掺钕透明玻璃的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Nd3+离子因具有吸收系数大、吸收带较宽、荧光寿命长、荧光分支比大、能量集中及易于实现室温下的激光等特点,使得掺Nd3+离子的激光材料成为当前的研究热点。其中,掺Nd3+离子的透明氟氧化物玻璃因兼具氟化物玻璃的优异光学性能以及氧化物玻璃优良的化学稳定性和热稳定性而引起材料科学工作者的广泛关注。与其它氟化物相比,CaF2晶体对稀土离子有较高的固溶度,且具有透光范围宽(0.125-10μm)、化学稳定性好、及声子能量低等特点,因此,掺Nd3+离子且含CaF2纳米晶的氟氧化物玻璃是一种比较有发展潜力的激光材料。
     本文采用传统体冷却技术及晶化热处理工艺制备了掺Nd3+离子的SiO2-Al2O3-CaF2-NaF-Na2O体系透明氟氧化物玻璃。利用差热分析(DSC)、X射线衍射分析(XRD)、扫描电子显镜(SEM)等检测手段研究了该系统玻璃的形成能力、析晶机理、观结构。同时,利用荧光光谱、吸收光谱等测试方法和结果,分析了Nd3+离子掺入浓度对材料光谱和激光性能的影响。结果表明:
     1. SiO2-Al2O3-CaF2-NaF-CaO系统玻璃的稳定性较好,在第一析晶峰温度附近析晶不明显,CaF2析出较困难,出现表面析晶现象,当温度较高时可能出现钙长石晶相。用Na2O代替CaO后,玻璃的析晶能力提高,第一析晶峰温度附近析出CaF2晶体,Nd3+离子进入晶生成Ca0.9Nd0.1F2.1相。
     2.在SiO2-Al2O3-CaF2-NaF-Na2O系统玻璃中,氟化物含量较高,因此,由[Si04]和[Al04]四面体组成的网络结构中存在较多网络断开点或非桥氧离子。玻璃的析晶活化能随着Nd3+掺入量的增加而逐渐降低,析晶能力增强。在析晶过程中,晶核呈三维方式生长,其长大主要受扩散机制所控制。随着温度的升高,其形核速率不断降低,最终趋向于零形核率。
     3.含不同Nd3+浓度的样品,经过同一条件热处理后,随着Nd3+离子浓度的增加,样品中除CaF2外还形成了Ca0.9Nd0.1F2.1固溶体。Nd3+取代Ca2+离子进入晶体中,衍射峰向小角度方向移动。Nd3+离子浓度越大,进入CaF2晶中的Nd3+离子就越多,晶格畸变越严重,衍射峰偏移越多。Ca0.9Nd0.1F2.1相的生成以及点阵常数的增大证实了Nd3+离子进入CaF2晶体。
     4.在热处理过程中,Nd3+离子进入CaF2晶体中,其局域环境由声子能较高的玻璃基体转变为声子能低的CaF2晶体,使得Nd3+离子发射强度和吸收强度在晶化之后都得到提高。同时,由于CaF2萤石结构中存在多种不同电荷补偿方式,Nd3+在晶格中产生丰富的不对称格位,使其吸收和发射光谱加宽。
     5.掺Nd3+离子的SiO2-Al2O3-CaF2-NaF-Na2O系透明玻璃中Nd3+离子的5个主要吸收峰位于511、582、746、803、875nm处;3个主要荧光峰位于888,1055和1327 nm处,分别对应于4F3/2→4I9/2,4F3/2→4I11/2和4F3/2→4I13/2跃迁。
     6.随着Nd3+离子浓度的增加,玻璃中CaF2晶体形成立方八面体团簇结构的正方反棱体格位。Nd3+离子浓度增大时,团簇结构中包含的Nd3+离子的个数也会增加,引起浓度猝灭效应,导致受激发射截面不断减小。
The laser materials doped with Nd3+ ions have become the hotspot because Nd3+ ion has large absorption coefficient, wide absorption band, long fluorescence lifetime, very large fluorescence branching ratio, energy compaction and the possibility of lasing at different wavelengths at room temperature. Transparent oxyfluoride glass ceramics doped with Nd3+ ions have attracted widespread interest due to their excellent optical properties like fluoride nanocrystals and good mechanical, chemical properties like oxide glasses. Compared with other fluoride, CaF2 has high solid solubility to rare earth, wide transmission range (0.125-10um),good chemical stability, and lower phonon energy, so the transparent oxyfluoride glass-ceramics containing CaF2 doped with Nd3+ become one kind of very potential laser materials.
     In this thesis, the transparent oxyfluoride glass-ceramics of SiO2-Al2O3-CaF2-NaF-Na2O system doped with Nd3+ ions were prepared by conventional melt-quenching method and optimized heat treating regime. The glass-forming ability, crystallization mechanism, microstructure of SiO2-Al2O3-CaF2-NaF-Na2O system glasses were analyzed by differential thermal analyse (DSC), X-ray diffraction (XRD) analysis and scanning electronic microscopy (SEM). The absorption spectra and fluorescent spectra of the glass-ceramics samples were measured. The influences of Nd3+ content on the spectrum properties of glass-ceramics were discussed. The results show that the glasses of SiO2-Al2O3-CaF2-NaF-CaO have good glass-forming ability. Surface crystallization and the crystals of anorthite appeared at the higher temperatures. When CaO is replaced by Na2O, the crystallization ability of the glass is improved. The crystals of CaF2 is obviously detected at the temperature of the crystallization first peak, and the Nd3+ ions incorporate into CaF2 nano-crystals and Ca0.9Nd0.1F2.1 solid solution formed. Obviously, a large amount of network disconnected points or non-bridge oxygen ions exist in the network structure formed by connecting [SiO4] and [SiO4] or [SiO4] and [AlO4] since the molar percentage of NaF and CaF2 are higher than 25% in SiO2- Al2O3- CaF2- NaF-Na2O system glass. Therefore, the crystallization activation energy declines gradually with Nd2O3 content, resulting in the increasing of crystallization ability in this glass system. During the crystallization, the crystalline grains grow along three-dimension directions when the basic glasses are treated at the crystallization temperature, and the crystallization is controlled by diffusion. The increasing of the crystallization leads to the reduce of nucleation rate, ultimately to zero. With the increasing of Nd3+ content, solid solution Ca0.9Nd0.1F2.1 appear besides CaF2 crystals in different Nd3+ containing samples after the same heat treatment, and Ca2+ ions are replaced by Nd3+ ions which make the diffraction peak move to smaller angle. The more Nd3+ ions incorporate into CaF2, the more serious of the crystal lattice distortion, so diffraction peak shift more. Accordingly, with the amount of Nd3+ ions increase, the number of crystals increases after heat treatment. This further approves that Nd3+ ions are good for the crystallization of CaF2. The crystallization of Ca0.9Nd0.1F2.1 and the increase of crystal lattice distortion approve Nd3+ ions incorporate into CaF2 nano-crystals. Because the phonon energy of CaF2 crystal is less than the one glass matrix, the absorption optical density and emission intensity of Nd3+ ions are enhanced. The various charge compensation mechanisms and asymmetric crystal lattices of CaF2 result in a broaden absorption spectra and fluorescent spectra. In SiO2- Al2O3- CaF2-NaF-Na2O glass system, there are five main absorption peaks of Nd3+ at 511、582、746、803 and 875nm, and three main fluorescent peak of Nd3+ at 888,1055 and 1327 nm corresponding to the transition of 4F3/2→4I9/2, 4F3/2→4I11/2和4F3/2→4I13/2, respectively with the concentration of Nd3+ ions increase, CaF2 crystals form square anti-prism sites of cubo-octahedral cluster, causing the concentration quenching effect, resulting in stimulated emission cross-section of the glass ceramics decreases.
引文
[1]Muller G, Neuroth N. Glass ceramic-A new laser host material.J Appl Phys,1973, 44(5):2315-2318.
    [2]Guinhos F C, Nobrega P C, Santa-Cruz P A. Compositional dependence of up-conversion process in Tm3+ -Yb3+ codoped oxyfluoride glasses and glass-ceramics. Journal of Alloys and Compounds,2001,323/324:358-361.
    [3]Tikhomirov V K, Seddon A B, Ferrari M,Montagna M, Santos L F, Almeida R M. On a qualitative model for the incorporation of fluoride nano-crystals within an oxide glass network in oxy-fluoride glass-ceramics. Journal of Non-Crystalline Solids,2004,337:191-195.
    [4]卢安贤.无机非金属材料导论.长沙:长沙中南大学出版社,2004.
    [5]浙江大学.硅酸盐物理化学.北京:中国建筑工业出版社,1980.
    [6]Mcmilan P. W. Glass Ceramic.London:Academic Press,1979.
    [7]Chen Daqin, Wang Yuansheng, Yu Yunlong, et al. Influence of Yb3+content on microstructure and fluorescence of oxyfluoride glass ceramics containing LaF3 nano-crystals.Materails Chemistry and Physics. Journal of the European Ceramic Society,2007,101:464-469.
    [8]程康果,万菊林,梁开明.氧化锫增韧玻璃的制备.硅酸盐学报.1998.26(3):365-367.
    [9]姚奎,周歧发,张良莹等.PZTS系凝胶玻璃玻璃的结构研究.硅酸盐通报.1995,15(3):9-13.
    [10]周曦亚,曾群.烧结法制备玻璃材料.陶瓷科学与技术,2003,5:55-58.
    [11]刘世权,许淑惠.玻璃粉末的烧结.玻璃与搪瓷,1994,5(23):34-38.
    [12]贺海燕.玻璃的定向晶化.陶瓷工程,1999,32(1):11-13.
    [13]作花济夫.玻璃非晶态科学(蒋幼梅,钱豹,武忠仁等).北京:中国建筑工业出版社,1986.
    [14]程金树.玻璃.北京:化学工业出版社,2006.
    [15]陆佩文.无机材料科学基础.武汉:武汉工业大学出版社,1996.
    [16]姜中宏.新型光功能玻璃.北京:化学工业出版社,2008.
    [17]Dejneka M J. The luminescence and structure of novel transparent oxyfluoride glass-ceramics. J. Non-Ccyst. Solids.1998,239:149-155.
    [18]Auzel F, Peeile D, Morin J. The effete of addition of fluoride on the crystallization behavior of aluminum oxide based glass. Eelctrochem. Soe..1975, 112:101-105.
    [19]Wang Y, Ohwaki J. New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion. Appl. Phys. Lett..1993,63:3268-3270.
    [20]何琛娟,陈晓波等.H03+在氟氧化物玻璃陶瓷中的光谱性质.量子电子学报.2002.19(2):109-114.
    [21]Mendez-Ramos J, et al. Role of Eu3+ Ions in the formation of transparent oxyfluoride glass ceramics. Journal of Applied Physics.2001,89(100): 5307-5310.
    [22]Mortier M, Auzel F. Rare-earth doped transpatent glass-ceramies with high cross-section. J. of Non. Cryst. Solids.1999,256-257:361-365.
    [23]Mortier M, Goldner M, et al.Erbium doped glass-ceramies. Journal of Alloys and Compounds.2001,323-324:245-249.
    [24]Tiek P A, Borrelli N F, Comelius L K, et al. Transparent glass ceramies for 1300 nm amplifier applications. J. Appl. Phys..1995,78(11):6367-6374.
    [25]Guinhos F C, et al. Compositional dependence of up-conversion Process in Ym3+-Yb3+ co- doped Oxy-fluoride glass ceramics. Journal of Alloys and Compounds,2001,323-324:358-361.
    [26]Tikhomirov V K, Furniss D, Seddon A B, et al. Fabrieation and characterization of nanoseale Er3+-doped ultratransparent oxy-fluoride glass ceramies. Applied Physics Letters.2002,81(11):1937-1939.
    [27]Jianbei Qiu, yoji Kawamoto, Junjie Zhang.Highly efficient green up-conversion luminescence of Nd3+-Yb3+-Ho3+ co-doped fluorite-type nano-crystals in transparent glass ceramics. Journal of Applied Physics.2002,92(9):5163-5168.
    [28]Vietor Lavin, Ignacio Inparraguirre, Jon Azkargorta et al.Stimulated and upconverted emission of Nd3+ in a transparent oxyfluoride glass-ceramic. Optiea materials.2004,25:201-208.
    [29]Dejneka M J. The luminescence and structure of novel transparent oxyfluoride glass-ceramics. J. Non-Cryst. Solids.1998,239:149-154.
    [30]Lahoz F, Martin I R, Mendez-Ramos J. Energy transfer and frequency upconversion in P3+ doped oxyfluoride glass ceramies. Chem. Phys.2004,120: 6180-6185.
    [31]Michel, Mortier, Freneois Auzel. Rare-earth doped transparent glass ceramics with high cross-section. J. Non-Cryst.1999,2(256-257):361-365.
    [32]Fu J, Parker J M, Flower P S, Brown R M. Luminescent properties in Er-Yb doped oxyfluoride glass ceramic with a nanoerystal line struction. Optieal Material,2002,37:1843-1486.
    [33]Itoh M. Sakurai T, Yamakami T. Fu.Time-resolved luminescence study of CaF2:Eu2+ nanocrystals in glass-ceramics. J. Lumin,2005,112:161-165.
    [34]Mortier M, Bensalah A, Dantalle G. Rare-earth doped oxyfluoride glass-ceramic and fluorid ceramics. Optical Material.2005,2:110-116.
    [35]Katsumats T, et al.Growth of lithiumborate crystals from the vitrereous state. J Mater. Res.1994,9(8):2051-2054.
    [36]Dejneka M, nitzer E, Riman R E. Stark level analysis for Er3+-doped ZBLAN glass. J. Lumin 2005,65:227-231.
    [37]Mendez-Ramos, Laven J, Martinz I R, et al. Optical properties or Er3+ ions in transparent glass ceramics. Journal of Alloys and Compounds,2001,323(3): 753-758.
    [38]Braglia M, Bruschi C, Dai G, et al. Glass ceramics for optical amplifiers: rheological, thermal, and optical properties. J Non-Crysr Solids,1999,256(4): 170-175.
    [39]Rapp C F, Chrysochoos J. Neodymium-doped glass-ceramic laser material. Journal of Materials Scienee,1972,7:1090-1092.
    [40]G.Muller, N. Neuroth. Glass ceramic-a new laser host material. J. Appl. phys. 1973,44(5):2315-2318.
    [41]Kang U, Chuvaeva T L. Onushchenko A A, et al. Radiative properties of Nd-doped transparent glass-ceramics in the lithium alluminosilieate system. Journal of Non-Crysalline Solids,2000,278:75-84.
    [42]Samson B, Tiek P, Borelli N. Efficient neodymium-doped glass-ceramic fiber laser and amplifier. Optics Lerters.2001,26:145-147.
    [43]Kang U K, Chuvaeva T L, Onushchenko A A. Spectroseopic Properties and Judd-Ofelt theory analysis of E3+-doped oxyfluoride silicate glass ceramsc. J. Non-Cryst. Solids,2000,278:75-79.
    [44]Hu Zhongjian, Ma En, Wang Yuansheng, et al. Fluorescence property investigations on E3+-doped oxyfluoride glass ceramics containing LaF3 nanocrystals. Materiai Chemistry and Physics.2006.100(2-3):308-312.
    [45]Abril M, Me'ndez-Ramos J, Marti'n I R, et al. Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods. Journal of Applied Physics,2004,95(10):5271-5278.
    [46]Wang Y, ohwaki J. New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion. Appl. Phys. Lett..1993,63:3268-3270.
    [47]Auzel F, Pelle F. Excitation effects in non-radiative multiphnon decays of rare earth doped laser materials. Optical Materials.1997,8(1-20):15-20.
    [48]赵丽娟.饵离子在氟氧化物玻璃陶瓷中的上转换发光特性研究.发光学报,2001,22:51-54.
    [49]陈晓波.掺E3+氟氧化物玻璃陶瓷的直接上转换敏化发光.物理学报.2000,49(12):2482-2487.
    [50]Meltzer R S, Yen W M, Zheng H, et al. Effcet of the matrix on the radiative lifetimes of rare earth doped nanoparticles embedded in matrices. Lumin.2001, 217:94-95.
    [51]Meltzer R S, Yen W M. Zheng H, et al. Evidence for long-range interactions between rare-earth impurity ions in nanocrystals embedded in amorphous matrices with the two-level systems of the matrix. Phys. Rev. B.2001, 64(1-4):100-201.
    [52]Tick P A. Borrelli N F. Cornelius L K, et al. Transparent glass ceramics for 1300 nm amplifier applications. J. Appl. Phys..1995,78(11)6367-6374.
    [53]刑军,宋守志.MgO-Al2O3-SiO2系玻璃受控晶化研究.东北大学学报(自然科学版),2000,21(5):558-561.
    [54]Chen Daqin, Wang Yuansheng, Yu Yunlong, et al. Crystallization and fluorescence properties of Nd3+-doped transparent oxyfluoride glass ceramics. Materials Science and Engineering B,2005 (123):1-6.
    [55]Feng Liu, Yuansheng Wang, Daqin Chen, et al. Investigation on crystallization kinetics and micro structure of noveltransparent glass ceramics containing Nd: NaYF4 nano-crystals. Materials Science and Engineering B,2007 (136):106-110.
    [56]Biswas A, Maciel G S, Friend C S, et al. Upconversion properties of a transparent Er3+-Yb3+ co-doped LaF3-SiO2. J. Non-Crys. Solids,2003(316): 393-397.
    [57]Guinhos F C, Nobrega P C, Santa-Cruz P A. Compositional dependence of up-conversion process in Tm3+-Yb3+ codoped oxyfluoride glasses and glass-ceramics.Journal of Alloys and Compounds,2001(323-324):358-361.
    [58]Takahashiy M, Kano M, Kawamoto Y. Compositional dependence of local vibration around rare earth ions in SiO2-PbF2 glass-ceramics. J. Phys. Condens. Matter,1998(10):3269-3274.
    [59]Tanabe S, Hayashi H, Hanada T, et al. Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals.Opt. Maters,2002(19):343-349.
    [60]Fu J, Parker J M, Flower P S, et al. Eu3+ ions and CaF2-containing transparent glasses-ceramics. Mate. Res. Bull,2002(37):1843-1849.
    [61]Klimesz B, Dominiak-Dzik G, Solarz P, et al. Pr3+ and Tm3+ containing transparent glass ceramics in the GeO2-PbO-PbF2-LnF3 system. J. Alloys and Compounds,2004(382):292-299.
    [62]Qin G S, Qin W P, Chen B J, Ge Z J, Ren X G, Huang S H. High efficiency and low threshold upconversion from IR to red for Er3+ and Tm3+ co-doped fluoride-oxide glass-ceramic. Guang Pu Xue Yu Guang Pu Fen Xi,2002, 22(5):705-708.
    [63]Yu Yunlong, Chen Daqin, Cheng Yao,et al. Investigation on crystallization and influence of Nd3+ doping of transparent oxyfluoride glass-ceramics. Journal of the European Ceramic Society,2006 (26):2761-2767.
    [64]Uhlmann D R.Glass formation. J Non-Cryst Solids,1977(25):42-85.
    [65]Uhlmann D R. A kinetic treatment of glass formation. J Non-Cryst Solids,1972 (7):337-348.
    [66]Surinach S, Barof M D, Clavaguera-Mora M T, et al.Glass formation and crystallization in the GeSe2-Sb2Te3 system.Mater Sci,1984(19):3005-3012.
    [67]Iqbal T, Shahriari M R, Sigel Jr. G H. A new glass forming ability criterion for multicomponent halide glasses.Mater Sci Forum,1991(67&68):225-231.
    [68]杨秋红,姜中宏.玻璃析晶动力学判据研究.硅酸盐学报,1994,22(5):419-425.
    [69]乔旭升.镧系掺杂碱土氟硅酸盐透明发光玻璃的制备与性能研[D].杭州:浙江大学,2007.
    [70]傅若农,常永福.气相色谱和热分析技术.北京:国防工业出版社,1989.
    [71]Kissinger H E. Variation of peak temperature with heating rate in differential thermal analysis Journal of Research of the National Bureau of Standards,1957, 57(4):271-221.
    [72]Fatemi N.S., Whitehead R, Price D, et al. Determination of activation energy value from the maximum rate of reaction points obtained from non-isothermal experiments.Thernochim. Acta,1984(78):437-440.
    [73]Ozawa T. A New Method of Analyzing Thermogravimetric Data.Bull Chen. Soc., 1965(38):1881-1886.
    [74]Ozawa T. Kinetic analysis by repeated temperature scanning. Part 1. Theory and methods.Thermochim. Acta,2000(356):173-180.
    [75]Flynn J H., Wall L A, Polym J. A quick, direct method for the determination of activation energy from thermogravimetric data. Sci. Part B Polymer Lerrers,1966, 4(3):323-328.
    [76]Kazumasa M, Takayuki K, Ryosuke Y.Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. Journal of materials science,1984(19):291-296.
    [77]Koralay H, Yakuphanoglu F, Cavdar S, et al.Crystallization kinetics of Bi1.7V0.3Sr2Ca2Cu3Ox glass-ceramic. Physica B,2005(355):64-71.
    [78]Yinnan H, Uhlmann D R. J. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part Ⅰ:Theory. Journal of Non-Crystalline Solids,1983,54 (3):253-275.
    [79]徐祖耀,李鹏兴.材料科学导论.上海:上海科学技术出版社,1986.
    [80]Jain R, Saxena N S, Deepika B, et al. Crystallization kinetics of CuxTi100-x (x=43, 50 and 53)glasses. Physica B,2001(301):341-348.
    [81]Takebe H, Mruata T, Morinaga K. Compositonal dependence of absorption and fluorescence of Yb3+ in oxide glasses. J. Am. Ceram. Soc.1996,79,681-687.
    [82]Krupke W F, Dependence of the 4F3/2-4F11/2 Induced-Emission Cross Section for Nd3+ on glass composition. IEEE J. Quantum Electron.,1974,80:450-461.
    [83]林良书,薛燕陵,蒋器成.Judd-Ofelt理论的分析与计算.华东师范大学学报,2008,3:109-114.
    [84]李顺光,陈树彬,温磊,胡丽丽,王标.钕离子浓度对受激发射截面的影响.强激光与粒子束,2003,12:1159-1162.
    [85]李杨.掺铒氧化物及氟氧化物玻璃光谱性质的研究[D].杭州:浙江大学,2006.
    [86]Yu Yunlong, Chen Daqin, Ma En, Wang Yuansheng, Hu Zhongjian. Spectroscopic properties of Nd3+ doped transparent oxyfluoride glass ceramics. Spectrochimica Acta Part A,2007,67:709-713.
    [87]苏良碧,徐军.氟化钙晶体材料及其应用.北京:科学出版社,2006.
    [88]Xu S Q, Yang Z M, Dai S X, et al. Spectral properties and thermal stability of Er-doped oxyfluoride silicate glasses for broadband optical amplifier.Journal of Alloys and Compounds,2003(361):313-319.
    [89]Huang L, Qin G, Arai Y, et al. Crystallization kinetics and spectroscopic investigations on Tb3+ and Yb3+ codoped glass ceramics containing CaF2 nanocrystals. Journal of Applied Physics,2007(102):503-506.
    [90]Tikhomirov V K, Seddon A B, Ferrari M, et al. On quaqualilative model for the incorporation of fluoride nano-crystals within an oxideglass network in oxyfloride glass-ceramics. J. Non-Cryst. Solids,2004(337):191-195.
    [91]Judd. B. R. Optical absorption intensities in rare earth ions. J. Chem. Phys.,1962, 127(3):750-761.
    [92]Ofelt. G. R.. Intensities of crystal spectra of rare ions. J. Chem. Phys.,1962,37(3): 511-520.