的主要结果如下:
     1.在四丙基溴化铵-乙胺体系中,采用纳米TS-1母液作为晶种,合成出晶粒尺寸为600nm×400nm×250nm的小晶粒TS-1分子筛,并对小晶粒TS-1分子筛合成条件进行系统地考察,发现当Si/Ti摩尔比为50,晶种/Si02质量比为0.06,晶化48h,静置洗涤3次的样品催化性能最佳,其催化丙烯环氧化反应时,X(H202)及S(PO)可分别达到92%及98%,催化苯酚羟基化反应时,X(PHE)达到22%。其高催化性能的原因是:(1)比表面积较大且表面较粗糙,能为催化反应提供更多的外表面活性中心,使反应物转化率提高;(2)与微米TS-1相比,颗粒尺寸较小,平均孔径较大,扩散阻力较小,使反应物转化率及产物选择性提高;(3)少量Na+存在,能够覆盖TS-1表面酸中心,提高丙烯环氧化反应选择性。
     2.在固定床反应器上优化了挤条小晶粒TS-1催化丙烯环氧化的反应条件,并在优化条件(40℃,3.0MPa,n(C3H6)/n(H2O2)=3,丙烯、甲醇及H202的WHSV分别为0.6、2.5及0.16h-1, NH3-H2O浓度为1.2mmol·L-1)下考察了其长运转性能,反应1000h后,X(H2O2)及S(PO)仍能达到95%以上
     3.采用不同有机碱改性小晶粒TS-1,发现不同有机碱改性对TS-1二次晶化的方向取向有很大影响,TPA+及TBA+对晶粒内部的骨架钛具有保护作用。采用0.06mol·L-1四丙基氢氧化铵改性72h的样品,催化苯酚羟基化反应活性最高。
     4.考察不同有机碱作为添加剂,对丙烯环氧化反应性能的影响,并根据反应结果、表征及DFT计算,推测了丙烯环氧化反应的机理,认为酸中心对丙烯环氧化反应具有重要的促进作用。
     5.对微米TS-1(EPO-08)催化过氧化氢制环氧丙烷(HPPO)中试过程及结果进行讨论,该催化剂在采用丙酮/甲醇混合溶剂或纯甲醇溶剂时,均能表现出优异的催化性能。
     6.将EPO-08催化剂用于HPPO中试1700h后,活性有所下降,从中试反应器入口至出口,催化剂活性逐渐降低。造成催化剂失活的主要原因是环氧丙烷低聚物的堵孔。失活的EPO-08可以采用体外或原位再生使其恢复活性,原位再生更适合工业化生产。
Titanium silicalite-1(TS-1) with a small crystal size (small-crystal TS-1) was synthesized in a TPABr-ethylamine hydrothermal system. The as-synthesized small-crystal TS-1was modified with different organic bases to further improve its catalytic activity. By investigating the influence of acid/base on the catalytic performance of propylene epoxidation, a new reaction mechanism is presented. According to the experiment in laboratory, a pilot plant of propylene epoxidation was carried out. The deactivated catalysts were characterized to study the reason for the deactivation and were regenerated under different conditions. The main results are shown as follows:
     1. Small-crystal TS-1with a crystal size of about600nm×400nm×250nm, was synthesized in a TPABr-ethylamine hydrothermal system using the mother liquor of nano-sized TS-1as seeds. The synthesis conditions were systematically studied. When the molar ratio of Si/Ti was50, the weight ratio of seed/SiO2was0.06, using precipating separation for three times and the gel was crystallized for48h, the highest catalytic properties were obtained. The X(H2O2) and S(PO) were92%and98%, respectively, for the epoxidation of propylene, and the XPHE) was22%for the hydroxylation of phenol. The reasons for its high catalytic properties were considered as follows:(1) Larger surface area and rougher surface provided more active sites for the reactions, so that the reactant conversions were higher.(2) Smaller crystal size and larger pore diameter than micro-sized TS-1decreased the internal diffusion limitation, so that the selectivity of the main product in propylene epoxidation increased.(3) A small amount of sodium ions could improve the selectivity of propylene oxide by covering the acid centers on the TS-1.
     2. The reaction conditions of propylene epoxidation over small-crystal TS-1extrudates were optimized in a fixed-bed reator. A long term test was performed under the optimal conditions (40℃,3.0MPa, n(C3H6)/n(H2O2)=3, WHSVs of propylene, methanol and H2O2were0.6,2.5and0.16h-1, and the NH3·H2O concentration was1.2mmol·L-1). The X(H2O2) and S(PO) were both more than95%after1000h reaction.
     3. Different organic bases were used to modify the small-crystal TS-1. The direction of recrystallization depended on the kind of bases. TPA+and TBA+show a protection effect on the framework Ti in the crystals. When0.06mol·L-1TPAOH solution was adopted to treat the TS-1for72h, the highest conversion of phenol was obtained in phenol hydroxylation.
     4. The influences of different organic base additives on the propylene epoxidation were investigated. A new mechanism of propylene epoxidation is presented, according to the experimental data, characterization and DFT calculations. Acid centers were considered to be promotors for the epoxidation reactions.
     5. The process and results of the HPPO pilot plant over EPO-08were dicussed. The EPO-08showed excellent catalytic performances both in acetone/methanol mixed solvent and in pure methanol solvent.
     6. The EPO-08deactivated partly after1700h pilot plant. The activity decreased from the entrance of the pilot-plant reactor to the exit. The main reason for the deactivation was blocking of pores by propylene oxide oligomers. The deactivated EPO-08could be regenerated by external and in-situ regeneration, while the in-situ regeneration was preferred in industry.
引文
[1]TANABE K, MISONO M, ONO Y, et al. New solid acids and bases:Their catalytic properties [M]. Amsterdam:Elsevier,1989.
    [2]CORMA A, FORNES V. A new approach to the cracking of alkanes as a test reaction for solid acid catalysts [J]. Stud Surf Sci Catal,1985,20:409-417.
    [3]WANG L L, LIU Y M, XIE W, et al. Highly efficient and selective production of epichlorohydrin through epoxidation of allyl chloride with hydrogen peroxide over Ti-MWW catalysts [J]. J Catal, 2007,246:205-214.
    [4]KUWAHARA Y, NISHIZAWA K, NAKAJIMA T, et al. Enhanced catalytic activity on titanosilicate molecular sieves controlled by cation-π interaction [J]. J Am Soc Chem,2011, 133:12462-12465.
    [5]MELONI D, MONACI R, ROMBI E, et al. Synthesis and characterization of MCM-22 zeolites for the N2O oxidation of benzene to phenol [J]. Stud Surf Sci Catal,2002,142:167-174.
    [6]高滋.沸石催化与分离技术[M].北京:中国石化出版社,2009.
    [7]TARAMASSO M, PEREGO G, NOTARI B. Preparation of porous crystalline synthetic materials comprised of silicon and titanium oxides:US,4410501 [P].1983,10,18.
    [8]HUYBRECHTS D R C, DE BRUYCKER L, JACOBS P A. Oxyfunctionalization of alkanes with hydrogen peroxide on titanium silicalite [J]. Nature,1990,345:240-240.
    [9]CLERICI M G. Oxidation of saturated hydrocarbons with hydrogen peroxide, catalysed by titanium silicalite [J]. Appl Catal,1991,68:249-261.
    [10]NERI C, ANFOSSI B, ESPOSITO A, et al. Process for the epoxidation of olefinic compounds: US,4833260[P].1989,05,23.
    [11]CLERICI M G, BELLUSSI G, ROMANO U. Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite [J]. J Catal,1991,129:159-167.
    [12]MARTENS J A, BUSKENS P, JACOBS P A, et al. Hydroxylation of phenol with hydrogen peroxide on EUROTS-1 catalyst [J]. Appl Catal A,1993,99:71-84.
    [13]MANTEGAZZA M A, LEOFANTI G, PETRINI G, et al. Selective oxidation of ammonia to hydroxylamine with hydrogen peroxide on titanium based catalysts [J]. Stud Surf Sci Catal,1994, 82:541-550.
    [14]PADOVAN M, LEOFANTI G, ROFFIA P, et al. Method for the preparation of titanium silicalites:EP,311983[P].1989,04,29.
    [15]MULLER U, STECK W. Ammonium-based alkaline-free synthesis of MFI-type boron-and titanium zeolites [J]. Stud Surf Sci Catal,1994,84:203-210.
    [16]LI G, WANG X S, YAN H S, et al. Effect of sodium ions on propylene epoxidation catalyzed by titanium silicalite [J]. Appl Catal A,2001,218:31-37.
    [17]TUEL A, BEN TAOR1T Y, NACCACHE C. Characterization of TS-1 synthesized using mixtures of tetrabutyl and tetraethyl ammonium hydroxides [J]. Zeolites,1993,13:454-460.
    [18]TUEL A. Crystallization of titanium silicalite-1 (TS-1) from gels containing hexanediamine and tetrapropylammonium bromide [J]. Zeolites,1996,16:108-117.
    [19]GUO X W, LI G, ZHANG X F, et al. Synthesis of titanium silicalite-1 from TPABr system [J]. Stud Surf Sci Catal,1997,112:499-508.
    [20]WANG X S, GUO X W. Synthesis, characterization and catalytic properties of low cost titanium silicalite [J]. Catal Today,1999,51:177-186.
    [21]LI G, GUO X W, WANG X S, et al. Synthesis of titanium silicalites in different template systems and their catalytic performance [J]. Appl Catal A,1999,185:11-18.
    [22]MAO J B, LIU M, LI P, et al. Effect of tetrapropyl ammonium hydroxide modification of micron-scale TS-1 on ammoxidation of methyl ethyl ketone. The 15th International Zeolite Conference, Beijing, China,2007 [C].
    [23]TSAI S T, CHAO P Y, TSAI T C, et al. Effects of pore structure of post-treated TS-1 on phenol hydroxylation [J]. Catal Today,2009,148:174-178.
    [24]ZUO Y, WANG M L, SONG W C, et al. Characterization, and catalytic performance of deactivated and regenerated TS-1 extrudates in a pilot plant of propylene epoxidation [J]. Ind Eng Chem Res,2012,51:10586-10594.
    [25]张义华,王祥生,郭新闻,等.以TiCl4醇溶液作钛源在水热体系中合成钛硅分子筛TS-1[J].燃料化学学报.2000,28:550-554.
    [26]ZUO Y, WANG X S, GUO X W. Synthesis of titanium silicalite-1 with small crystal size by using the mother liquid of titanium silicalite-1 [J]. Ind Eng Chem Res,2011,50:8485-8491.
    [27]王祥生,左轶,郭新闻.一种廉价体系中快速合成小晶粒TS-1的方法:中国201010235977.3[P].2010,07,20.
    [28]MILLINI R, PREVIDE MASSARA E, PEREGO G, et al. Framework composition of titanium silicalite-1 [J]. J Catal,1992,137:497-503.
    [29]OLSON D H, KOKOTAILO G T, LAWTON S L, et al. Crystal structure and structure-related properties of ZSM-5 [J]. J Phys Chem,1981,85,2238-2243.
    [30]YOON C W, HIRSEKORN K F, NEIDIG M L, et al. Mechanisms of the decomposition of aqueous hydrogen peroxide over heterogeneous TiSBA-15 and TS-1 selective oxidation catalysts: Insights from spectroscopic and density functional theory studies [J]. ACS Catal,2011, 1:1665-1678.
    [31]SU J, XIONG G, ZHOU J C, et al. Amorphous Ti species in titanium silicalite-1:Structural features, chemical properties, and inactivation with sulfosalt [J]. J Catal,2012,288:1-7.
    [32]WANG L L, XIONG G, SU J, et al. In situ UV Raman spectroscopic study on the reaction intermediates for propylene epoxidation on TS-1 [J]. J Phys Chem C,2012,116:9122-9131.
    [33]KRAUSHAR B. VAN HOOFF J H C. A new method for the preparation of titanium silicalite (TS-1) [J]. Catal Lett,1988,1:81-84.
    [34]FERRINI C, KUAVENHOVEN H. Modified zeolites for oxidation reaetions [J]. Stud Surf Sci Catal,1990,55:53-62.
    [35]KOOYMAN P. Titanium deposited from TiCl4 on amorphous silica and silicalite-1 as catalyst in aromatic hydroxylation reactions [J]. Catal Lett,1992,13:229-238.
    [36]徐成华,吕绍洁,邓桂英,等Ti-ZSM-5分子筛催化氯丙烯环氧化制环氧氯丙烷[J].石油化工,2002,31:245-249.
    [37]BHUYAN B K, BORAH A J, SENAPATI K K, et al. Ti-exchanged ZSM-5 as heterogeneous catalyst for alkylation of aldehydes with allyltributylstannane [J]. Tetrahedron Lett,2011, 52:2649-2651.
    [38]张法智,郭新闻,王祥生,等.气固相同晶取代法合成制备Ti-ZSM-5及其催化性能的研究[J].分子催化,1999,13:121-126.
    [39]LIU M, GUO X W, WANG X S, et al. Effect of (n)SiO2/(n)B2O3 in the precursor on chemical-physics properties of Ti-ZSM-5 synthesized by gas-solid method [J]. Catal Today,2004, 93-95:659-664.
    [40]许章林,张盈珍,郑禄彬.杂原子沸石的二次合成及其表征—Ⅱ.含Ti、Fe杂原子沸石[J].分子催化,1992,6:365-370.
    [41]THANGARAJ A, KUMAR R, MIRAJKAR S P, et al. Catalytic properties of crystalline titanium silicalites I. Synthesis and characterization of titanium-rich zeolites with MF1 structure [J]. J Catal, 1991,130:1-8.
    [42]NOTARI B. Synthesis and catalytic properties of titanium containing zeolites [J]. Stud Surf Sci Catal,1987,37:413-425.
    [43]VAYSSILOV G N. Struetural and Physico chemical features of titanium silicalites [J]. Catal Rev Sci-Eng 1997,39:209-251.
    [44]BOCCUTI R M, RAO K M, ZECCHINA A. Spcetroscopyic characterization of silicalite and titanium-silicalite [J]. Stud Surf Sci Catal,1989,48:133-144.
    [45]UGUNAI M A, SERRANO D P, OVEJOER G, et al. Preparation of TS-1 by wetness impregnation amorphous SiO2-TiO2 solids:Influence of the synthesis variables [J]. Appl Catal A, 1995,124:391-408.
    [46]ZHOU J C, WANG X S. Novel Method for Synthesis of Titanium Silicalite-1 (TS-1) [J]. Chin J Chem,2000,18:42-48.
    [47]BORDIGA S, DAMIN A, BERLIER G, et al. The role of isolated sites in heterogeneous catalysis: Characterization and modeling [J]. Int J Mol Sci,2001,2:167-182.
    [48]JORDA E, TUEL A, TEISSIER R, et al. TiF4:An original and very interesting precursor to the synthesis of titanium containing silicalite-1 [J]. Zeolites,1997,19:238-245.
    [49]PEREGO C, CARATI A, INGALLINA P. Production of titanium containing molecular sieves and their application in catalysis [J]. Appl Catal A,2001,221:63-72.
    [50]郭新闻,工祥生.李钢,等.钛硅沸石中非骨架钛的紫外谱图研究[J].石油学报(石油加工),2001,17:61-67.
    [51]QHSAKA T,IZUMI F, FUJIKI Y. Raman spectrum of anatase TiO2 [J]. J Raman Spectrosc, 1978.7:321-324.
    [52]ALEMANYL J, BANARES M A, LARRUBIA M A, et al. Vanadia-titania systems: Morphological and structural properties [J]. Mater Res Bull,1996,31:513-534.
    [53]GUO Q. FENG Z C, LI G N, et al. Finding the "missing components" during the synthesis of TS-1 zeolite by UV resonance Raman spectroscopy [J]. J Phys Chem C,2013,117:2844-2848.
    [54]LI C, XIONG G, LIU J K, et al. Identifying framework titanium in TS-1 Zeolite by UV resonance Raman spectroscopy [J]. J Phys Chem B 2001,105:2993-2997.
    [55]TULLO A H, SHORT P L. Propylene oxide routes take off [J]. Chem Eng News,2006,84:22-23.
    [56]CAVANI F, TELES J H. Sustainability in catalytic oxidation:An alternative approach or a structural evolution [J]? ChemSusChem,2009,2:508-534.
    [57]李华,何驰剑,林民,等.烯烃环氧化方法:中国,201010511515.X[P].2012,05,09.
    [58]林民,李华,伍小驹,等.一种烯烃环氧化方法:中国,201010511546.5[P].2012,05,09.
    [59]SHELDON R A, DAKKA J. Heterogeneous catalytic oxidations in the manufacture of fine chemicals [J]. Catal Today,1994,19:215-245.
    [60]CLERICI M G, INGALLINA P. Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite [J]. J Catal,1993,140:71-83.
    [61]HUYBRECHTS D R C, VAESEN 1, JACOBS P A, et al. Factors influencing the catalytic activity of titanium silicalites in selective oxidations [J]. Catal Lett,1991,8:237-244.
    [62]李钢,郭新闻,王丽琴,等.钛硅分子筛催化丙烯环氧化反应条件的研究[J].分子催化,1998,12:436-440.
    [63]ROMANO U, ESPOSITO A, MASPERO F, et al. Selective oxidation with titanium silicalite [J]. Chim Ind,1990,72:610-616.
    [64]ROMANO U, ESPOSITO A, MASPERO F, et al. Selective oxidation with Ti-silicalite [J]. Stud Surf Sci Catal,1990,55:33-38.
    [65]NOTARI B. Titanium siliealites [J]. Catal Today,1993,18:163-172.
    [66]TENDULKAR B, TMABE S S, CHANDAR I, et al. Hydroxylation of phenol to dihydroxybenzenes:Development of artificial neural-network-based process identification and model predictive control strategies for a pilot plant scale reactor [J]. Ind Eng Chem Res,1998, 37:2081-2085.
    [67]柯于刃,卢冠忠,王正荣.TS分了筛的催化氧化性能研究Ⅲ.笨酚氧化制苯二酚[J].华东理工大学学报,1995,24:116-]21.
    [68]戴延凤,刘希尧,萨学理.TS-1分子筛催化苯的羟基化性能[J].分子催化,1998,12:48-52.
    [69]张旭之,陶志华,工松汉,等.丙烯衍生物工学[M].北京:化学工业出版社,1995.
    [70]张威.环氧丙烷的合成与利用[J].山东化工,1991,3:12-17.
    [71]WULLF H P, WATTIMENU F. Olefin epoxidation:US,4021454[P].1977,05,03.
    [72]ZUO Y, WANG X S, GUO X W. Synthesis of titanium silicalite-1 with small crystal size by using mother liquor of titanium silicalite-1 as seeds (Ⅱ):Influence of synthesis conditions on properties of titanium silicalite-1 [J]. Microporous Mesoporous Mater,2012,162:105-114.
    [73]THANGARAJ A, KUMAR R, RATNASAMY P. Direct catalytic hydroxylation of benzene with hydrogen peroxide over titanium-silicalite zeolites [J]. Appl Catal,1990,57:L1-L3.
    [74]PIRUTKO L V, URIARTE A K, CHERNYAVSKY V S, et al. Preparation and catalytic study of metal modified TS-1 in the oxidation of benzene to phenol by N2O [J]. Microporous Mesoporous Mater,2001,48:345-353.
    [75]LI Y G, LEE Y M, PORTER J F. The production and characterisation of titanium silicalite-1 [J]. J Mat Sci,2002,37:1959-1965.
    [76]HASENZAHL S. Method for the production of a titanium-containing zeolite:US, 20030035771[P].2003,02,20.
    [77]PALKOVITS R, SCHMIDT W, ILHAN Y, et al. Crosslinked TS-1 as stable catalyst for the Beckmann rearrangement of cyclohexanone oxime [J]. Microporous Mesoporous Mater,2009, 117:228-232.
    [78]SHIMA H, TATSUMI T, KONDO J N. Direct FT-IR observation of oxidation of 1-hexene and cyclohexene with H2O2 over TS-1 [J]. Microporous Mesoporous Mater,2010,135:13-20.
    [79]LI G, WANG X S, YAN H S, et al. Epoxidation of propylene using supported titanium silicalte catalysts [J]. Appl Catal A,2002,236:1-7.
    [80]WANG L Q, WANG X S, GUO X W. Quick synthesis of titanium silicalite-1 [J]. Chin J Catal, 2001,22:513-514.
    [81]王祥生,王丽琴,郭新闻.一种纳米级钛硅分子筛催化剂的快速合成方法及应用:中国,02132325.9[P].2003,03,12.
    [82]VAN DER POL A J H P, VAN HOOFF J H C. Parameters affecting the synthesis of titanium silicalite-1 [J]. Appl Catal A,1992,92:93-111.
    [83]王祥生,张义华,郭新闻.廉价水热体系中小晶粒钛硅分了筛的制备方法及其应用:中国,01145256.0[P].2002,10,23.
    [84]LI P, XIA L Z, GUO X W. The Stability of TS-1 Modified by Organic Base in Ammoxidation of Methyl Ethyl Ketone into Methyl Ethyl Ketone oxime. The International Symposium on Zeolites and Microporous Crystals,2006 [C].
    [85]WANG Y R, LIN M, TUEL A. Hollow TS-1 crystals formed via a dissolution-recrystallization process [J]. Microporous Mesoporous Mater,2007,102:80-85.
    [86]SCARANO D, ZECCHINA C, BORDIGA S, et al. Fourier-transform infrared and Raman spectra of pure and A1-, B-, Ti-, and Fe-substituted silicalites:stretching-mode region [J]. J Chem Soc Faraday Trans,1993,89:4123-4130.
    [87]NOTARI B. Symp on New Catal Chem Utili Mole Sieve Inc,206th Nation Meeting, Chicago, 1993 [C],761-764.
    [88]DUPREY E, BEAUNIER P, SPRINGUEL-HUET M A, et al. Characterization of catalysts based on titanium silicalite, TS-1, by physicochemicaltechniques [J]. J Catal,1997,165:22-32.
    [89]LIU Z F, DAVIS R J. Investigation of the structure of microporous Ti-Si mixed oxides by X-ray, UV-reflectance, FT-Raman, and FT-IR spectroscopies [J]. J Phys Chem,1994,98:1253-1261.
    [90]FAN W B, DUAN R G, YOKOI T, et al. Synthesis, crystallization mechanism, and catalytic properties of titanium-rich TS-1 free of extraframework titanium species [J]. J Am Chem Soc, 2008,130:10150-10164.
    [91]ZHANG F Z, GUO X W, WANG X S, et al. The active sites in different TS-1 zeolites for propylene epoxidation studied by ultraviolet resonance Raman and ultraviolet Visible absorption spectroscopies [J]. Catal Lett,2001,72:235-239.
    [92]LIU X W, WANG X S, GUO X W, et al. Catal Lett,2004,97:223-229.
    [93]HUYBRECHTS D R C, DE BRUYKER L, JACOBS P A. Physicochemical and catalytic properties of titanium silicalites [J]. J Mole Catal,1992,71:129-147.
    [94]KHOUW C B, DAVIS M E. Catalytic activity of titanium silicates synthesized in the presence of alkali-metal and alkaline-earth ions [J]. J Catal,1995,151:77-86.
    [95]WANG Y R, TUEL A. Nanoporous zeolite single crystals:ZSM-5 nanoboxes with uniform intrecrystalline hollow structures [J]. Microporous Mesoporous Mater,2008,113:286-295.
    [96]MANOIROVA V, DAKKA J, SCHELDON R A, et al. Infrared study of Ti-containing zeolites using CO as a probe molecule [J]. Stud Surf Sci Catal,1995,94:163-170.
    [97]CASSAIGNON S, KOELSCH M, JOLIVET J P. Selective synthesis of brookite, anatase and rutile nanoparticles:thermolysis of TiCl4 in aqueous nitric acid [J]. J Mat Sci,2007, 42:6689-6695.
    [98]赵琦,韩秀文,刘秀梅,等.TS-1分子筛骨架钛引入过程的研究[J].催化学报,1999,20:55-59.
    [99]KRAUSHAAR-CZARNETZKI B, VAN HOOFF J H C. A test reaction for titanium silicalite catalysts [J]. Catal Lett,1989,2:43-47.
    [100]WU P, KOMATSU T, YASH1MA T. Hydroxylation of aromatics with hydrogen peroxide over titanosilicates with MOR and MFI structures:Effect of Ti peroxo species on the diffusion and hydroxylation activity [J]. J Phys Chem B,1998,102:9297-9303.
    [101]WILKENHONER U, LANGHENDRIES G, VAN LAAR F, et al. Influence of pore and crystal size of crystalline titanosilicates on phenol hydroxylation in different solvents [J]. J Catal,2001, 203:201-212.
    [102]SUZUKI T, OKUHARA T. Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution [J]. Microporous Mesoporous Mater,2001,43:83-89.
    [103]XIAO F S, HAN Y, YU Y, et al. Hydrothermal stable of ordered mesoporous titanosilicates with highly active catalytic sites [J]. J Am Chem Soc,2002,124:888-889.
    [104]POPOVA M, SZEGEDI A, CHERKEZOVA-ZHELEVA Z, et al. Toluene oxidation on titanium and iron modified MCM-41 materials [J]. J Hazard Mater,2009,168:226-232.
    [105]WANG Z Y, ZHANG F X, YANG Y L, et al. Facile postsynthesis of Visible-light-sensitive titanium dioxide/mesoporous SBA-15 [J]. Chem Mater,2007,19:3286-3293.
    [106]WEISSERMEL K, ARPE H J. Industrial Organic Chemistry [M]. VCH:Weinheim,1993.
    [107]GARCIA S F, WEISZ P B. Effective diffusitivities in zeolites 1. Acromatics in ZSM-5 crystals [J]. J Catal,1990,121:294-311.
    [108]LOUSADA C M, JOHANSSON A J, BRINCK T, et al. Mechanism of H2O2 decompostion on transition metal oxide surfaces [J]. J Phys Chem C,2012,116:9533-9543.
    [109]FEJES P, NAGY J B, HALASZ J, et al. Heat-treatment of isomorphously substituted ZSM-5 zeolites and its structural consequences:An X-ray diffraction,29Si MAS-NMR, XPS and FT-IR spectroscopy study [J]. Appl Catal A,1998,175:89-104.
    [110]GAO J, LIU M, WANG X S, et al. Characterization of Ti-ZSM-5 prepared by isomorphous substitution of B-ZSM-5 with TiCl4 and its performance in the hydroxylation of phenol [J]. Ind Eng Chem Res,2010,49:2194-2199.
    [111]李明丰,郭新闻,王祥生.以De-(B)ZSM-5为母体合成Ti-ZSM-5 [J]催化学报,1997,18:269-270.
    [112]QUINCY R B, HOUALLA M, HERCULES D M. Quantitative Raman characterization of MoTi022 catalysts [J]. J Catal,1987,106:85-92.
    [113]Centi G, Trifiro F. New developments in selective oxidation [M]. Amsterdam:Elsevier,1990.
    [114]TIAN D Y, YAN W F, WANG Z X, et al. Core-shell composite of Ti-/Cr-AFI molecular sieve via solvothermal epitaxial growth [J]. Cryst Growth Des,2009,9:1411-1414.
    [115]OCAMPO F, YUN H S, MACIEL-PEREIRA M, et al. Design of MFI zeolite-based composites with hierarchical pore structure:A new generation of structured catalysts [J]. Cryst Growth Des, 2009,9:3721-3729.
    [116]YUBE K, FURUTA M, MAE K. Selective oxidation of phenol with hydrogen peroxide using two types catalytic microreactor [J]. Catal Today,2007,125:56-63.
    [117]RAJ K J A, MALAR E J R, VIJAYARAGHAVAN V R. Shape-selective reactions with AEL and AFI type molecular sieves alkylation of benzene, toluene and ethylbenzene with ethanol, 2-propanol, methanol and t-butanol [J]. J Mole Catal A,2006,243:99-105.
    [118]LIU G Y, TIAN P, LI J Z, et al. Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template [J]. Microporous Mesoporous Mater,2008, 111:143-149.
    [119]李宏愿,梁娟,刘了名,等.硅磷酸铝分子筛SAPO-11, SAPO-34和SAPO-20的合成[J].催化学报,1988,9:87-91.
    [120]BOURLINOS A B, CHOWDHURY S R, JIANG D D, et al. Layered organosilicate nanoparticles with liquidlike behavior [J]. Small,2005,1:80-82.
    [121]VETTER S, SCHULZ-EKLOFF G, KULAWIK K, et al. On the para/ortho product ratio of phenol and anisole hydroxylation over titanium silicalite-1 [J]. Chem Eng Technol,1994, 17:348-353.
    [122]LASSALETTA G, FERNANDEZ A, ESPINOS J P, et al. Spectroscopic characterization of quantum-sized TiO2 supported on silica:Influence of size and TiO2-SiO2 interface composition [J]. J Phys Chem,1995,99:1484-1490.
    [123]CONTARINI S, VAN DER HEIDE P A W, PRAKASH A M, et al. Titanium coordination in microporous and mesoporous oxide materials by monochromated X-ray photoelectron spectroscopy and X-ray Auger electron spectroscopy [J]. J Electron Relat Phenom,2002, 125:25-33.
    [124]SZOSTAK R. Molecular sieves:Principles of synthesis and identification [M]. New York:Van Nostrand Reinhold,1989.
    [125]WANG Z X, YAN W F, TIAN D Y, et al. Preparation of highly b-oriented silicalite-1 film [J]. Acta Phys-Chim Sin,2010,26:2044-2048.
    [126]TREACY M M J, HIGGINS J B. Collection of simulated XRD powder patterns for zeolites [M]. Amsterdam:Elsevier,2007.
    [127]LI X M, YAN Y S, WANG Z B. Continuity control of b-oriented MFI zeolite films by microwave synthesis [J]. Ind Eng Chem Res,2010,49:5933-5938.
    [128]REDDY J S, SIVASANKER S, RATNASAMY P. Hydroxylation of phenol over TS-2, a titanium silicate molecular sieve [J]. J Mol Catal,1992,71:373-381.
    [129]SONG J W, DAI L, JI Y Y, et al. Organic template free synthesis of aluminosilicate zeolite ECR-1 [J]. Chem Mater,2006,18:2775-2777.
    [130]WU Z F, SONG J W, REN L M, et al. Organic template-free synthesis of ZSM-34 zeolite from an assistance of zeolite L seeds solution [J]. Chem Mater,2008,20:357-359.
    [131]PEREZ-RAMIREZ J, VERBOEKEND D, BONILLA A. et al. Zeolite catalysts with tunable hierarchy factor by pore-growth moderators [J]. Adv Funct Mater,2009,19:3972-3939.
    [132]ZUO Y, SONG W C,DAI C Y, et al. Modification of small-crystal titanium silicalite-1 with organic bases:Recrystallization and catalytic properties in the hydroxylation of phenol [J]. Appl Catal A,2013,453:272-279.
    [133]HAAS T, BRASSE C, STOCHN1OL G, et al. Process for the epoxidation of olefins:US, 6838572 [P].2005,01,04.
    [134]THIELE G F, ROLAND E. Propylene epoxidation with hydrogen peroxide and titanium silicalite catalyst:Activity, deactivation, and regeneration of the catalyst [J]. J Mole Catal A, 1997,117:351-356.
    [135]DEKA R C, NASLUZOV V A, SHOR E A 1, et al. Comparison of all sites for Ti substitution in zeolite TS-1 by an accurate embedded-cluster method [J]. J Phys Chem B,2005, 109:24304-24310.
    [136]GALE J D. A periodic density functional study of the location of titanium within TS-1 [J]. Solid State Sci,2006,8:234-240.
    [137]PIRC G, STARE J. Titanium site preference problem in the TS-1 zeolite catalyst:A periodic Hartree-Fock study [J]. Acta Chim Slov,2008,55:951-959.
    [138]STARE J, HENSON N J, ECKERT J. Mechanistic aspects of propylene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1 [J]. J Chem Inf Model,2009,49:833-846.
    [139]MUNAKATA H, OUMI Y, MIYAMOTO A. Studies on catalytic epoxidation reaction cycle with titanium silicalite-1 (TS-1) cluster model:TS-1 peroxide formation and epoxidation reaction [J]. Stud Surf Sci Catal,1999,121:227-232.
    [140]MILOV M A, ZHIDOMIROV G M. DFT cluster model of hydroperoxide activation intermediates in Ti-containing porous silicalites [J]. React Kinet Catal Lett,2002,75:147-155.
    [141]WELLS D H, JOSHI A M, DELGASS W N, et al. A quantum chemical study of comparison of various propylene epoxidation mechanisms using H2O2 and TS-1 catalyst [J]. J Phys Chem B, 2006,110:14627-14639.
    [142]SHANLEY E S, GREENSPAN F P. Highly concentrated hydrogen peroxide [J]. Ind EngChem, 1947,39:1536-1543.
    [143]POWELL D B, SHEPPARD N. Infrared spectra and the stabilities of Chelate metal-ethylenediamine complexes [J]. J Chem Soc,1961:1112-1114.
    [144]FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03 revision E.01 [M]. Pittsburgh:Gaussian Inc.,2003.
    [145]LEE C T, YANG W T, PARR R G. Development of the Colle-Salvetti correlation-energy fomula into a functional of the electron density [J]. Phys Rev B,1988,37:785-789.
    [146]HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg [J]. J Chem Phys,1985,82:270-283.
    [147]MCLEAN A D, CHANDLER G S. Contracted Gaussian basis sets for molecular calculations.1. Second row atoms, Z= 11-18 [J]. J Chem Phys,1980,72:5639-5648.
    [148]LIU X W, WANG X S, GUO X W, et al. Effect of solvent on the propylene epoxidation over TS-1 catalyst. Catal Today,2004,93-95:505-509.
    [149]CLERICI M G, ROMANO U. Process for the epoxidation of olefinic compounds and catalysts used therein:US,4937216 [P].1990,01,26.
    [150]MAKAROVA O V, DAKKA J, SCHELDON R A, et al. Infrared study of Ti-containing zeolites using CO as a probe molecule [J]. Stud Surf Sci Catal,1995,94:163-170.
    [151]BELLUSSI G, CARATI A, CLERICI M G, et al. Reactions of titanium silicalite with protonic molecules and hydrogen peroxide [J]. J Catal,1992,133:220-230.
    [152]DEO G, TUREK A M, WACHS 1 E, et al. Characterization of titania silicalites [J]. Zeolites, 1993,13:365-373.
    [153]BELLUSSI G, CARATI A, CLERICI M G, et al. Double substitution in silicalite by direct synthesis:a new route to crystalline porous bifunctional catalysts [J]. Stud Surf Sci Catal,1991, 63:421-429.
    [154]EISENBACH D, GALLEI E. Infrared spectroscopic investigations relating to coke formation on zeolites:I. Adsorption of hexene-1 and n-hexane on zeolites of type Y [J]. J Catal,1979, 56:377-389.
    [155]于剑昆,李中,刘青炜BASF-Dow公司HPPO工艺介绍[J].化学推进剂与高分子材料,2011,9:8-23.
    [156]于剑昆Degussa-Uhde公司HPPO工艺介绍[J].化学推进剂与高分子材料,2009,7:15-22.
    [157]闫海生,王祥生,刘靖,等.丙烯环氧化反应中TS-1失活的研究[J].石油学报(石油加工),2002.18:46-51.
    [158]CHEN Y F, LEE C Y, YENG M Y, et al. The effect of calcination temperature on the crystallinity of TiO2 nanopowders [J]. J Cryst Growth,2003,247:363-370.
    [159]白伟东,曲彪,孙兆林,等.制备工艺对无模板剂ZSM-5催化剂结构的影响[J].石化技术与应用,2010.28:286-288.
    [160]PETRINI G, CESANA A, DE ALBERTI, et al. Deactivation phenomena on Ti-silicalite [J]. Stud Surf Sci Catal,1991,68:761-766.
    [161]CARROLL K M, MORALES H E, HAN Y Z. Heterogeneous catalyst regeneration:US, 5916835[P].1999,06,29.
    [162]THOMAS H, CLAUDIA B, WOLFGANG W. et al. Process for the epoxidation of propene:US, 6878836[P].2005,04,12.
    [163]THIELE G. Process for the production of epoxides from olefins:US,5675026[P].1997,10,07.
    [164]MANTEGAZZA M A, BALDUCCI L, RIVETTI F. Process for the regeneration of zeolitic catalysts containing titanium:US.6403514[P].2002,06,11.
    [165]KNOZINGER M G, in:ERTL G, KNOZINGER H, WEITKAMP J. Handbook of heterogeneous catalyst [M]. Wiley-VCH:Weinheim,1997.
    [166]李钢.钛硅分子筛的合成、表征及催化丙烯环氧化性能的研究[D].大连:大连理工大学,2000.