C波段点频频率源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波频率源在通信、雷达、电子对抗、仪器和测量系统以及生物医学工程中有广泛的应用,它性能的好坏直接影响着系统的整体性能。频率稳定度是微波频率源的关键技术指标,本课题利用锁相环路,把短期频率稳定度高的介质振荡器与长期频率稳定度高的晶振相结合,得到长期和短期频率稳定度都很高的输出信号。影响短期频率稳定度的主要因素是相位噪声,即振荡器的随机调频或调相噪声。改善短期频率稳定度同器件的选择与电路的工作状态相关。
     介质谐振器因其体积小、Q值高、结构简单、成本低廉、易于集成的特点,为微波电路设计带来了一些优异特性。用它来稳定振荡源的频率,可以在几乎不增加体积的情况下,获得提高频率稳定度和降低噪声的双重好处,而这是金属空腔谐振器无法做到的。本文首先对锁相环的基本工作原理和环路组成进行了简单的分析,然后详细分析了运用EDA仿真软件进行介质振荡器、低噪声放大器、功分器的设计。根据仿真结果,结合实际电路布局要考虑的问题,逐步向目标靠近,得到了较为满意的结果。根据指标要求,采用100MHZ恒温晶振作为参考源,由ADF4106、VCO和LF共同构成一个锁相环路,在4.8GHz的频点,测得相位噪声为-85dBc/Hz@10KHz,输出功率为10dBm,外形尺寸为79×80×20mm。
     本课题的主要贡献:(1)采用闪烁噪声较低的HBT器件,共发射极结构,单电压供电,对变容管调谐介质振荡器进行了理论分析,采用并联反馈的结构,利用ADS和CST进行仿真和优化设计;(2)选用噪声系数较低的FET器件,共源极结构,双电源供电,利用ADS仿真软件设计了单级放大器。(3)对仿真结果与实验测试结果进行了对比,分析了产生偏差的原因以及在实际设计电路时应该考虑的问题。本课题的锁相点频频率源具有结构简单、可靠性高、易于集成、小体积、灵活性好等优点。
Microwave frequency source is needed for many communication, radar, electronic countermeasure, instrument, biomedicine projects and measurement applications. At the same time, its performance influences the whole capacity of a system directly. Stability of a frequency source is the key issue. Phase-locked loop is used, in which a short-term stability DRO combines with a long-term stability crystal oscillator, an output signal with high short-term and long-term stability is received ultimately. The dominating factor which influences the short-term stability is phase noise, that is stochastic frequency-modulated noise or phase-modulated noise. Improving short-term stability is interrelated with choice of devices and working state.
     Because of small bulk, high-Q, compactness, low cost and easily integration, dielectric resonator is becoming increasingly common over the entire microwave frequency range. As a strongpoint, dielectric resonator possesses two advantages, improving stability and reducing noise while maintaining its bulk fixedness, whenas metal cavity is not reachable. We adopt the means of phase-locked loop to design. At first, we theoretically analyze the working principles and the composes of phase-locked loop, then exhaustively discuss the design of dielectric resonator oscillator, low noise amplifier and power divider using EDA simulation software. On the base of the guide line, we adopt 100MHz crystal oscillator as the referenced source. The phase-locked loop is composed of ADF4106, VCO and LF. The phase noise and output power of measurement results are respectively-85 dBc/Hz@10kHz and 10 dBm. The dimension of the frequency souce is 79×80×20mm.
     The main contributions and creative points of this dissertation are as follows: (1) The low flicker noise transistor HBT, a common emitter configuration and a single de power supply are used. We analyze the theory of the varactor-tunable dielectric resonator oscillator. Design and optimization of the parallel feedback configuration are done using CST and ADS. (2) The low noise coefficient transistor FET, a common source configuration and a double electrical sources supplying power are used. Design and optimization of the single stage amplifer is done using ADS. (3) The simulation results and experimentation outcomes are compared and the reasons of resulting in windage are analyzed. The phase-locked dielectric resonator oscillator has the merits of simple configuration, high dependability, easy integration, small cubage, multifunction and etc.
引文
[1] 廖承恩.微波技术基础.西安电子科技大学出版社,2004:244-251
    [2] 李宗谦,佘京兆,高葆新.微波工程基础.清华大学出版社,2004:337-380
    [3] 费元春,陈世伟.微波固态频率源.国防工业出版社,1994:343-385
    [4] 顾其诤.介质谐振器微波电路.人民邮电出版社,1986:252-300
    [5] Inder Bahl,Prakash Bhartia.Microwave Solid State Circuit Design(微波固态电路设计).电子工业出版社,2006:229-270
    [6] 言华,微波固态电路.北京理工大学出版社,1995:56-70
    [7] 张厥盛,郑继禹,万心平.锁相技术.西安电子科技大学出版社,2004:5-56
    [8] Shigura Matsuda,Deborah Brown,Tom Mathews,etc.PLL Performance.Simulation and Design.电子工业出版社,2001:52-90
    [9] 连汉雄.微波锁相振荡源.人民邮电出版社,1982:134-150
    [10] 叶利华.一种微波锁相频率源的设计.上海航天,2000
    [11] 彭成文.锁相介质振荡器.电子对抗技术,2001,16(4)
    [12] J P Silver.RF,RFIC& Microwave Theory,Design.电子工业出版社,1999:23-60
    [13] 吴礼群,夏牟,郑毅.C波段微波低相位噪声介质振荡源.固体电子学研究与进展,2006,26(1)
    [14] 胡昌蓉.5cm高稳频介质谐振器振荡源的研究与设计.上海航天,1999
    [15] 陶胜,李文渊,王志功.用于蓝牙系统的0.18um CMOS低噪声放大器设计.电气电子教学学报,2006,28(1)
    [16] Chang, Kai. Microwave Solid-State Circuits and Applications..John Wiley & Sons, 1994:274-320
    [17] 陈邦媛.射频通信电路.科学出版社,2003:158-220
    [18] 顾其诤.微波集成电路设计.人民邮电出版社,1978:448-533
    [19] 亢树军,马云霞,刘伦才等.一种高线性SiGe HBT宽带低噪声放大器.微电子学,2006,36(5)
    [20] 王磊,余宁梅.一种3.8GHz 0.2μmCMOS低噪声放大器的设计.微电子学,2006,36(1)
    [21] 胡皓全,童雪辉.Ka波段宽带低噪声放大器研究.电子信息对抗技术,2006,21(4)
    [22] 陈柯,张祖荫.平面功率分配/合成器的设计.微波学会第5届全国毫米波亚毫米波学术 会议论文集,2004
    [23] 杨洲,何君.C波段高可靠星用介质振荡器、上下混频器一体化模块.半导体情报,2001,38(3)
    [24] Ulrich L. Rohde. Designing SAW Resonators and DRO Oscillators Using Nonlinear CAD Tools. IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM,1995
    [25] K. K. Agarwal. DIELECTRIC RESONATOR OSCILLATORS USING GaAs/(Ga,A1)As HETEROJUNCTION BIPOLAR TRANSISTORS. IEEE M'IT-S Digest,1986
    [26] Bart Van Haaren, Myrianne Regis, Olivier Llopis. Low-Frequency Noise Properties of SiGe HBT's and Application to Ultra-Low Phase-Noise Oscillators. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1998,46(5)
    [27] 彭文峰,廖佳,于小军.Ku波段高线性度DRO的设计.微电子与基础产品,2002,28(12)
    [28] 程焰平.介质谐振器反馈式振荡器实用机辅设计方法.现代雷达,2000
    [29] M. Mizan, R.C. McGowan. Extremely Low Phase Noise X-band Field Effect Transistor Dielectric Resonator Oscillator. lEE MTT-S Digest,1998
    [30] Bart Van Haaren, Myrianne Regis, Olivier Llopis, etc. Low-Frequency Noise Properties of SiGe HBT's and Application to Ultra-Low Phase-Noise Oscillators. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,1998,46(5)
    [31] J. Lee, J. E. Andrews, K., W. R. Day, etc. DIGITAL AND ANALOG FREQUENCY - TEMPERATURE COMPENSATION OF DIELECTRIC RESONATOR OSCILLATORS. 19841EEEMTT-s DIGEST,1984
    [32] B. Guillon, D. Cros, P. Pons, J.L. Cazaux, etc. Ka band micromachined dielectric resonator oscillator. ELECTRONICS LETTERS,1999,35(11)
    [33] K. K. Agarwal. DIELECTRIC RESONATOR OSCILLATORS USING GaAs/(Ga,A1)As HETEROJUNCTION BIPOLAR TRANSISTORS. IEEE M'IT-S Digest,1986
    [34] Andrew R. Brown, Gabriel M. Rebeiz. A Ka-Band Micromachined Low-Phase Noise Oscillator. ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON MTT. REVISED APRIL 13. 1999
    [35] S. Y. SPARAGNA, L-BAND DIELECTRIC RESONATOR FILTERS AND OSCILLATORS WITH LOW VIBRATION SENSITIVITY AND ULTRA LOW NOISE. 43rd Annual Symposium on Frequency Control ,1989
    [36] J. Lee, J. E. Andrews, K. W. R. Day, etc. DIGITAL AND ANALOG FREQUENCY - TEMPERATURE COMPENSATION OF DIELECTRIC RESONATOR OSCILLATORS. 1EEE MTT-S DIGEST,1984
    [37] D.P.Tsarapkin. LOW PHASE NOISE SAPPHIRE DISK DIELECTRIC RESONATOR OSCILLATOR WITH COMBINED STABILIZATION. 1994 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM,1994
    [38] M. Regis, O. Llopis, J. Graffeuil, etc. Nonlinear Modeling and Design of Bipolar Transistors Ultra-Low Phase-Noise Dielectric-Resonator Oscillators. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,1998,46(10)
    [39] Marc SallintJ, Liang Zhou, Cad Broomfield, etc. BROAD TUNING ULTRA LOW NOISE DROs AT IOGHZ UTILISING CERAMIC BASED RESONATORS. Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum,2003
    [40] D.P.Tsarapkin. LOW PHASE NOISE SAPPHIRE DISK DIELECTRIC RESONATOR OSCILLATOR WITH COMBINED STABILIZATION. 1994 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM,1994
    [41] M. Rkgisl, O. Llopis, B. Van Haaren, etc. ULTRA LOW PHASE NOISE C AND X BAND BIPOLAR TRANSISTORS DIELECTRIC RESONATOR OSCILLATORS. 1998 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM,1998
    [42] Hou-c,lianggan. FREQUENCY ADJUSTMENT OF THE MILLIMETRIC WAVE DR AND ITS APPLICATION IN THE Ka BAND DRO. 0-7803-4308-5/98,1998
    [43] 张钦鹏.微波小型化固态介质谐振器振荡器的发展.半导体情报,1995,36(6)
    [44] 毕克允,王晓钧,杨晓光.一种高性能X波段介质振荡器.半导体技术,2000,26(5)
    [45] M. Prigent, M. Camiade, J. C. Nallatamby, etc. An Efficient Design Method of Microwave Oscillator Circuits for Minimum Phase Noise. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,1999,47(7)
    [46] 郭芳,张巧威.C波段低噪声放大器的设计.半导体技术,2006,31(7)