多组分磷酸盐激光玻璃表面处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
窄线宽单频(或单纵模)光纤激光器由于优良的光束质量、较窄的线宽以及较低的热效应等,而在激光雷达、激光测距、光传感和超远距离探测等领域有着强烈需求。目前利用掺稀土多组分磷酸盐光纤采用短腔结构已实现了单频激光输出。然而,即使采用高纯度原料,并精细炼,多组分磷酸盐有源光纤的传输损耗也远高于磷酸盐玻璃的本征损耗。研究表明,这种损耗主要来自光纤纤芯和包层间的界面缺陷。当用管棒法制备光纤预制棒时,不可避免地在光纤表面、亚表面留下划痕、坑洞等缺陷,以及在玻璃预制棒表面吸附各种杂质。这些缺陷和杂质残留于拉制的磷酸盐玻璃光纤的纤芯/包层界面处,引起光纤对光的散射和吸收,增加了光纤损耗。针对上述问题,本课题着重研究对光纤预制棒进行化学处理以改善磷酸盐光纤纤芯/包层界面质量,为拉制低损耗掺稀土多组分磷酸盐光纤,研制窄线宽单频光纤激光器奠定材料基础。
     实验选择了一种光学光谱性质优良、物化性质稳定的多组分磷酸盐玻璃60.9P2O5-15BaO-10Al2O3-1.5Er2O3-12.6(K2O-Nb2O5-Sb2O3--Yb2O3)为研究对象,探讨了掺稀土磷酸盐激光玻璃在酸性溶液中的化学溶解机制。分析了酸性溶液中酸浓度、溶解温度、溶解时间和超声波作用对多组分磷酸盐玻璃化学浸蚀的影响。依据热力学和动力学理论,讨论了酸性溶液对磷酸盐玻璃浸蚀反应的方向、限度,制约反应速度的各种因素,对玻璃的质量损失曲线、溶解速率曲线和腐蚀液中的离子浓度曲线进行了拟合,建立了溶解动力学模型。据此对浸蚀反应的多种控制参数进行了优化。实验表明,酸性溶液能浸蚀磷酸盐玻璃,消除玻璃表面划痕等缺陷。
     实验发现,随着反应时间延长,磷酸盐玻璃表面产生不溶于盐酸溶液的晶化颗粒状覆盖层。此覆盖层严重阻碍了盐酸溶液对玻璃的进一步溶解,并且这些晶化颗粒降低了玻璃透过率。通过在光纤拉制温度下对玻璃进行热处理,由于小颗粒具有更低的点,玻璃表面米尺度晶化颗粒可重新玻璃化,并提高玻璃的光透过率。
     研究表明,采用化学浸蚀和高温热处理相结合的方法能有效改善磷酸盐玻璃光纤预制棒表面平整性,去除玻璃表面杂质,改善由此预制棒拉制的磷酸盐光纤纤芯/包层界面匹配性,降低光纤的损耗。
Narrow linewidth single frequency (or single-longitudinal-mode) fiber laser has a great potential application in laser radar, laser ranging, optical sensor and long distance exploration due to its excellent beam quality, ultra-narrow linewidth and low thermal effects. At present, narrow linewidth single-frequency laser have been obtained in phosphate fiber with a short cavity configuration. However, even though high-purity raw materials and fine melting are adopted, the transmission loss of phosphate fiber is also much higher than the intrinsic loss of phosphate glass. The loss mainly comes form the interface defects and impurities between fiber core and cladding. The defeats and impurities, such as the scratches and holes, mainly come from the cold processing of phosphate fiber preform. They would cause the light scattered and absorpted, leading to a high loss. Therefore, the aim of this dissertation is to improve the fiber core-cladding interface quality and lay a foundation for material process used in narrow linewidth single frequency fiber laser.
     Phosphate glass with the molar composition 60.9P2O5-15BaO-10Al2O3-1.5Er2O3 -12.6(K2O-Nb2O5-Sb2O3--Yb2O3) was chose in this dissertation. The dissolution mechanism of phosphate glass in acid medium was investigated. The etching effect factors such as solution concentration, temperature, reaction time and ultrasonic stirring etc were also investigated. Based on thermodynamic and kinetic theory, the reaction direction and limit of phosphate glass in acid etching solution was discussed. A dynamic model of dissolution was established to fit the mass loss curves, the dissolution rate curve and the ion concentration curve. Accordingly, a variety of reaction parameters were optimized. Experiments show that the acid solution could remove the glass surface contaminations and defects.
     A white opaque layer was formed on the glass surface by prolonging the immersion time in hydrochloric acid. This opaque layer limits the diffusion and exchange process of ions, reducing the glass transmittance. The micron-scale crystallines have a lower melting point, so they are easy to re-vitrificated with certain heat treatment and the light transmittance of glass is improved.
     The results show that, chemical etching followed by high-temperature heat treatment is an effective method to improve the quality of phosphate glass surface, which make the fiber core/cladding interface better matching in rod in tube technology.
引文
[1] Ruikun W., John D.M., Michael J.M. New generation high power rare-earth-doped phosphate glass fiber and fiber laser [J]. SPIE, 2001, 1: 56-60.
    [2] Michael R.L, Ed B., Michael J.M. High gain ultra-short length phosphate glass eribum-doped fiber amplifier material [J]. OSA Optical Fiber Communications 2001, 1: 1-8.
    [3] Hwang B.C., Jiang S.B., Tao L. Performance of high-concentration Er3+-doped phosphate fiber amplifiers [J]. IEEE Photonics Technology Letters, 2001, 13(3): 197-199.
    [4] Jiang S.B., Myers M., Peyghambarian N. Er3+ doped phosphate glasses and lasers [J]. Journal of Non-crystalline Solids, 1998, 239(1-3): 143-148.
    [5] Obaton A.F., Paren C., Flem G., er al. Yb3+-Er3+-codoped LaCaP4O12 glass: a new eye-safe laser at 1535 nm [J]. Journal of Alloys and Compounds, 2000, 300-301: 123-130.
    [6] Chahine A., Et-tabirou M., Elbenaissi M., et al. Effect of CuO on the structure and properties of (50-x/2)Na2O-xCuO-(50-x/2)P2O5 glasses [J]. Materials Chemistry and Physics, 2004, 84(2-3): 341-347.
    [7] Zou X.L., Itoh K., Toratani H. Transmission loss characteristics of fluorophosphate optical fiber in the ultraviolet to visible wavelength region [J]. Journal of Non-crystalline Solids, 1997, 215(1): 11-20.
    [8] Petit L., Cardinal T., Videau J.J., et al. Effect of niobium oxide introduction on erbium luminescence in borophosphate glasses [J]. Optical Materials, 2006, 28(3): 172-180.
    [9] Brow R.K. Review: the structure of simple phosphate glasses Section 1. Structure [J]. Journal of Non-crystalline Solids, 2001, 263&264(1-2): 21-31.
    [10] Shelby J.E. Properties of alkali–alkaline earth metaphosphate glasses [J]. Journal of Non-crystalline Solids, 2000, 263&264(1-2): 271-276.
    [11] Jiang S.B., Luo T., Hwang B.C., et al. Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length [J]. Journal of Non-crystalline Solids, 2000, 263&264(1-2): 364-368.
    [12] Polynkin P., Peyghambarian N., Moloney J. Efficient energy extraction from large- mode-area, short, heavily Er:Yb codoped phosphate-glass fiber for pulsed laser applications [J]. Applied Physics Letters, 2008, 92(6): 061115-1-3.
    [13] Grobnic D., Mihailov S.J., Walker R.B., et al. Bragg gratings made with a femtosecond laser in heavily doped Er–Yb phosphate glass fiber [J]. IEEE Photonics Technology Letters, 2007, 19(12): 943-945.
    [14] Campbell J.H., Suratwala T.I. Nd-doped phosphate glasses for high-energy/high peak- power lasers [J]. Journal of Non-crystalline Solids, 2000, 263&264(1-2): 318-341.
    [15] Lee Y.W., Sinha S., Digonnet M.J.E., et al. 20 W single-mode Yb3+-doped phosphate fiber laser [J]. Optics Letters, 2006, 31(22): 3255-3257.
    [16] Jiang S.B., Myers M., Peyghambarian N. Er3+ doped phosphate glasses and lasers [J]. Journal of Non-crystalline Solids, 1998, 239(1-3): 143-148.
    [17] Jiang S.B., Mendes S.B. Compact multimode pumped phosphate fiber amplifiers [J]. Optical Engineering, 2003, 42(10): 2817-2820.
    [18] Jeong Y., Sahu J.K., Payne D.N., et al. Ytterbium-doped large-core fiber laser with 1 KW of continuous-wave output power [J]. Electronics Letters, 2004, 40(8): 470-471.
    [19]余尧楚,姜中宏.磷酸盐玻璃熔炼时对铂的腐蚀[J].无机材料学报, 1997, 12(3): 265-272.
    [20]杨钢锋,邓再德,冯洲明,等.碱金属离子对掺铒磷酸盐玻璃除水性质的影响[J].无机材料学报, 2003, 31(12): 54-57.
    [21]杨钢锋,赵三银,邓再德,等.掺铒磷酸盐玻璃反应气氛法除水的研究[J].无机材料学报, 2005, 20(5): 1083-1088.
    [22]林达愿,杨钢锋,邓再德,等.玻璃加工质量对有源光纤芯包界面缺陷的影响[J].武汉理工大学学报, 2006, 28(1): 4-6.
    [23]冯正蓉.光纤强度与预制棒表面处理技术[J].光纤与电缆及其应用技术.1996, 1(2): 45-49.
    [24]杨鹏.提高光纤强度的方法[J].光纤与电缆及其应用技术, 2006, 1(4): 33-35.
    [25]李玲,黄永清.光纤通信基础[M].北京:国防工业出版社, 1999.
    [26]廖延彪.光纤光学[M].北京:清华大学出版社, 2000.
    [27]刘增基,周洋溢,胡辽林,等.光纤通信[M].西安:西安电子科技大学出版社, 2001.
    [28]赵梓森.光纤通信工程[M].北京:人民邮电出版社, 1994.
    [29]张宝安,朱健强,樊全堂.磷酸盐激光玻璃的化学机械抛光[J].中国激光, 2007, 34(8): 1151-1154.
    [30] Suratwala T.I., Miller P.E., Ehrmann P.R., et al. Polishing slurry induced surface haze on phosphate laser glasses [J]. Journal of Non-crystlline Solids, 2005, 351: 2091-2101.
    [31] Alekseev N.E., Izyneev A.A., Kravchenko V.B., et al. Etching of phosphate glasses [J]. Glass and Ceramics, 1983, 7: 344-346.
    [32] Barnes A.S., Pantano C.G., Conzone. S.D. Surface cleaning and etching of rare-earth-doped phosphate glass [J]. Proceedings of SPIE, 2001, 4452(1): 115-125
    [33] Prasad N.S., Wang J., Pattnaik R.K. Preform fabrication and drawing of KNbO3 modified tellurite glass fibers [J]. Journal of Non-crystalline Solids, 2006, 352: 519-523.
    [34] Wang J., Prasad S., Kiang K., et al. Source of optical loss in tellurite glass fibers [J]. Journal of Non-crystalline Solids, 2006, 352: 510-513.
    [35] Mann G., Vogel J., Zoheidi M., et al. Breakdown limits of optical multimode fibers for the application of nanosecond laser pulses at 532 nm and 1064 nm wavelength [J]. Applied Surface Science, 2009, 255(12): 5519-5522.
    [36] Bertussi B., Natoli J.Y. Effect of polishing process on silica surface laser-induced damage threshold at 355 nm [J]. Optics Communications, 2004, 242: 227-231.
    [37] Mann G., Vogel J., Prieu? R. Nanosecond laser damage resistance of differently prepared semi-finished parts of optical multimode fibers [J]. Applied Surface Science, 2007, 254 (6): 1096-1100.
    [38] Yu X., Day D.E. Properties and structure of sodium-ion phosphate glasses [J]. Journal of Non-crystalline Soilds, 1997, 215(1): 21-31.
    [39] Hoppe U., Walter G., Kranold R., et al. Structure specifics of phosphate glasses probed by diffraction method: a review [J]. Journal of Non-crystalline Soilds, 2000, 263-264(1-2): 29-47.
    [40]干福熹主编.光学玻璃(中册).北京:科学技术出版社. 1982: 405-432.
    [41]张俊英,张中太. MO-P2O5玻璃的结构与性能[J].材料科学与工艺, 2000, 8(1): 7-11.
    [42] Egan J.M., Wenslow R.M., Mueller K.T. Mapping aluminum/phosphorus connectivities in Aluminophosphate glasses [J]. Journal of Non-crystalline Solids, 2000, 261: 115-126.
    [43] Belke'bir A., Rocha J., Esculcas A.P., et al. Structural characterization of glass phases in the system Na2O-Al203-P205 by MAS and solution NMR, EYAFS and vibrational spectroscopy [J]. SpectrochimicaA ctaP artA, 1999, 55: 1323-1336.
    [44] Richard K.B., Kirkpatrick J.R., Turner G.L. Nature of Alumina in Phosphate Glass:Ⅱ, Structure of sodium Aluminophosphate Glass [J]. Journal of the American Ceramic Society, 1993, 76(4): 919-928.
    [45]杨钢锋.掺铒磷酸盐玻璃性质及除水工艺研究[D].广州:华南理工大学, 2004.
    [46] Hu J.J., Yang J.X., Chen W., et al. Experimental investigation of enhancing the subsurface damage threshold of Nd-doped phosphate glass [J]. Chinese Optics Letters, 2008, 6(9): 681-684.
    [47] Camp D.W., Kozlowski M.R., Sheehan L.M., et al. Subsurface damage and polishingcompound affect the 355-nm laser damage threshold of fused silica surfaces [J]. Proceedings of SPIE, 1998, 3244: 356-364.
    [48]王承遇,陶瑛.玻璃表面和表面处理[M],北京:中国建材工业出版社, 1993: 70-71.
    [49]叶大伦,胡建华.实用无机物热力学数据手册[M].北京,冶金工业出版社, 2002.
    [50] Charles R.J. Static fatigue of glass [J]. Journal of Applied physics, 1958, 29: 1549-1553.
    [51] Hench L.L. Characterisation of glass corrosion and durability [J]. Journal of Non-crystalline Solids, 1975, 19: 27-39.
    [52] Lyle A.K. Theoretical aspects of chemical attack of by water [J]. Journal of American Ceramic Society, 1943, 26(6): 201-204.
    [53]王中俭,吴纬,姜波,等. ZnO-MgO-P2O5磷酸盐玻璃酸溶机理研究[J].无机材料学报, 2008, 23(1): 155-158.
    [54] Gao H.S., Tan T.E., Wang D.H. Dissolution mechanism and release kinetics of phosphate controlled release glasses in aqueous medium [J]. Journal of Controlled Release, 2004, 96: 29-36.
    [55] Bunker B.C., Arnold G.W., Wilder J.A. Phosphate glass dissolution in aqueous solutions [J], Journal of Non-crystalline Solids, 1984, 64(3): 291-316.
    [56] Scholze H. Evidence of control of dissolution rates of glasses by H+ mobility [J]. Journal of American Ceramic Society, 1977, 60(3): 186-186.
    [57] Scholze H. An interesting effect in the leaching of glasses [J]. Glass Technology, 1975, 16: 76-79.
    [58]天津大学物理化学教研室.物理化学(下)[M].第四版.北京:高等教育出版社, 2004: 195-202.
    [59]韩德刚,高执棣,高盘良.物理化学[M].北京,高等教育出版社, 2001.
    [60] Woldemar A.W. Structure of subsurface layers and their role in glass technology [J]. Journal of Non-crystalline Solids, 1975, 19(1): 1-25.
    [61]梁文,程继健.一种新型磷酸盐玻璃的抗酸性研究[J].硅酸盐学报, 2001, 29(3): 294-297.
    [62]汪山,程继健.可控释放磷酸盐玻璃表面形貌与水溶解过程[J].无机材料学报, 2001, 16(2): 217-222.
    [63] Xian F., Tanabe S., Hanada T. Hydroxyl groups in erbium-doped germanous tellurite glasses [J]. Journal of Non-crystalline Solids, 2001, 281: 48-54.
    [64] Lee Y.S., Kang W.H. Structure and Dissolution Properties of Phosphate Glasses for Glass Fertilizer [J]. Materials Science Forum, 2004, 737(40): 449-452.
    [65]迪安J.A.,主编.兰氏化学手册,第十三版.科学出版社, 1991.
    [66]南京玻璃纤维研究设计院《玻璃测试技术》编写组.玻璃测试技术[M],第一版.北京:中国建筑工业出版社, 1987: 284-285.
    [67]天津大学物理化学教研室.物理化学(下)[M].第四版.北京:高等教育出版社, 2004: 218-223.
    [68] Bunker B.C., Arnold G.W., Wilder J.A. Phosphate glass dissolution in aqueous solutions [J]. Journal of Non-crystalline Solids, 1984, 64(3): 291-316.
    [69] Liu Q.X., Li X. Journal of Wuhan University of Technology, 1996, 18(1): 26-29.
    [70] Stephane G., Christophe J., Pierre F., et al. Theoretical consideration on the application of the Aagaard-Helgeson rate law to the dissolution of silicate minerals and glasses [J]. Chemical Geology, 2008, 255(1-2): 14-24.
    [71]李宏燕,续京.中药有效成分浸提过程的动力学模型分析[J].安徽农业科学, 2008, 36(25): 10730-70731.
    [72] Cook L.M. Chemical processes in glass polishing [J]. Journal of Non-crystalline Solids, 1990, 1-3(120): 152-171.
    [73] Wollast R., Brennet P., Jelli A. Verres Refract, 1970, 24(6): 251-253.
    [74]傅献彩,沈文霞,姚天扬.物理化学[M].第四版.北京:高等教育出版社, 2004年: 724-729.
    [75] Patrick J., Yves M., Michele N., et al. Simulated alteration tests on non-radioactive SON 68 nuclear glass in the presence of corrosion products and environmental materials [J]. Journal of Nuclear Materials, 2008, 281: 231-243.
    [76] Isabelle T., Thierry A., Joel L., et al. Basaltic glass: alteration mechanisms and analogy with nuclear waste glasses [J]. Journal of Nuclear Materials, 2000, 282: 40-46.
    [77] Grambow B., Muller R. First-order dissolution rate law and the role of surface layers in glass performance assessment [J]. Journal of Nuclear Materials, 2001, 298: 112-124.
    [78] Patrick J., Michele N., Etienne V. Estimating the alteration kinetics of the french vitrified high-level waste package in a geologic repository [J]. Radioactive Waste Management and Disposal, 1997, 123: 67-81.
    [79] Vernaz E., Gin S., Jegou C., et al. Present understanding of R7T7 glass alteration kinetics and their impact on long-term behavior modeling [J]. Journal of Nuclear Materials, 2001, 298: 27-36.
    [80] Zhang L., Luttge A., Aluminosilicate dissolution kinetics: a general stochastic model [J]. Journal of Physical Chemistry B, 2008, 112: 1736-1742.
    [81] Barnes A.S., Pantano C.G., Conzone S.D. Surface cleaning and etching of rare-earth doped phosphate glass [J]. Proceedings of SPIE, 2001, 4152: 115-124.
    [82] Chave T., Frugier P., Ayral A., et al. Solid state diffusion during nuclear glass residual alteration in solution [J]. Journal of Nuclear Materials, 2007, 362: 466-473.
    [83] Delage F., Larche F., Vernaz E., et al. Scientific basis for nuclear waste management [J]. Materials Research Society, Pittsburgh PA, volⅩⅥ,1992:171.
    [84] Devreux F., Ledieu A., Barboux P., et al. Leaching of borosilicate glassⅠ.Experiments [J]. Journal of Non-crystlline Solids, 2004, 343(1): 3-12.
    [85] Frugier P., Gin S., Minet Y., et al. SON68 nuclear glass dissolution kinetics: Current state of knowledge and basis of the new GRAAL model [J]. Journal of Nuclear Materials, 2008, 380: 8-21.
    [86] Dhar A., Pal A., Paul M., et al. The mechanism of rare earth incorporation in solution doping process [J]. Optics Express, 2008, 16(17): 12835-12846.
    [87] Rod in tube method of forming a fiber preform, with maintaining a gas supply until after an end is stretched [P]. US: Patent 6425270.
    [88]李仲伢,程雷,李成富.化学处理增强光学材料的抗激光破坏强度[J].光学学报, 1999, 19(6): 856-859.
    [89]汪晓芹,介万奇,杨戈. CdZnTe晶片表面化学刻蚀研究[J].人工晶体学报, 2005, 34(5): 790-793.
    [90]黄进,吕海兵.利用CO2激光处理增强石英基片损伤阈值的研究[J].中国激光2007, 34(5): 723-727.
    [91]瞿金蓉,胡明安,陈敬中,等.纳米粒子的点与粒径的关系[J].地球科学——中国地质大学学报, 2005, 30(2): 195-198.
    [92]王世良,周杨韬,侯丽珍,等.由Kelvin方程推导出小颗粒的点与半径的关系[J].湖南理工学院学报(自然科学版), 2008, 21(3): 37-40.
    [93]文潮,刘晓新,周刚,等.纳米金刚石的点和德拜特征温度[J].西安交通大学学报, 2000, 34(11): 108-110.
    [94] Iliescu C., Chen B.T., Francis E.H., et al. Characterization of deep wet etching of glass [J]. Proceeding of SPIE Devive and Process Technologies for Microelectronics, MEMS, and PhotonicsⅣ, 2005, 6037(1): 60370A-1-11.
    [95]王承遇,陶瑛.玻璃表面处理技术[M].第一版.北京:化学工业出版社, 2004: 145-156.