抗紫外无机复合粉体材料合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以硝酸锌为主要原料,采用沉淀和水热处理相结合的方法,通过添加一定量的阳离子表面活性剂,控制反应条件,分别制备了Zr掺杂ZnO粉体,Zn-Ce复合氧化物粉体和Mn掺杂ZnO粉体三种系列材料。考察了掺杂量或复合组分在产物中的含量、水热反应温度、水热时间、掺杂或复合方式等因素对材料的影响,采用多种表征手段对材料组成和结构进行了表征。同时,采用涂布制膜技术,对纳米ZnO紫外屏蔽性能进行了系统考察。实验结果如下:
     对于Zr掺杂ZnO:当Zr的掺杂量为3.5%时,在阳离子表面活性剂十六烷基三甲基溴化铵的作用下,在室温下经过沉淀生成氢氧化物后,再经过150℃水热处理0.5 h,所制备的复合氧化物样品的紫外屏蔽性能最强;Zn-Ce复合氧化物中CeO2的含量为12.5%时,在室温下生成氢氧化物,再经过120℃水热处理1 h,所制备的复合氧化物样品的紫外屏蔽性能最强;当Mn掺杂ZnO的中Zr的掺杂量为3%时,在室温下经沉淀反应生成氢氧化物后,再经过150℃水热处理0.5h,所制备的Mn掺杂ZnO样品的紫外线屏蔽性能最强。为了避免表面活性剂对产物性能的影响,以上三种产物在经过水热处理后都经过去离子水和无水乙醇冲洗,以清除产物中的表面活性剂。
     将所制备的复合粉体材料采用机械搅拌与超声波分散方法相结合的复合分散手段,制得复合材料的分散液,将此分散液添加到含量为9.1%的聚乙烯醇(PVA)溶胶里,制成PVA薄膜,采用紫外分光光度仪,对不同样品的紫外屏蔽性能进行了测量,分析得出:添加量复合材料粉体的薄膜与添加纯ZnO粉体相比,对可见光透光性方面没有差别,但是对紫外线的屏蔽性有明显增强,说明通过掺杂和复合的方法可以提高材料的紫外线屏蔽的性能。
The Zr doped zinc oxide, Zn-Ce composite oxide and Mn doped zinc oxide were synthesized by combining co-precipitation and hydrothermal method under mild condition from zinc nitrate. The effects of the amount of Zr(CeO2 and Mn)in composite material, hydrothermal temperature, hydrothermal time and prepared method on composite material were systematically studied. And the prepared inorganic material were characterized by some kinds of means. The UV-Shielding property of prepared material was tested with a coating method. The results are as follows:
     For Zr doped zinc oxide, the optimal amount of doped Zr is 3.5%, and the optimal process is as follows: under the effect of surfactant(CTAB), zinc nitrate and zirconium oxychloride were suffered precipitation under room temperature and then hydrothermal treatment with 150℃and 0.5h respectively; For Zn-Ce composite oxide, the optimal amount of CeO2 is 12.5%, and the optimal process is as follows: under the effect of surfactant, zinc nitrate and cerous nitrate were suffered precipitation under room temperature and then hydrothermal treatment with 120℃and 1h respectively; For Mn doped oxide, the optimal amount of Mn is 3%, and the optimal process is as follows: under the effect of surfactant, zinc nitrate and manganese nitrate were suffered precipitation under room temperature and then hydrothermal treatment with 150℃and 0.5h respectively. In order to avoid the effect of surfactant on the property of UV-Shielding, the above three kind of inorganic material were all washed by de-ionized water and ethanol.
     The prepared inorganic composite material were dispersed by ultrasonic dispersion and mechanic dispersion to form dispersing agent. The thin films were prepared by adding the above dispersing agent into hydrosol of polymer binder. The UV-Shieding property of the films was tested by UV-3010 ultraviolet spectrophotometer. As the result revealed: compared with pure ZnO, these composite material has the almost same transmittance for visible light but the transmittance of ultraviolet is lower than that of ZnO. That means doping some other element(s) and compound other semiconductor can strengthen the UV-Shielding property of ZnO.
引文
[1] Hussein MR.Ultraviolet radiation and skin cancer:molecularmecha-nisms[J]. J Cutan Pathol, 2005, 32 (3): 191-205
    [2] Brennan P. Sunlight,UV and accelerated weathering. Sue of Plastics Engineers,1987,198-203
    [3]杨敏,紫外线对人体健康的影响及防御措施[J].湖南安全与防灾,2006(9):58-59
    [4] Rich MJ. Rapid surface treatment of reinforcing fibers using ultraviolet light irradiation[A] Annual Technical Conference-ANTEC Conference Proceedings[C]. Chicago: Society of Plastics Engineers, 2004: 548-552
    [5] Schulz J. Distribution of sunscreens on skin [J].Advanced Drug Delivery Reviews, 2002,54:157-163
    [6] Rai R, Srinivas CR. Photop rotection[J]. Indian J DermatolVenereol Leprol, 2007, 73(2): 73-79
    [7]姚孝元.我国防晒化妆品中紫外线吸收剂分类和紫外吸收光谱[J].中国卫生检验杂志, 2005, 15 (2): 236-241
    [8]Maier T, Korting HC. Sunscreens -Which and What for? [J].Skin Pharmacol Physiol, 2005, 18 (6): 253-262
    [9]余爱萍,等.无机纳米抗紫外粉体及其在化妆品中的改性应用[J].材料导报, 2001, 15(12):38-40
    [10]许并社等.纳米材料及应用技术[M].北京:化学工业出版社,2004:437-438
    [11] Sato T , Katakura T, Yin S, et al. Synthesis and UV-shielding properties of calcia-doped ceria nanoparticles coated with amorphous silica[J]. Soild State Ionics, 2004, 172: 377-382
    [12]祖庸,李晓娥,樊安,等.沉淀法制备纳米ZnO的研究[J].西北大学学报(自然科学版),2001,31 (3):232- 234
    [13]L i S Y,Lee C Y,Tseng T Y. Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process [J]. J. Cryst. Growth,2003,247 (324):357-362
    [14]ZhangB P,Binh N T,Segawa Y,et al. Optical properties of ZnO rod formed by metalorganic vapor deposition [J]. Appl Phys. Lett.,2003,83(8):1635-1637
    [15]Wu J J, Liu S C. Catalyst-free growth and characterization of ZnO nanorods [J]. J. Phys. Chem. B,2002,106:9546-9551
    [16]Morales M,L ieber CM. A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science,1998,279 (5348): 208-211
    [17]Sun XW, Kwok H S. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition [J]. J. Appl. Phys,1999,86 (1):408-411
    [18]Dai Y, Zhang Y, L IQ K. Synthesis and optical roperties of tetrapod-like zinc oxide nanorods [J]. Chem. Phys. Lett.,2002,358:83-86
    [19]胡俊涛,郭常新,陈建刚,等.气相沉积法生长不同结构ZnO纳米线及其发光[J].发光学报,2005, 26 (6):781-784
    [20]]马正先,韩跃新,郑龙熙,等.纳米ZnO的制备与应用研究进展[J].矿产保护与利用,2002(1):37-43.
    [21]祖庸,刘超锋,李晓娥,等,均匀沉淀法合成纳米ZnO[J].现代化工,1997,17(9):3-35
    [22]詹国平,黄可龙,刘素琴纳米级氧化锌的制备技术与研究进展[J].化工新型材料. 2001, 29(7): 15-18
    [23]王世平纳米TiO2粉末的液相法制备及光学吸收特性的研究[J].涂料工业,2006,36(8): 36-39
    [24]孙继红,范文浩,吴东溶胶凝胶(Sol-gel)化学及其应用[J].材料导报, 2000, 14(4):25-29
    [25] Takeshi Furusawa, Kozue Honda, Emi Ukaji, et al. The microwave effect on the properties of silica-coated TiO2 fine particles prepared using sol–gel method [J]. Materials Research Bulletin, 2008, 43:946–957
    [26]曹建明.溶胶-凝胶法制备粉工艺研究[J].化学工程师, 2005,115:4-6
    [27]王敦举,张景林,王金英. W/乳液制备纳米粒的研究进展[J].化工技术与开发2007,36(5): 26-29
    [28]梅燕,韩业斌,李彦,等.水/油乳液技术制备单分散纳米CeO2 [J].硅酸盐学报, 2006,34(3): 340-344
    [29]江咏梅,聂基兰,杨志宏纳米二氧化钛的乳液制法[J].江西化工,2003,12:91-93
    [30]Hingorani S PillaiV,Kumar P Microemulsion mediated synthesis of zinc oxidenanoparticles forvaristor studies[J].Mat ResBull,1993,28:1300-1310
    [31]韦志仁,罗小平,付三玲等. TiCl3水热合成纯金红相和锐钛矿TiO2纳米晶体[J].人工晶体学报, 2007,36(6): 1301-1305
    [32]施秋萍,阚泓,毛志平.水热条件对棉织物上在位生长氧化锌晶体的影响[J].东华大学学报(自然科学版), 2007, 33(6): 711-716
    [33]赵新宇,郑百存,李春忠,等.喷雾热解合成ZnO超细粒子工艺及机理研究[J].无机材料学报,1996,11(4): 611-616
    [34]陈雄,袁曦明,王永钱等.纳米TiO2粉体的制备方法及应用[J].材料开发与应用,2008,8:50-54
    [35]张永康,刘建本,易保华,等.常温固相反应合成纳米氧化锌[J].精细化工, 2000, 17(6): 343-344
    [36]章金兵,许民,周小英.固相法合成纳米氧化锌[J].无机盐工业, 2005,37(7): 18-20
    [37]聂登攀,张煜,薛涛,等.铝掺杂氧化锌的合成及表征[J]现代机械, 2009,1: 82-83
    [38]赵小远.纳米氧化钛的制备及应用[J].稀有金属与硬质合金, 2003, 31(1): 26-27.
    [39]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002:7-11
    [40]Demazeau G. Solvothermal process:A route to the stabilization of new materials[J]. Journal of Materials Chemistry,1999,9(1):15-18
    [41]施尔畏,陈之战,元如林,等.水热结晶学[M].北京:科学出版社, 2004: 86-104
    [42] Choy J H,Han Y S,Kim J T Hydroxide coprecipitation route to the piezoelectric oxide Pb(Zr,Ti)O3(PZT)[J]. J Mater Chem,1995,5(1):65-69.
    [43]吴凤芹,姚超,王茂华,等.不同晶型纳米二氧化钛的水热合成[J].日用化学工业, 2008,38(6): 370-373
    [44] Wang Z,Qian X F, Yin J, et al. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route[J]. Langmuir, 2004, 20 (8): 3441-3448
    [45]李涛.水热法制备锆钛酸铅纳米粉体的研究进展[J].电子元件与材料, 2004, 23(10): 52-58
    [46]吴健春,黄婉霞,郑红平,等.纳米TiO2改性建筑外墙乳胶漆耐候性的研究[J].钢铁钒钛,2003,24(4): 55-58
    [47] Gao Jia-cheng, Zou Jian, TAN Xiao-wei,et al. Characteristics and properties of surface coated nano-TiO2[J]. Transaction of Nonferrous Metals society of China,2006, 16: 1252-1258
    [48] Emi Ukaji, Takeshi Furusawa, Masahide Sato,et al. The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter[J]. Applied Surface Science, 2007, 254: 563–569
    [49]赵旭,杨少凤,赵敬哲等.氧化锌包覆超细二氧化钛的制备及其紫外屏蔽性能[J].高等学校化学学报, 2000, 21(11): 1617-1620.
    [50]丁士文,王利勇,张绍岩,刘淑娟等.纳米TiO2-ZnO复合材料的合成、结构与光催化性能[J].无机化学学报, 2003,19(6): 631-635.
    [51]Yuan Wang, Dengsong Zhang, Liyi Shi,et al. Novel transparent ternary nanocomposite films of trialkoxysilane-capped poly(methyl methacrylate)/zirconia/titania with incorporating networks[J]. Materials Chemistry and Physics, 2008,110: 463–470.
    [52] Yabe S,Yamashita M, Momose S,et al. Synthesis and UV-shielding properties of metal oxide doped ceria via soft solution chemical processes[J]. International Journal of inorganic materials, 2001, 3: 1003-1008
    [53]Ahmed Mohamed El-Toni, Shu Yin, Tsugio Sato. Synthesis and silica coating of calcia-doped ceria/plate-like titanate(K0.8Li0.27Ti1.73O4) nanocomposite by seeded polymerization technique[J], Materials Chemistry and Physics, 2007, 103:345–350
    [54]Ahmed Mohamed El-Toni, Shu Yin, Tsugio Sato. Synthesis and silica coating of calcia-doped ceria/mica nanocomposite by seeded polymerization technique [J]. Applied Surface Science, 2006, 252: 5063–5070
    [55]Gies HE,et a1. Ultraviolet protection factor for clothing[J]. Health Phys.,1994,67:13l-139
    [56]涂国荣,王武尚,张利兴.纳米TiO2与天然紫外吸收剂防晒效用的研究[J].精细化工, 2001, 18(7):379-38l
    [57]杜小豪,徐卫,杜雪洁.防晒化妆品UVA区效果评价方法的研究[J].日用化学工业,2002,32(1):68-71
    [58]李哲,张萍,冉璟,等.屏蔽紫外线纳米ZnO/ TiO2复合粉体的制备与性能研究[J].化工新型材料,2006, 34 (12): 41-44
    [59]冉璟.屏蔽紫外线纳米ZnO/ TiO2复合粉体的植被[D].四川大学,2005
    [60]朱汉财,王红娟,彭峰等纳米ZnO薄片的制备、表征及其光催化降解性能[J],石油化工,2006,35(9):886-890
    [61]王健,邓小芝,邱新平等.盐法合成ZnO纳米粉[J].中国粉体技术,2006,6:5-9
    [62] Pardeshi SK, Patil AB. Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method [J]. Journal of Molecular Catalysis A: Chemical, 2009, 308: 32–40
    [63]刘建本,陈上,吴竹青等.纳米氧化锌水溶胶的紫外-可见光特性[J].精细化工,2002,19(2):93-95
    [64] Krithiga R, Chandrasekaran G.. Synthesis, strucutral and optical properties of vanadium doped zinc oxide nanograins [J]. Journal of Crystal Growth, 2009, 311: 4610–4614
    [65]Tolnai Gy, Csempesz F, Kabai-Faix M, et al. Preparation and characterization of surface-modified silica-nanoparticles[J]. Langmuir, 2001,17(9):2683-2687
    [66]Nizri G, Magdassi S, Schmidt J, et al. Microstructural characterization of micro-and nanoparticles formed by polymer-surfactant interactions [J]. Langmuir, 2004, 20(11): 4380-4385.
    [67]龚勇宏.稀土掺杂碲酸盐玻璃组成、结构与性能的研究[D].武汉:武汉理工大学,2006
    [68]董相延,洪广言,于得财. CeO2纳米粒子形成过程中Ce的价态变化[J].硅酸盐学报, 1997,25(3): 323-327
    [69]袁怡松,吴柏诚,罗红旗.颜色玻璃[M].北京:轻工业出版社,1987:94-99
    [70]张若桦.稀土元素化学[M].天津:天津科学技术出版社,1987:37-40
    [71]刘华,吴文启.钛白粉的生产和应用[M].北京:科学技术出版社,1992:7-10
    [72]杨兵初,张丽,马学龙.等氧分压对锰掺杂氧化锌结构及吸收性能的影响[J].半导体技术,2008,33(2): 113-117.
    [73]刘益春,张喜田,张吉英,等.氧化锌可见区发光机制[J].发光学报,2002,23(6):563-569.
    [74] Li Jin, Fang Huiqing, Chen Xiaopeng,et al. Structural and photoluminescence of Mn-doped ZnO single-crystalline nanorods grown via solvothermal method [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 349: 202-206
    [75]Jihui Lang, Qiang Han, Changsheng Li, et al. Effect of Mn doping on the microstructures and photoluminescence properties of CBD derived ZnO nanorods[J]. Applied Surface Science, 2010, 256:3365–3368
    [76]倪赛力,常永勤,多永正,等. Mn掺杂ZnO纳米线的拉曼散射和光致发光特性[J].功能材料,2007,28(38):1380-1382
    [77] Islam M.N,Ghosh T B,Chopra K L,et a1. XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films[J]. Thin Solid Films,1996,280:20
    [78] Cong CJ, Liao L, Li JC, et al. Synthesis, structure and ferromagnetic properties of Mn-doped ZnO nanoparticles [J]. Nanotechnology, 2005,16 (6): 981-984
    [79] Moudler JF, Stickle WF, Sobol PE, et al. Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, MN, 1992
    [80] Sloczynski J, Grabowski R, Kozlowska A, et al. Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2 catalysts for the methanol synthesis from CO2[J]. Applied Catalysis A: General, 2003, 429(1): 129-138
    [81] Lang Jihui, Han Qiang, Li Changsheng, et al. Effect of Mn doping on the microstructures and photoluminescence properties of CBD derived ZnO nanorods[J]. Applied Surface Science, 2010, 256:3365–3368