新型生物活性玻璃的制备及其修复糖尿病大鼠难愈创面的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的制备生物活性玻璃(Bioactive glass, BG)为高温融法,现在已经扩展到溶胶-凝胶法、水热法、模板法等,利用这些新方法可以制备生物活性活性玻璃粉体、介孔生物活性玻璃、生物活性玻璃纤维等新型生物活性玻璃,这些新型生物活性材料有着一些更优良的性能,如材料的化学均匀性可达分子级别,并具有纳米介孔结构、巨大的比表面积以及较高的化学活性和吸附特性等。传统高温融法制备的具有代表性的生物活性玻璃为45S5,其化学组成为:SiO245 %,Na2O 4.5 %,CaO 24.5% ,P2O5 6 %(wt%),该生物活性玻璃在创面修复领域已经有了很好的应用,但是溶胶-凝胶生物活性玻璃(Sol-gel bioactive glass, SGBG)和纳米生物活性玻璃(Nanoscale bioactive glass, NBG)等新型生物活性玻璃在这方面的研究比较少。本课题就生物活性玻璃制备方法中的模板法出发,致力于新型生物活性玻璃材料的合成及其在创面修复中的应用研究,并探讨其机理。
     本研究采用溶胶-凝胶共沉淀法、结合冷冻干燥技术制备了颗粒尺寸在纳米级的生物活性玻璃NBG,研究了加入分散剂聚乙二醇(PEG-10000)对生物活性玻璃颗粒的分散性能、观形貌和生物活性的影响。结果表明:没有加入PEG制得的NBG颗粒呈现不规则形态,粒径小于50 nm,加有PEG的NBG颗粒形状趋于规则的球形,分散性大大提高,颗粒粒径在40~100 nm,而且加入PEG的浓度越高,制备的NBG颗粒粒径越小。通过比较NBG与溶胶-凝胶生物活性玻璃SGBG在模拟人体体液(Simulated body fluid, SBF)中的表面矿化研究,发现NBG比SGBG有更高的生物活性。本课题还研究了SGBG、NBG、45S5修复糖尿病大鼠模型溃疡的情况,研究结果表明:①生物活性玻璃能促进糖尿病大鼠创面的愈合,提高其愈合速度。②在促进难愈创面的愈合方面,SGBG和NBG比45S5更加快速有效,创面愈合所需时间更短,SGBG和NBG相比效果相差不大。
Presently the methods of preparation of bioactive glass have extended from the traditional melting method to the sol-gel method, hydrothermal method, template method and so on. In these methods we can obtain bioactive glass powder, mesoporous bioactive glass , bioactive glass fiber and other advanced bioactive glasses, which have some better biological properties, such as the chemical homogeneity in molecular level, nanoscale mesoporous structure, larger surface area, higher chemical activity and adsorption characteristics. The bioactive glass(SiO245%, Na2O 4.5%, CaO 24.5%, P2O5 6%(45S5)) prepared using the traditional melting method has been widely used in wound healing, but only a few research of the advanced bioactive glass has been done in this area The subject of the study is is to prepare the advanced bioactive glass by the sol-gel and template methods and explore its application and mechanism in woundhealing.
     Nanoscale bioactive glass (NBG) powders were prepared using the sol-gel co-precipitation and freeze-drying methods in this study, also effects of polyethylene glycol (PEG-10000) as a dispersing agent on their nanoscale morphology and bioactivity was investigated. The results showed that NBG particles prepared without without adding PEG were found with an irregular particle morphology and the particle size was less than 50 nm .With addition of PEG, the spherical bioactive glass particles formed and the particle size ranged in approximately 40~100 nm. The higher PEG concentration was, the particle size decreased.The in vitro bioactivity test in a simulated body fluid (SBF) demonstrated that NBG possessed a higher bioactivity than the sol-gel derived bioactive glass(SGBG).
     Three kinds of bioactive glassSGBG、NBG and 45S5 were used to heal the wound in dibabetic rats. The results indicated that:○1 The bioactive glass can promote wound healing of diabetic and increase the healing rate.○2 Compared with the 45S5, SGBG and NBG can promote wound healing of diabetic rats more quickly and efficiently ,and the wound healing time is less, but no significant difference was observed between SGBG and NBG.
引文
[1] Hench L L. Bioceramics[J]. J Am Ceram Soc, 1998, (81): 1705-1728
    [2] Hench L L, Wilson J. An Introduction to Bioceramics[M]. London: World Scientific, 1993: 1224
    [3] A. E. Clark, Hench L. L., H. A. Paschall. The influence of surface chemistry on implant interface histology: A theoretical basis for implant materials selection[J].J Biomed Mater Res, 1976, 10(2): 161-74
    [4] Hench L L, Polak J M. Third-Generation Biomedical Materials [J]. Science , 2002, 295: 1014-1017
    [5] Hench L. L. Biomaterials: a forecast for the future[J]. Biomaterials, 1998, 19: 1419-1423
    [6] Hench L.L., Splinter R.J, Allen W.C, et al. Bonding mechanism at the interface of ceramic prosthetic materials[J]. Biomed. Mater. Res. Symp, 1971, 2:117-141
    [7] Hench L.L, Paschallh.A. Histo-Chemical responses at a Biomaterials interface[J]. Biomed. Mater. Res, 1974, 5(1): 49-64
    [8]Gatti A. M, ValdrèG., Andersson ?.h. Analysis of the in vivo reactions of a bioactive glass in soft andhard tissue[J], Biomaterials, 1994, 15: 208-212
    [9] Sophie Verrier, Jonny J. Blaker, Veronique Maquet, et al. PDLLA/Bioglasss composites for soft-tissue and hard–tissue engineering: an in vitro cell biology assessment[J]. Biomaterials, 2004, 25: 3013–3021
    [10] Zhang Kai, Ma Yue, Francis Lorraine F.. Porous polymer/bioactive glass composites for soft-to-hard tissue inter faces[J]. J Biomed Mater Res, 2002, 61: 551–563
    [11] Li R, Clark A. E, Hench L. L . An Investigation of bioactive glass powders by sol-gel processing[J]. J Appl. Biomaterials, 1991, 2:231-239
    [12] Balamurugan A, Sockalingum G, Michel J, et al. Synthesis and characterisation of sol gelderived bioactive glass for biomedical applications[J]. Materials Letters, 2006, 60(29-30): 3752-3757
    [13] Balamurugan A , Ballossier G , Michel J, et al. Sol gelderived SiO2 -CaO-MgO-P2 O5 bioglass system-preparation and in vitro characterization[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2007, 83B(2): 546-553
    [14] Hench L.L. Bioceramics: From Concept to Clinic[J]. J Am Ceram Soc, 1991, 74 (7): 1487-1510
    [15] Chen Xiaofeng, Meng Yongchun, Li Yuli, et al. Investigation on bio-mineralization ofmelt and sol–gelderived bioactive glasses[J]. Applied Surface Science, 2008, 255: 562–564
    [16] Li R., Clark A. E.,Hench L. L. An Investigation of bioactive glass powders by sol-gel processing[J]. J. Appl. Biomaterials, 1991, 2: 231-239
    [17] Hench L. L, West J. K. The sol-gel process[J]. Chem. Rev, 1990, 90: 33-72
    [18] Li R, Clark A. E, Hench L. L. In Chemical Processing of Advanced Materials[M]. Inc., New York, 1992: 627-633
    [19] Hench L.L. Sol-gel materials for bioceramic applications[J]. Current Opinion in Solid State & Materials Science, 1997, 2: 604-610
    [20] Greenspand.C., Zhong J.P., Chen X.F, et al. The evaluation ofdegradability of melt and sol-gelderived Bioglass? in-vitro[J]. Bioceramics, 1997, 10: 391-394
    [21]陈晓峰,王迎军,赵娜如,等. CaO-P2 O5 -SiO2系统溶胶-凝胶玻璃的生物矿化行为[J].材料研究学报, 2003, 17(3): 268-275
    [22]王迎军,陈晓峰,赵娜如,等.纳米仿生骨组织材料的生理响应及生物矿化[J]。华南理工大学学报(自然科学版), 2002, 30(11): 149-154
    [23] Weiner S, Wagnerh.d. The material bone: Structure-Mechanical Function Relations[J]. Annu Rev of Mater Sci, 1998, 28(1): 271-298.
    [24]韩长菊,陈庆华,杨喜昆,等.纳米羟基磷灰石/胶原蛋白复合支架材料的制备与性能研究[J].材料导报, 2007, 21(09): 139-141
    [25] Superb K M ,dirk M , Tobias J B , et al . Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass? composites[J]. Biomaterials, 2008, 29(12): 1750-1761.
    [26]刘丰,郑秋红,李小红,等.可分散性纳米二氧化硅增强硅橡胶[J].复合材料学报, 2006, 23(6): 57-63
    [27] Hong Zhong kui, Rui L. Reis , Joao F. Mano. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles[J]. Acta Biomaterialia, 2008, (4): 1297–1306
    [28] Champion J A, Katare Y K. Particle shape: A new design parameter for micro-and nano scale drug delivery carriers[J]. J. Control. Rel, 2007, 121(1-2): 3-9.
    [29] Hong Z , Liu A , Chen L , et al. Preparation of bioactive glass ceramic nanoparticles by combination of sol–gel and coprecipitation method[J]. J Non–Cryst Solids, 2009, 355(6) : 368-372.
    [30] Tobias J B, Robert N G, Wendelin J S. Glass and Bioactive Glass Nano powders by Flame Synthesis [J].Chem. Commun, 2006, 13: 1384-1386.
    [31]罗自通.德莫林治疗糖尿病足部溃疡创面疗效观察[J].重庆医学, 2006, 35(9): 770.
    [32]吕均香,渠鹏程,翟学英.肌肤生治疗麻风溃疡疗效观察[J].中国麻风皮肤病杂志, 2005, 21(4): 319.
    [33]胡晓燕,王光毅.生物活性修复材料—康倍治疗烧伤的疗效观察[J].中国修复重建外科杂志, 2007, 11(21): 1216-1218
    [34]Moosvi Syed Raza, Day Richard M. Bioactive glass modulation of intestinal epithelial cell restitution[J]. Acta Biomaterialia, 2009, (5): 76–83
    [35]Day RM. Bioactive glass stimulaters the seretion of angiogenic growth factors and angiogenesis in vitro[J].Tissue Eng, 2005, 11(5-6): 768-777
    [36]张学广.生物活性玻璃微粒治疗口腔溃疡疗效初步观察[J].临床口腔医学杂志, 2000, 16(4) :238-239
    [37]王钰,马兵,夏照帆,等.生物活性玻璃对30例烧伤患者治疗后期的疗效观察[J.中华烧伤杂志, 2006, 22: 474
    [38]叶礼岳,王史辉,孙菊妹,等.无机活性元素对深Ⅱ度烧伤创面愈合的影响[J].临床医学, 2007, 27: 48-49
    [39]周来生,廖镇江,张勤,等.无机活性元素对皮肤创面愈合的生物诱导作用[J].中华烧伤杂志, 2005, 21(5): 363-365
    [40]王正国,付小兵,周元国.分子创伤学[M].福建:福建出版社, 2004, 526-529.
    [41] Harrington C, Zagari MJ, Corea J, et al. A cost analysis ofdiabetic lower–extremity ulcers[J]. Diabetes Care, 2000, 23: 1333 -1338.
    [42] Hogan P, Dall T , Nikolov P. Economic costs of diabetes in the US in 2002[J]. Diabetes Care, 2003, 26: 917 - 932
    [43] Gordois A , Scuffham P , Shearer A , et al . The health care costs of peripheral neuropathy for people with diabetes in the US[J]. Diabetes Care, 2003, 26: 1790
    [44] Shearer A, Scuffham P, Gordois A, et al. Predicted costs and outcomes from reduced vibration detection in people with diabetes in the US[J]. Diabetes Care , 2003, 26: 2305 - 2310.
    [45]翁雪燕,王庆开,苏春晓. 45例糖尿病足溃疡的临床分析[J].中国热带医学, 2007, 7: 2252-2254
    [46]胡克恒,张国军.实验性糖尿病[J].实用儿科杂志, 1992, 7(4): 174
    [47] Like AA, Rossini AA. Streptozotocin - induced pancreatic insulitic :new model of diabetes mellitus[J]. Science, 1976, 193: 415
    [48] Wanda A, Dorsett-Martin, DVM a. Rat models of skin wound healing: A review [J]. Wound Repair and Regeneration, 2004, 12( 6): 591-599
    [49]陈晓峰,李玉莉,赵娜如.溶胶-凝胶生物活性玻璃的纳米结构分析研究[J].硅酸盐通报, 2007, 26(2): 247-251.
    [50] Kothapalli CR, Shaw MT, Wei M. Biodegradable HA-PLA 3-D porous scaffolds: Effect of nano-sized filler content on scaffold properties[J]. J Acta Biomater, 2005, 1: 653–662.
    [51] Roco MC. Nanoparticles and nano technology research[J]. J Nanoparticle Res, 1999, 1: 1–6.
    [52] Hong Z, Zhang P, Liu A, et al. Composites of poly (lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nanoparticles[J]. J Biomed Mater Res A, 2007, 81: 515–522.
    [53] Hong Z, Zhang P, He C, et al. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite:Mechanical properties and biocompatibility[J]. J.Biomaterials, 2005, 26(32): 6296–6304.
    [54]胡劲,陈晓峰,赵娜如,等.生物玻璃显色机理及其体外矿化性能的研究[J].硅酸盐通报, 2009, 28(2): 213-218.
    [55] Kokubo T, Takadamah. How useful is SBF in predicting in vivo bone bioactivity?[J]. J Biomaterials, 2006, 27(15): 2907–2915.
    [56]高雪艳,凌程凤,谈技,等.冷冻干燥法制备纳米氧化镁条件的研究[J].海湖盐与化工, 2005, 34(5): 10-11.
    [57]蔡小先,周大利,胡驰,等.溶胶-冷冻干燥法制备纳米VO2研究[J].四川有色金属, 2009, (1):15-19.
    [58]邹同征,涂江平,夏正志,等.聚乙二醇为分散剂的沉淀法制备IF-MoS2[J].无机化学学报, 2005, 21(8): 1170-1174.
    [59] Lei B, Chen X, Wang Y, et al. Synthesis and in vitro bioactivity of novel mesoporous hollow bioactive glass microspheres [J]. J Materials Letters, 2009, 63(20): 1719–1721.
    [60] Andrade A, Valerio P, Goes A.M, et al. Influence of morphology on in vitro compatibility of bioactive glasses[J]. J Non-Crystalline Solids, 2006, 352: 3508-3511
    [61] Oliveira J.M, Correia R.N, Fernandes M.h. Effects of Si speciation on the in vitro bioactivity of glasses[J]. Biomaterials, 2002, 23(2): 371-379
    [62] Leonelli C, Lusvardi G. Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity[J]. J Non-Crystalline Solids, 2003, 316(2): 198-216
    [63] Renina M, La Torre G,Hench L L. Solution effects on the surface reactions of a bioactive glass[J]. J Biomed. Mater.Res, 1993, 27(4): 445-453.
    [64] Pereira, M. M, Clark, A. E, Hench, L. L. Calcium phosphate formation on sol-gel derived bioactive glasses in vitro[J]. J Biomed. Mater. Res, 1994, 28: 693-698.
    [65] Kokubo T, Ito S, Huang ET, et al. Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W[J]. J Biomed. Mater. Res, 1990, 24(3): 331-343.
    [66] Peitl O, Zanotto E D, Hench L L. Highly bioactive P2 O5 -Na 2 O-CaO-SiO2 glass-ceramics [J]. J Non- crystal Solids, 2001, 292(123): 115-126.
    [67]张晓凯,陈晓峰,王迎军,等. CaO-P2 O5 -SiO2系统溶胶-凝胶生物活性多孔材料在SBF中的性能研究[J].化学学报, 2005, 63(22): 2077-2081.
    [68] Chen X, Lei B, Wang Y. Morphological control and in vitro bioactivity of nanoscale bioactive glasses[J]. J Non-Cryst. Solids, 2009, 355(13): 791-796.
    [69] Loher S, Reboul V, Brunner TJ, et al. Improved degradation and bioactivity of amorphous aerosol derived tricalcium phosphate nanoparticles in poly(lactide-co- glycolide)[J]. J Nanotechnology, 2006, 17(8): 2054-2061.
    [70] Schneider O D, Loher S, Brunner TJ, et al. Cotton wool like nanocomposite biomaterials: in vitro bioactivityand osteogenic differentiation of human mesenchymal stem cells[J]. J Biomed.Mater.Res, 2008, 84B(2): 350-362.
    [71]Keshaw Hussila, Forbes Alastair, Day Richard M. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass[J]. Biomaterials, 2005, 26: 4171–4179
    [72]徐俊,王鹏华,田应芳,等.重组人表皮生长因子纳米球修复糖尿病大鼠溃疡创面[J].中国组织工程研究与临床康复, 2009, 13(12): 2308-2312.
    [73]付小兵,王亚平,孙同柱,杨银辉.糖尿病慢性难愈合创面大鼠模型的制备[J],上海实验动物科学, 1997, 17(4): 217-219
    [74] Frosch P. J, Czarnetzki B. M. Effect of retinoids on wound healing in diabetic rats Archives of dermatological Research[J]. Arch Dermatol Res, 1989, 281(6): 424-426
    [75]Romana-Souza Bruna, Nascimento A P, Monte-Alto-Costa Andrea. Propranolol improvescutaneous wound healing in streptozotocin-induceddiabetic rats[J]. European Journal of Pharmacology, 2009, 611: 77-84
    [76]张宝元. 10%福尔马林与中性福尔马林的比较[J].四川解剖学杂志, 2001, 9(2): 96-98
    [77]付小兵,王德文.现代创伤修复学[M].人民军医出版社, 1999, 19-23
    [78]付小兵,王德文.现代创伤修复学[M].人民军医出版社, 1999, 82-89.
    [79] Christopherson K. The impact of diabetes on wound healing: implications of micro circulatory changes[J ]. Br J Community Nurs ,2003, 8(12): S6-13.
    [80] Algenstaedt P, Schaefer C, Biermann T, et al. Microvascular alterations in diabetic mice correlate with level of hyperglycemia[J]. Diabetes ,2003, 52 (2): 542-549.
    [81] Nern K. Dermatologic conditions associated with diabetes [J]. Curr Diab Rep, 2002, 2(1):53-59.
    [82] Menke N B, Ward K R, Witten T M, et al. Impaired wound healing, Clin Dermatol, 2007, 25: 19-25.
    [83] Toussaint O, Dumont P, Remacle J, et al. Stress-induced premature senescence or stress-induced senescence-like phenotype: one in vivo reality, two possibledefinitions?[J]. Sci. World J, 2002, 2: 230–247.
    [84]付小兵,王德文.现代创伤修复学[M].人民军医出版社, 1999, 91-93