二元烷烃体系相变的分子动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相变储能技术是利用相变储能物质相变时吸热和放热来储存和释放能量的技术。相变储能技术在太阳能、建筑节能、工业余热和纺织业等领域都有广泛应用。石蜡是常用的有机相变储能物质,主要由直链烷烃混合而成,可用通式CnH2n+2表示。在实际应用中,总是希望相变储能物质具有与相应工况匹配的相变温度,通过各种有机物的混合可以调节相变温度,因此,对有机相变物质混合比例的研究,从而获取具有特定相变温度的混合物,有助于相变储能技术的进一步应用。与传统研究有机混合物相变温度的差示扫描量热法(DSC)和动态热机械分析法(DMA)不同,本文采用分子动力学模拟(MD)方法进行研究。
     模拟势函数为包含了分子间作用力L-J力场和分子内作用力OPLS力场的ORGANIC势函数;求解运动方程采用校正预测法,校正次数为5;温度控制采用速度标定法;压力控制为Parrinello-Rahman方法;应用周期性边界条件。
     本文研究共包括两个部分。第一部分模拟计算采用等温等压(NTP)系综对十七烷、十五烷及十七烷/十五烷混合体系(共6个体系, 530个碳氢粒子)的相变行为进行模拟研究,温度范围为310K~270K,温度间隔为5K。根据各体系自扩散系数和比体积随温度的突变,确定了各混合体系的相变温度点。纯物质相变温度与实验值吻合。与此同时,通过统计十七烷体系粒子运动的内坐标,获得了十七烷分子键长、扭曲键角以及二面角随温度变化趋势,对纯物质在化过程中的观结构变化进行了讨论。
     第二部分模拟计算采用等温等体积(NTV)系综对十七烷、二十烷及十七烷/二十烷混合体系(共11个体系, 3100个碳氢粒子)的相变行为进行模拟,温度范围为340K~270K,温度间隔为10K。根据各体系自扩散系数随温度的突变,确定了各混合体系的相变温度点。纯物质相变温度与实验值吻合。
     模拟研究发现,对于二元烷烃混合物可以通过调节组分比例,得到具有一定相变温度的混合物,实现一定温度下相变储能的应用要求。
Phase change energy storage technology, which is a storing and releasing energy technology by phase change material’s reception and release of heat, is used widely in solar energy, building energy conservation, industrial exhaust heat and textile industry. Paraffin made up of straight chain hydrocarbon is one of the organic phase change materials. Its general expression is CnH2n+2. In the practical application, phase change temperature must consistent with different working conditions and can be changed by adjusting constituent of organic mixture. Therefore, it is important to study how to gain the special phase change temperature by adjusting constituent of mixture. Comparing with the tradition method differential scanning caborimetry and dynamic thermomechametry, molecular dynamics simulation is used as the main study method in this article.
     The potential function is ORGANIC which includes inter-molecular force L-J and intra-molecular force OPLS. Predictor-corrector method is undertaken to compute equation of motion. Velocity scaling method is used to control temperature. Parrinello-Rahman is used to control pressure and periodic boundary condition is undertaken in every simulation system.
     There are two parts in this paper.
     In the first part, molecular dynamics simulation (NTP ensemble) is adopted to study the melt behavior of Heptadecane, Pentadecane and Heptadecane-Pentadecane mixed system (six systems in all, 530 particles). Self-diffusion coefficient and specific volume changing along with temperature are drafted by collecting the movement locus of particles to determine the phase change temperature of every system. At the same time, Bond length, Bond angle and Dihedral angle changing along with temperature are drafted by collecting the internal coordinate of particles to study material microscopic structure of Heptadecane in melting process.
     In the second part, molecular dynamics simulation (NTV ensemble) is adopted to study the melt behavior of Heptadecane, Eicosane and Heptadecane-Eicosane mixed system (eleven systems in all, 3100 particles). Phase temperatures of these systems are gained by self-diffusion coefficient changing along with temperature.
     The results show that different phase transition temperatures can be gained to fit different working conditions by adjusting constituent of mixture.
引文
[1] Belen Zalba, Jose M, Luisa F Gabeza. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23:251-283.
    [2]樊栓狮,梁德青,杨向阳等.储能材料与技术[M].北京:化学工业出版社, 2004:71-75.
    [3]邢登清,迟广汕,阮德水等.多元醇二元体系固-固相变贮热的研究[J].太阳能学报, 1995, 16(2):131-137.
    [4] Son C H. Thermal conductivity enhancement of solid-solid phase materials for thermal storage[J]. Journal of Thermophysics Heat Transfer, 1991, 5(1):122-126.
    [5] Liang X H, Guo Y Q, Gu L Z, et al. Crystalline-Amorphous Phase Transition of Poly (ethylene Glycol) /Cellulose Blend[J]. Macromolecules, 1995, 28:6551-6555.
    [6] Frye R E. Solid. Pliable organic compound for hot/cold thermal reservoir[J]. United States Patent, 1991, 11-19.
    [7] Harlan S L. High-Tech Fibrous Materials: composites, biomedical materials, protective clothing, and geotextiles[J]. ACS Symposium Series, 1991, 457:248-259.
    [8] Bruno J S, Vigo T L. Dyeing of Cotton/Polyether Blends in the Presence or Cmsslinked Polyol[J]. Am Dyest Rep, 1994, 83(2):34-37.
    [9] Jannasch P, Wesslen B. Poly (styrene-graft-ethylene oxide) as a compatibilizer in polystyrene/polyamide blends[J]. Journal of Applied Polymer Science, 1995, 58(4):753-770.
    [10]沈学忠,张仁元.相变储能材料的研究和应用[J].节能技术, 2006, 24(5): 460-463.
    [11] Athienitis A.K., Liu C., Banu D., et al. Investigation of the Thermal performance of a passive solar test-room with wall latent heat storage[J]. Building and Environment, 1997, 32(5):405-410.
    [12]钟开红.相变储能材料在建筑节能中的应用综述[J].广州建筑, 2006, 2: 37-39.
    [13] Dariusz Heim, Joe A Clarke. Numerical Modeling and Thermal Simulation of PCM-gypsum Composites with ESP-r[J]. Energy and Buildings, 2004, 36:795-805.
    [14]季冬.节能型相变储能建筑材料及其研究进展[J].广东化工, 2009, 3:79-81.
    [15]王志强,曹明礼,龚安华等.相变储热材料的种类、应用及展望[J].安徽化工, 2005, 134(2):9.
    [16]仝兆丰,孔祥冬,刘民义.高温金属/陶瓷储热材料及其工业节能运用前景[J].节能, 1995, (10):8.
    [17]张仁元,柯秀芳,秦红.相变储能技术在电力调峰中的工程应用[J].中国电力, 2002,35(5):21.
    [18]林坤平,张寅平,江亿.夏季“空调”型相比墙热设计方法[J].太阳能学报, 2003, 24:145-151.
    [19]朱民儒.相变储能材料应用前景广阔[J].纺织信息周刊, 2005, (32):16.
    [20]张海涛.电子材料Ga急冷凝固过程中观结构转变的模拟研究[D].湖南:湖南大学, 2006.
    [21]陈魁英,李庆春.液态贵金属Au,Ag的局域结构与键取向序[J].物理学报, 1992, 41(11):1813-1819.
    [22]黄丹,陶伟明,郭乙木.分子动力学模拟纳米镍单晶的表面效应[J].固体力学学报, 2005, 26(2):241-244.
    [23]周健,汪文川. Gibbs系综Monte Carlo模拟甲烷的吸附平衡[J].物理化学学报, 2001, 17(8):723-727.
    [24]杨全文,朱如曾,文玉华.纳米铜团簇在常温和升温过程中能量特征的分子动力学研究[J].物理学报, 2005,54(1):89-95.
    [25]顾健德,张敬来,田安民等.用于计算机模拟的ab-initio N2-H2O势[J].化学学报, 1996, 54(4):320-324.
    [26]刘让苏,刘凤翔,董科军等.液态金属Α1凝固过程中团簇结构的尺寸分布及幻数特性[J].中国科学(E辑:信息科学), 2006, 36(1):9-23.
    [27]刘让苏,刘凤翔,董科军等.液态金属Al快速凝固过程中团簇结构的形成特性[J].化学物理学报, 2004, 17(6):722-728.
    [28]刘让苏,刘凤翔,董科军等.液态金属Al凝固过程中的团簇结构与幻数特性[J].物理化学学报, 2004, 20(9):1093-1098.
    [29]侯兆阳,刘丽霞,刘让苏等. Al-Mg合金体快速凝固过程中观结构演化机理的模拟研究[J].物理学报, 2009, 58(7):4817-4824.
    [30]张爱龙,刘让苏,梁佳等.冷却速率对液态Ni凝固过程中观结构演变影响的模拟研究[J].物理化学学报, 2005, 21(4):347-353.
    [31] J. Q. Broughton, X. P. Li. Phase diagram of silicon by molecular dynamics[J]. Physical Review B, 1987, 35(17):9120-9127.
    [32]刘新,孟长功,刘长厚.升温速率对金属铅的化和过热行为的影响[J].物理化学学报, 2003, 19(8)681-685.
    [33] S. Sastry, P G. Debenedetti, FH. Stillinger. Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid[J]. Nature, 1998, 393(11):554-557.
    [34]张宗宁,刘美林,李蔚等.融Cu_(55)团簇在Cu(010)表面上凝固过程的分子动力学模拟[J].物理学报, 2009, 58(S1):67-71.
    [35]王荣山,侯怀宇,陈国良.非晶Cu在晶化过程中的分子动力学模拟[J].金属学报, 2009, 45(6):692-696.
    [36]陈蓓,韩波,周成冈等. Cu在TaN(111)表面团聚行为的分子动力学模拟[J].地球科学, 2009, 34(4):635-640.
    [37]廖明亮,翁盟雄,朱训鹏等.双层铜金属薄膜纳米压痕机械性能的分子动力学模拟[J].催化学报, 2008, 29(11):1122-1126.
    [38]欧阳芳平,徐慧,郭爱敏等.分子模拟方法及其在分子生物学中的应用[J].生物信息学, 2005, 3(1):33-36.
    [39] J. W. Neidigh, R. M. Fesinmeyer, N. H. Andersen. Designing a 20-residue protein[J]. Nature Structural Biology, 2002, 9:425-430.
    [40] V. Daggett, AR. Fersht. Is there a unifying mechanism for protein folding[J]. Trends in Biochemical Sciences, 2003, 28:18-25
    [41] I.E. Sanchez, T. Kiefhaber. Evidence for Sequential Barrier and Obligatory Intermediates in Apparent Two-state Protein Folding[J]. Journal of Molecular Biology, 2003, 325(2):367-276.
    [42]马国正,刘聪,求亚芳等. DNA小沟结合药物DB818的分子动力学模拟和结合自由能分析[J].化学学报, 2009, 67(5): 453-458.
    [43]中华人民共和国国家发展计划委员会基础产业发展司编.新能源和可再生能源[Z]. 1999白皮书.北京:中国计划出版社, 2000.
    [44]李代禧,刘宝林,纪兰兰等.甘油-水二元低温保护液玻璃化转变温度的理论预测[J].计算机与应用化学, 2008, 25(9):1087-1190.
    [45] A. Takada, P. Richet, C.R.A. Catlow, et al. Molecular dynamics simulations of vitreous silica structures[J]. Journal of Non-Crystalline Solids, 2004, 345(15): 224-229.
    [46]何安民,秦承森,邵建立等.金属Al表面化各向异性的分子动力学模拟[J].物理学报, 2009, 58(4):2667-2674.
    [47]李向富,陈宏善,孟凡顺等. (AgI)_n团簇化行为的分子动力学模拟[J].物理化学学报, 2009, 25(1):103-106.
    [48] B. Prathab, V. Subramanian and T.M. Aminabhavi. Molecular dynamics simulations to investigate polymer-polymer and polymer-metal oxide interactions[J]. Polymer, 2007, 48(1): 409-416.
    [49] B.F. Abu-Sharkh. Glass transition temperature of poly (vinylchloride) from molecular dynamics simulation: explicit atom model versus rigid CH2 and CHCl groups model[J]. Computational and Theoretical Polymer Science, 2001, 11(1): 29-34.
    [50] Ian Hamerton, B. J. Howlin, Paul Klewpatinond, et al. Developing predictive models for poly-cyanurates through a comparative study of molecular simulation and empiricalthermo-mechanical data[J]. Polymer, 2006, 47(2): 690–698.
    [51] Frenkel, Smit.汪文川等译.分子模拟-从算法到应用[M].北京:化学工业出版社, 2002.
    [52]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].北京:化学工业出版社, 2007.
    [53] L. Verlet. Computer“experiments”on classical fluids for thermodynamics properties of Lennard-Jones molecules [J]. Phys. Rev. B, 1967, 159:98-103.
    [54] C. W. Gear. Numerical integration of ordinary differential equations[M]. New Jersey: Prentice-Hall, Englewood Cliffs, 1971.
    [55] D. J. Evans. Computer "experiment" for nonlinear thermodynamics of couette flow[J]. J. Chem. Phys., 1983, 78:3297-3302.
    [56] S. Nose. A unified formulation of the constant temperature molecular dynamics methods[J]. J. Chem. Phys., 1981, 81:511-519.
    [57] S. Nose. A molecular dynamics method for simulations in the canonical ensemble[J]. Mol. Phys., 1984, 52:255-268.
    [58] H. C. Anderson. Molecular dynamics simulation at constant pressure and/or temperature[J]. J. Chem. Phys., 1980, 72:2384-2393.
    [59]杨小震.分子模拟与高分子材料[M].北京:科学出版社, 2002.42-43.
    [60] Stephen L. Mayo, Barry D. Olafson, William A. Goddard. DREIDING: a generic force field for molecular simulations[J]. J. Phys. Chem., 1990, 94 (26):8897–8909.
    [61] David Quinonero, Salvador Tomas, Antonio Frontera. OPLS all-atom force field for squaramides and squaric acid[J]. Chemical Physics Letters, 2001, 350(9):331-338.
    [62] W. L. Jorgensen and N.A. Mcdonald. Development of an all-atom force field for heterocycles. Properties of liquid pyridine and diazenes[J]. Journal of Molecular Structure, 1998, 424(2):145-155.
    [63] G.A.Kaminski, R.A.Friesner, J.Tirado-Rives, et al. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides[J]. J. Phys. Chem. B, 2001, 105(28):6474-6487.
    [64] BR. Brooks, RE. Bruccoleri, BD. Olafson et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations[J]. Journal of Computational Chemistry, 1983, 4(2): 187-217.
    [65] Allinger N L, Yan L. Molecular mechanics (MM3). Calculations on nitrogen-containing aromatic heterocycles[J]. J. Am. Chem. Soc, 1993:115-119.
    [66] S J Weiner, P A Kollman. Simulation of formanide hydrolysis by hydroxide on in the gas phase and in aqueous solution[J]. J. Am. Chem. Soc, 1984, 106:765-784.
    [67] Wendy D. Cornell, Piotr Cieplak, Christopher I. Bayly, et al. A Second Generation Force Fieldfor the Simulation of Proteins, Nucleic Acids, and Organic Molecules[J]. J. Am. Chem. Soc. 1995, 117:5179.
    [68] J.M.Wang, P.Cieplak, and P.A.Kollman. How Well does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules[J]. Journal of Computational Chemistry, 2000, 21(12):1049-1074.
    [69]章威,侯廷军,乔学斌等.一组和AMBER力场配合的普适波恩模型参数[J].物理化学学报, 2003, 19(4):289-292.
    [70]马沛生.有机化合物实验物性数据手册[M].北京:化学工业出版社, 2006:312-314.
    [71] W.L.Jorgensen, J.M.Briggs and M.L.Contreras. Relative partition coefficients for organic solutes from fluid simulations[J]. J. Phys. Chem., 1990, 94(4): 1683-1686.
    [72] J.Pranata, S.G.Wierschke and W.L.Jorgensen. OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform[J]. J. Am. Chem. Soc., 1991, 113(8): 2810-2819.
    [73] William L. Jorgensen, David S. Maxwell and Julian T. Rives. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids[J]. J. Am. Chem. Soc., 1996, 118(45):11225-11236.
    [74]陆维敏,陈芳.谱学基础与结构分析[M].北京:高等教育出版社,2005.
    [75] Rongliang Wu, Bin Kong, Xiaozhen Yang. Conformational Transition Characterization of Glass Transition Behavior of Polymers[J]. Polymer, 2009, 05:2-12.
    [76] Yin Yani, Monica Lamm. Molecular dynamics simulation of mixed matrix nanocomposites containing polyimide and Polyhedral Oligomeric Silsesquioxane (POSS)[J]. Polymer, 2009, 50:1324-1332.
    [77] Karl G. Wagner, Martin Maus, Andreas Kornherr, et al. Glass transition temperature of a cationic polymethacrylate dependent on the plasticizer content-Simulation vs. experiment[J]. Chemical Physics Letters, 2005, 02:90-94.
    [78] R. Prasada Rao and M. Seshasayee. Molecular dynamics simulation of ternary glasses Li2O-P2O5 -LiCl[J]. Solid State Communications, 2004, 131(8):537-542.
    [79]闫全英,王威.低温相变石蜡储热性能的实验[J].研究太阳能学报, 2006, 27(8):805-809.
    [80]张建雨,刘丽娇,胡景娜等.正构烷烃分布对石蜡相变热的影响[J].江苏化工, 2008, 36(1) : 17-20.