光纤连接器端面研磨抛光机理与规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤连接器作为目前应用面最广、用量最大的光无源器件,其种类、结构形式十分丰富,随着光纤通讯对器件质量要求的迅速提高,目前普遍使用的制造工艺与技术都难以高水平适应,迫切需要更深层次地认识光纤连接器制造过程中的机理性、规律性科学问题,以期在制造技术上取得突破。本文依托国家自然科学基金重点项目《光纤器件的亚微米制造理论与关键技术》,针对光纤连接器制造中存在的问题,通过理论分析、试验测试以及有限元仿真等方法,对光纤结合界面上光波传输与畸变规律、光纤连接器端面研磨抛光工艺进行了研究,建立了光学原理与器件结构参数、制造精度、工艺参数的融合模型并找出了其中的量值规律。论文的主要研究内容及研究结果如下:
     (1)基于薄膜光学原理,建立了光纤端面之间间隙、表面粗糙度、变质层等制造因素影响光纤连接器性能的数学模型。研究表明,在消除光纤端面之间的间隙后,研抛变质层是阻碍提高连接器光学性能的最主要因素。
     (2)研究了连接器端面研磨抛光工艺与器件光学性能的关系。采用干涉仪、扫描电子显微镜(SEM)、非接触表面轮廓仪(WYKO)等,对连接器插针体端面形状、表面质量进行了观察,总结了工艺参数对连接器光学性能的影响规律,获得了一组较优的连接器端面研磨抛光工艺匹配参数。应用椭圆偏振光谱仪测试了光纤端面研磨变质层的折射率与厚度,发现用粒度分别为3μm、1μm、0.5μm的金刚石砂纸研磨引起的变质层折射率相比标准光纤提高了约4.4%、3%、2.5%,相应的变质层厚度约为0.167μm、0.09μm、0.063μm。由变质层反推计算得到的连接器回波损耗与直接由回波损耗仪测得的结果基本一致,证明所建立的连接器光学性能与制造因素关联数学模型正确。
     (3)研究了连接器端面研磨抛光时光纤材料的去除。应用光纤压痕试验找到了实现光纤塑性域研磨加工的依据,并根据Bifano法则,得到实现光纤由脆性去除转变到塑性去除的临界切深d_c=0.023μm;基于Hertz接触理论,建立了陶瓷插芯与光纤组合端面研磨加工时磨粒对光纤切深的计算模型,获得了实现光纤塑性域研磨的条件。通过扫描电子显微镜观察用不同粒度的金刚石砂纸研磨后的光纤端面,发现存在脆性断裂、半脆性半塑性、塑性等3种材料去除模式,在塑性去除模式下可获得高质量加工表面。试验结果与理论分析计算相吻合,为研究变质层形成的原因及有限元仿真奠定了基础。
     (4)研究了光纤端面研抛变质层的材料微观结构变化,查明了变质层产生的根本原因。基于红外光谱理论,以SiO_2玻璃光纤红外光谱特征峰波数与硅氧四面体[SiO_4]单元之间Si-O-Si键角之间的关系为基础,建立了光纤红外光谱1100cm~(-1)特征峰波数与分子体积及折射率的数学模型。应用显微红外光谱测试仪,对光纤研抛变质层进行了测试,与标准光纤的红外光谱1100cm~(-1)特征峰波数相比较,发现各种研抛工艺条件下的变质层红外光谱1100cm~(-1)特征峰波数均有不同程度降低,从而推论出变质层的微观结构变化为硅氧四面体[SiO_4]单元之间的Si—O—Si键的键角减小、分子体积被压缩,反映到宏观上即为折射率升高。变质层分子体积压缩程度及折射率增大幅度与研磨抛光工艺密切相关,从半精研磨、精研磨到湿抛光,光纤端面变质层的分子体积压缩率从约10%降低到约5%,变质层的计算折射率增幅与椭圆偏振仪测试结果一致,证明了光纤微观结构红外光谱测试模型的准确性。
     (5)对光纤材料在研磨时应遵循的屈服准则进行了研究,并应用有限元法对光纤端面研磨变质层的形成进行了仿真。根据研磨过程中光纤存在塑性剪切变形及不可逆体积压缩的变形特点,推论出研磨时光纤的屈服是等效剪应力与体积应力共同作用的结果,建立了计入体积应力引起不可逆体积变形为特点的光纤材料弹塑性本构模型。基于后向欧拉法,推导了光纤材料本构模型应用在研磨过程中的应力更新算法,借用通用有限元平台ABAQUS的用户自定义材料UMAT接口,编制出了相应的计算程序,并将该应力更新算法纳入到通用有限元分析系统中,应用于光纤研磨过程的仿真分析,模拟了变质层的形成。研磨变质层的体积压缩率及变质层厚度的有限元计算结果与试验测试结果基本吻合,证明所建立的光纤材料本构模型客观地表达了其在研磨时的规律,这对其它脆性材料塑性域加工的表面质量研究也有参考价值。
     本文的研究工作可以作为光纤器件设计与制造的理论参考,期望对光纤器件的发展有所裨益。
Optical fiber connector(OFC)is the most typical optical passive device at present and its categories and structures are very rich.As optical fiber communication requires better quality devices,many problems about mechanisms and rules of lapping & polishing process for OFC manufacturing must be investigated more profoundly,and then make a breakthrough in the manufacturing technology of OFC.This dissertation was supported by NSFC key project "Sub-micron manufacturing theory and key technologies of Optical fiber devices".To address the problems about manufacturing process of OFC,the light-wave transmission and aberrance rules on the silica fiber link-interfaces and the lapping & polishing process for end-faces of OFC were investigated systematically by theoritical analysis,experimental study and finite element analysis,the syncretic models and numerical-value rules between optics theory and structure parameters,manufacturing precision and technologic parameters of OFC were established.The main innovative research works and conclusions are listed as follows:
     (1)Based on the optics theory,the mathematical models about optical performances of OFC and the air-gap between silica fiber end-faces. surface roughness,damaged-layer,were established.Results show:when the air-gap between silica fiber end-faces is eliminated,the damaged-layer of fiber end-faces induced by lapping & polishing process is the uppermost factor that counteracts improvement of optical performance of OFC,and restraining damaged-layer is an important approach for improving the optical performance of OFC.
     (2)The relationships between the lapping & polishing process for end-faces and optical performance of OFC were researched.After the endface geometry and surface quality of OFC were observed by interferometer,SEM,WYKO,the influence rules between the lapping & polishing process for end-faces and optical performance of OFC were summarized.Also,a group of optimal technological parameters of OFC end-faces lapping & polishing was obtained.The refractive indices and depths of damaged-layer were tested by ellipsometer,the refractive indices of damaged-layer increased about 4.4%,3%,2.5%comparing with the one of as-received silica fiber by lapping with 3μm,1μm,0.5μm diamond films respectively,and the depths of damaged-layer were about 0.167μm, 0.09μm,0.063μm respectively.The return losses by calculating according to damaged-layer were basically consistent with the ones obtained by return loss tester,which proved that the established models between optical performances of OFC and manufacturing process factors are correct.
     (3)The material removal modes of silica fiber during lapping & polishing the end-faces of OFC were studied.The matter of lapping process of silica fiber in plastic mode was found by indentation experiments,and according to the Bifano law,the critical cut-depth of brittle-plastic transition for silica fiber was calculated,namely, d_c=0.023μm;based on the Hertz contact theory,the calculation model of cut-depth which an abrasive imposed on silica fiber when the combination endface consisted of both ceramic ferrule and optical fiber machined by lapping process,was established,and the lapping process condition of silica fiber in plastic mode was obtained.The fiber surfaces topography machined by lapping process with different grain size diamond abrasive films were observed by SEM,it was discovered that there were 3 material removal modes when lapping silica fiber,namely,brittle-fracture mode, semi-brittle & semi-plastic mode,plastic mode.The experimental results reported here are consistent with the ones from theory analysis.
     (4)The changes on microstructure of the damaged-layer on silica fiber end-faces induced by lapping & polishing process were investigated, and the essential formation reason of damaged-layer was also discovered. Based on the infrared spectrum theory,according to the relationship between the wave number of infrared spectrum characteristic peak of silica fiber and the bond angle of Si-O-Si between the silicon-oxygen tetrahedron[SiO_4]cells,the mathematical models on the 1100cm~(-1)wave number of infrared characteristic peak and molecular volume,refractive index of silica fiber,were set up.The damaged-layer on silica fiber end-faces induced by lapping & polishing process were tested by micro infrared spectrum tester,comparing with the 1100cm~(-1)wave number of infrared characteristic peak of the as-received silica fiber,the ones of damaged-layer induced by various lapping & polishing process decrease, so,the bond angle of Si-O-Si of damaged-layer material decreases, accordingly molecular volume of damaged-layer is compressed,and the refractive indices of damaged-layer increase.The molecular volume compressing degree and refractive indices of damaged-layer nearly correlated with lapping & polishing process,from semi-fine lapping,fine lapping to waterish polishing,the molecular volume compressing rate of damaged-layer decreased from about 10%to about 5%,the increasing ranges of reractive indices of damaged-layer obtained by mathematical model were compared with the ones tested direct by ellipsometer,both were basically matched,which verified the accuracy of the testing models on micro-structure of silica fiber with infrared spectrum.
     (5)The yield criterion obeyed by silica fiber during lapping was researched,and the formation about damaged-layer on the silica fiber end-faces induced by lapping process was investigated by FEM.According to the deformation characteristics that there were plastic shear deformation and plastic bulk compression simultaneously on silica fiber end-faces during lapping,it was discovered that the yielding action of silica fiber is that both effective shear stress and bulk stress act together,and the elastic-plastic constitutive model of silica fiber to conduct the plastic bulk deformation induced by the bulk stress was established.Based on the back EULER law,the stress-update arithmetics of constitutive equations for silica fiber applied to lapping process were educed.The stress-update arithmetics were imported into ABAQUS(an universal finite element analysis software)through UMAT interface program,and the applied to the analysis of lapping course of silica fiber,simulating the formation about damaged-layer on the silica fiber end-faces.The simulating results of the bulk compressing rate and the depth of damaged-layer are found to be in good agreement with the experimental results,which proved that the established constitutive model of silica fiber can describe the real rule of lapping silica fiber process.The method can also provide some valuable reference for researching the quality of surfaces machined by plastic mode for other brittle material.
     The conclusions obtained in this dissertation can provide some valuable theoretic references for optical fiber devices design and manufacturing.It is also expected that the study can be benefit to the development of optical fiber devices.
引文
[1]邓礼东.光纤连接器的现状与发展.现代有线传输,2000,(12):8-14
    [2]宋金声.光纤无源器件市场发展趋势.世界电子元器件,2001,(6):50-52
    [3]宋金声.光纤无源器件市场概括和预测.世界电子元器件,2002,(3):52-53
    [4]马天,黄勇,杨金龙.光纤连接器.光学技术,2002,28(2):160-162
    [5]廖先炳.我国光纤通信用光器件产业的现状和发展.2002,23(1):1-3
    [6]林学煌.光无源器件.北京:人民邮电出版社,1998.1-56
    [7]安东泰博.光纤连接器最新技术.机电元件,2000,20(4):29-43
    [8]Etsuji Sugita,RYO Nagase,Kazunori Kanayama,etl.SC-type single-mode optical fiber connectors,Journal of Lightwave Technology,1989,7(11):1689-1696
    [9]胡挂军.工程常用光纤连接器.现代通信,2002,(10):8-9
    [10]宋金声.新一代光纤连接器概述.光通信研究,1999,(5):55-59
    [11]Kazunori Kanayama,Yasuhiro Ando,Ryo Nagase,et al.Advanced physical contact technology for optical connectors.IEEE Photonics Technology Letters,1992,4(11):1284-1287
    [12]Hirofumi Suzuki,Tsunemoto Kuriyagawa,Katsuo Shoji.Precision Polishing of Optical fiber connector.The 11th Annual Meeting of the American Society for Precision Engineering.California:The American Society for Precision Engineering,1996.557-560
    [13]Kenichi Ohno,Masashige Mitsuhashi.Development of a new palm-size and clean spherical mirror-finish surface processing machine for the fabrication of optical fiber connector.The 14th Annual Meeting of the American Society for Precision Engineering.California:The American Society for Precision Engineering,1999.220-223
    [14]Masashige Mitsuhashi,Kenichi Ohno,Kazunori Suzuki.Development of a new portable spherical mirror-finish surface processing machine for the fabrication of optical fiber connector.NEC Research & Development,2001,42(3):298-303
    [15]Mircea Udrea,Hamdi Ornn,All Alacakir.Laser polishing of optical fiber end surface.Optical Engineering,2001,40(9):2026-2030
    [16]Lin S I-EN.Effect of polishing conditions on terminating optical connectors with spherical convex polished ends.Applied Optics,2002,4(11):88-95
    [17]杨福兴.光纤连接器超精密加工技术的研究.航空精密制造技术,2003,39(3):1-3
    [18]H.Huang,W.K.Chen,L.Yin,et al.Micro/meso ultra precision grinding of fibre optic connectors.Precision Engineering,2004,28:95-105
    [19]H.Huang,L.Yin,W.K.Chen,et al.Ultraprecision abrasive machining of fibre optic connectors.Key Engineering,2004,257-258:171-176
    [20]Ling Yin,H.Huang,W.K.Chert,et al.Polishing of fiber optic connectors,Machine tools & Manufacture,2004,44:659-668
    [21]Mitsuru Kihara,Shiniji Nagasawa,Tadatoshi Tanifuji.Temperature dependence of return loss for optical fiber connectors with refractive index-matching material.IEEE Photonics Technology Letters,1995,7(7):795-797
    [22]Mitsuru Kihara,Shiniji Nagasawa,Tadatoshi Tanifuji.Return loss characteristics of optical fiber connectors.Journal of Lightwave Technology,1996,14(9):1986-1991
    [23]V.Shan,L.Curtis,W.C.Young.Transmitted Power Variations in single-mode fiber joints with obliquely polished end-faces.Journal of Lightwave Technology,1989,7(10):1478-1483
    [24]W.C.Young,V.Shah,L.Curtis.Loss and reflectance of standard cylindrical-ferrule single-mode connectors modified by polishing a 10 degrees oblique endface angles.IEEE Photonics Technology Letters,1989,1(12):461-463
    [25]S.Nagasawa,Y.Yokoyama,F.Ashiya,et al.A high-performance single-mode multifiber connector using oblique and direct endface contact between multiple fibers arranged in a plastic ferrule.IEEE Photonics Technology Letters,1991,3(10):937-939
    [26]N.Suzuki,M.Saruwatari,M.Okuyama.Low insertion and high return-loss optical connectors with a spherically convex-polished end.Electronics Letters,1986,22(2):110-112
    [27]Toshihiro Shintaku,Ryo Nagase,Etsuji Sugita.Connection mechanism of physical-contact optical fiber connectors with spherical convex polished ends.Applied Optics,1991,30(36):5260-5265
    [28]Toshihiro Shintaku,Etsuji Sugita,Ryo Nagase.Highly stable physical-contact optical fiber connectors with spherical convex ends.Journal of Lightwave Technology,1993,11(2):241-248
    [29]Mitsuo Takahashi.Generating mechanism of maintaining force for optical fiber installed in ferrule hole.Journal of Lightwave Technology,1998,16(4):549-553
    [30]Mitsuo Takahashi.Compatibility of conventional ferrule with step-ferrule for angled convex optical connector.The 45th Proceedings of IEEE Electronic Components and Technology Conference,1995.406-412
    [31]Takahashi M.Elastic polishing plate method and conditions for forming angled convex surface on Ferrule End-face.Journal of Lightwave Technology,1997,15(9):1675-1680
    [32]金正旺.光纤活动连接器插针体端面形状结构和研磨工艺探讨.光通信研究,1994,(3):43-46
    [33]Kazunori Kanayama,Yasuhiro Ando,Ryo Nagase,et al.Advanced physical contact technology for optical connectors.IEEE Photonics Technology Letters,1992,4(11):1284-1287
    [34]Shinsuke Matsui,Fumikazu Ohira,Kazuo Matsunaga,et al.Characterization of process damaged layers for optical fiber ends.Proc.7~(th)International precision engineering seminar,1993.700-703
    [35]Shinsuke Matsui,Fumikazu Ohira,Kunio Koyabu,et al.Characterization of machining-damage layer for optical fiber ends-Relation between damaged layer and return loss.Journal of the Japan Society for Precision Engineering,1998,64(10):1467-1471
    [36]Waqar Mahmood,Murat Ozer,Elena Avram.Surface scratch and Pit Analysis on Optical Interfaces.Conference on Active and Passive Optical Components for WDM Communications,Proceedings of SPIE.Denver:SPIE,2001.323-329
    [37]Elena Avram,Waqar Mahmood,Murat Ozer.Quantification of scattering from fiber surface irregularities.Journal of Lightwave Technology,2002,20(4):634-637
    [38]Zuyuan He,Waqar Mahmood,Erin Sahinci,et al.Effects of fiber endface Scratches on Return Loss Performance of Optical Interface.Conference on Active and Passive Optical Components for WDM Communications Ⅱ,Proceedings of SPIE.Boston:SPIE,2002.480-487
    [39]Ling Yin,H.Huang,W.K.Chen.Influences of nanoscale abrasive suspensionsons on the polishing of fibre-optic connectors.International Joumal of Advanced Manufacturing Technology,2004,25(7-8):685-690
    [40]扎齐斯基.玻璃与非晶态材料,干福熹.北京:科学出版社,2001.583-613
    [41]袁巨龙.功能陶瓷的超精密加工技术.哈尔滨:哈尔滨工业大学出版社,2000.20-120
    [42]左敦稳.现代加工技术.北京:北京航空航天大学出版社,2005.1-26
    [43]卢泽生,王明海.硬脆光学晶体材料超精密切削理论研究综述.机械工程学报,2003,39(8):15-21
    [44]陈明君,董申,李旦,等.脆性材料超精密磨削时影响表面质量因素的研究.机械工程学报,2001,37(3):1-4
    [45]张文生,张飞虎,董申.光学脆性材料的金刚石切削加工.光学精密工程,2003,11(2):139-143
    [46]马春翔,王艳,社本英二,等.超声波振动金刚石刀具对脆性材料临界切削深度的影响.机械工程学报,2005,41(6):198-202
    [47]陈明君,王景贺,原大勇,等.KDP晶体塑性域超精密切削加工过程仿真.光电工程,2005,32(5):69-72
    [48]王景贺,陈明君,董申,等.KDP晶体单点金刚石切削脆塑转变机理的研究.光电工程,2005,32(7):67-70
    [49]万珍平,刘亚俊,汤勇.玻璃的脆塑性域高效精密切削.机械科学与技术,2005,24(2):217-220
    [50]Bifano T G,Dow T A,Scattergood R O.Ductile-Regime grinding:A new technology for machining brittle materials.Journal of Engineering for Industry,1991,113(5):184-189
    [51]Ong N S,Venkatsh V C.Semi-ductile grinding and polishing of Pyrex glass Materials Processing Technology,1998,83:261-266
    [52]Ming Zhou,X.J.Wang,B.K.A.Ngoi,et al.Brittle-ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration.Journal of Material Processing Technology,2002,121:243-251
    [53]J.Yan,M.Yoshino,T.Kuriagwa,et al.On the ductile machining of silicon for micro electro-mechanical systems(MEMS),opto-electronic and optical applications.Material Science and Engineering,2001,297(1-2):230-234
    [54]Jiwang Yan,Katsuo Syoji,Tsunemoto Kuriyagawa,et al.Ductile regime turning at large tool feed.Journal of Material Processing Technology,2002,121:363-372
    [55]林滨.工程陶瓷超精密磨削机理与实验研究:[博士学位论文].天津:天津大学,1999
    [56]Mingjun Chen,Qingliang Zhao,Shen Dong,et al.The critical conditions of brittle-ductile transition and the factors influencing the surface quality of brittle materials in ultra-precision grinding.Journal of Material Processing Technology,2005,168:75-82
    [57]赵奕.脆性材料超精密车削脆塑转变及影响表面质量因素的研究:[博士学位论文].哈尔滨:哈尔滨工业大学,1999
    [58]Takayuki Shitaba,Shigeru Fujii,Eiji Makino,et al.Ductile-regime turning mechanism of single-crystal silicon Precision Engineering,1996,18(2-3):129-137
    [59]Shi Guoquan,Cai yongxiang,Yu Junyi,et al.Investigation on the fan-shape distribution of surface roughness on diamond-turned single crystal germanium.Progress in Natural Science,1996,6(2):181-188
    [60]史国权,仇健,于骏一,等.用飞切法加工光学晶体平面镜.机械工程学报,2000,36(3):73-77
    [61]M.Yoshino,T.Aoki,N.Chandrasekaran,et al.Finite element simulation of plane strain plastic-elastic indentation on single-crystal silicon.International Journal of Mechanical Sciences,2001,43(2):313-333
    [62]Shimada S,Ikawa N,Inamura T.Brittle-ductile transition phenomena in microindetation and micromachining.Annals of the CIRP,1995,44(1):523-525
    [63]Inamura T,Shimada S,Takezawa N,et al.Brittle/Ductile transition phenomena observer in computer simulation of machining defect-free monocrystalline silicon.Annals of the CIRP,1997,46(1):31-33
    [64]阿尔达玛茨基.光学零件的金刚石加工,贺佩华.北京:机械工业出版社,1991.1-200
    [65]蔡立,田守信.光学零件加工技术.武汉:华中工学院出版社,1987.1-163
    [66]Yongsong Xie,Bharat Bhushan.Effects of particle size,polishing and contact pressure in free abrasive polishing.Wear,1996,200:281-295
    [67]Donald Golini,Stephen D.Jacobs.Physics of loose abrasive microgrinding.Applied Optics,1991,30(19):2761-2777
    [68]W.J.Zong,D.Li,K.Cheng,et al.The material removal mechanism in mechanical lapping of diamond cutting tool.International Journal of Machine Tools & Manufacture,2005,45:783-788
    [69]Lee M.Cook.Chemical processes in glass polishing.Journal of Non-Crystalline Solids,1990,120:152-171
    [70]Toshio Kasai,Kenichiro Horio,Tsugio Yamazaki,et al.Polishing to reveal micro-defects on glass. Journal of Non-Crystalline Solids, 1994, 177:397-404
    [71] H. Yokota, H. Sakata, M. Nishibori, et al. EUipsometric study of polished glass surfaces. Surface Science, 1969, 16:265-274
    [72] M. Malin, K. Vedam. EUipsometric studies of environment-sensitive polish layers of glass. Journal of Applied Physics, 1977,48(3):1155-1157
    [73] P. W. Bridgman, I. Simon. Effects of very high pressures on glass. Journal of Applied Physics, 1953, 24:405-413
    [74] H. M. Cohen, R. Roy. Densification of glass at very high pressure. Physics and Chemistry of glass, 1965, 6(5):149-161
    [75] A. Polian, M. Grimsditch. Room-temperature densification of α-SiO_2 versus pressure. Physical Review B, 1990, 41(9):6086-6087
    [76] Charles Meade, R. J. Hemley, H. K. Mao. High-pressure X-ray diffraction of SiO_2 Glass. Physical Review Letters, 1992, 69(9):1387-1390
    [77] R. A. B. Devine, R. Dupree, I. Farnan, et al. Pressure-induced bond-angle variation in amorphous SiO_2. Physical Review B, 1987, 35(5):2560-2562
    [78] R. J. Hemley, H. K. Mao, P. M. Bell, et al. Raman spectroscopy of SiO_2 glass at hih pressure. Physical Review Letters, 1986, 57(6):747-750
    [79] R. A. Murra, W. Y. Ching. Electronic-and vibrational-structure calculations in models of th compressed SiO_2 glass system. Physical Review B, 1989, 39(2): 1320-1331
    [80] Anand Agarwal, Minoru Tomozawa. Corelation of silica glass properties with the infrared spectra. Journal of Non-Crystalline Solids, 1997, 209:166-174
    [81] Naoyuki Kitamura, Yutaka Toguchi, Shigeki Funo, et al. Refractive index of densified silica glass. Journal of Non-Crystalline Solids, 1993,159:241-245
    [82] C. Z. Tan, J. Arndt, H. S. Xie. Optical properties of densified silica glasses, Physica B, 1998,252:28-33
    [83] C. Meade, R. Jeanloz. Frequency-dependent equation of state of fused silica to 10 GPa. Physical Review B, 1987, 35:236-244
    [84] S. Susman, K. J. Volin, D. L. Price, et al. Intermediate-range order in permanently densified vitreous SiO_2: A neutron-diffraction and molecular-dynamics study. Physical Review B, 1991, 43(1): 1194-1197
    [85] John S. Tse, Dennis D. Klug, Yvon Le Page. High-pressure densification of amorphous silica. Physical Review B, 1992, 46:5933-5938
    [86] Raffaele Guido, Delia Valle, Elisabetta Venuti. High-pressure densification of silica glass:A molecular-dynamics simulation.Physical Review B,1996,54(6):3809-3816
    [87]Kostya Trachenko,Martin T Dove.Densification of silica glass under pressure.Journal of Physics:Condensed matter,2002,14:7449-7459
    [88]Minoru Tomozawa,Yong-Keun Lee,Yih-Lih Peng.Effect of uniaxial stress on silica glass structure investigated by IR spectroscopy.Journal of Non-Crystalline Solids,1998,242:104-109
    [89]A.E.Giannakopoulos,P.-L.Larsson.Analysis of pyramid indentation of pressure-sensitive hard metals and ceramics.Mechanics of Materials,1997,25:1-35
    [90]G.Care,A.C.Fischer-Cripps.Elastic-plastic indentation stress fields using the finite-element method.Journal of Materials Science,1997,32:5653-5659
    [91]龚江宏.陶瓷材料断裂力学.北京:清华大学出版社,2001.1-293
    [92]W.Zhang,G.Subhas.An elastic-plastic-cracking model for finite element analysis of indentation cracking in brittle materials.International Journal of Solids and Structures,2001,38:5893-5913
    [93]李敏,梁乃刚,张泰华,等.纳米压痕过程的三维有限元数值试验研究.力学学报,2003,35(3):257-264
    [94]Seong-Min Jeong,Hong-Lim Lee.Finite element analysis of the tip deformation effect on nanoindentation hardness.Thin Solid Films,2005,493:172-179
    [95]Sadri Sen,Baris Gun.A finite element analysis of residual stress at the unloaded stage of the indentation of an elastic-work hardening layered half-space by a rigid sphere.Surface & Coating Technology,2006,200:2841-2851
    [96]G.Feng,S.Qu,Y.Huang,et al.An analytical expression for the stress field around an elastoplastic indentation/contact.Acta Materialia,2007,55(9):2929-2938
    [97]G.M Hamilton.Explicit equations for the stresses beneath a sliding spherical contact.Proceedings of the Institution of Mechanical Engineers,Part C:Mechanical Engineering Science,1983.53-59
    [98]董申,赵奕,周明,等.尖锐压头刻划脆性材料的断裂机理.航空精密制造技术,1998,34(2):23-26
    [99]刘沪阳.光纤连接器的现状与发展.电信科学,1996,12(5):44-49
    [100]黄尚廉,石文江,饶云江.单模光纤连接损耗研究.光子学报,1994,23(2):127-132
    [101]王黎蒙,严润生,杨俊.斜平面界面型光纤活动连接中的无反射设计.压电与声光,1996,18(5):307-310
    [102]JeffHetcht.光纤光学,(贾东方).北京:人民邮电出版社,2004.63-105
    [103]石顺祥,张海兴,刘劲松.物理光学与应用光学.西安:西安电子科技大学出版社,2000.15-77
    [104]王承遇,陶瑛.玻璃表面处理技术.北京:化学工业出版社,2004.1-188
    [105]K.L.Johnson.接触力学,徐秉业.北京:高等教育出版社,1992.1-303
    [106]Linmao Qian,Ming Li,Zhongrong Zhou,et al.Comparison of nano-indentation hardness to microhardness.Surface Coatings & Technology,2005,195:264-271
    [107]金宗哲,包亦望.脆性材料力学性能评价与设计.北京:中国铁道出版社,1996.1-105
    [108]Brian Lawn,Rodney Wilshaw.Review indentation fracture:principles and application.Journal of Materials Science,1975,10:1049-1081
    [109]薛守义.弹塑性力学.北京:中国建材工业出版社,2005.1-237
    [110]A.G.Wang,I.M.Hutchings.The number of particle contacts in two-body abrasive wear of metals by coated abrasive papers.Wear,1989,129:23-35
    [111]J.F.Kalthoff.On the measurement of dynamic fracture toughnesses - a review of recent work.International Journal of Fracture,1985,27(3-4):277-298
    [112]舒尔兹.玻璃的本质结构和性质,黄照柏.北京:中国建筑工业出版社,1984.1-156
    [113]翁诗甫.傅立叶变换红外光谱仪.北京:化学工业出版社,2005.1-237
    [114]R.J.Bell,R Dean,D.C.Hibbins-Butler.Normal mode assignments in vitreous silica,germania and beryllium fluoride.Journal of Physics C:Solid State Physics,1971,4(4):1214-1220
    [115]R.J.Bell,D.C.Hibbins-Butler.Infrared activity of normal modes in vitreous silica,germania and beryllium fluoride.Journal of Physics C:Solid State Physics,1976,9(3):1171-1175
    [116]R.A.B.Devine.Ion implantation- and radiation- induced structural modifications in amorphous SiO_2.Journal of Non-Crystalline Solids,1993,152:50-58
    [117]Anand Agarwal,Kenneth M.Davis,Minoru Tomozawa.A simple IR spectroscopic method for determining fictive temperature of silica glasses.Journal of Non-Crystalline Solids,1995,185:191-198
    [118]R.J.Hill,G.V.Gibbs.A molecular-orbital study of the bond-length variations in lithium polysilicate.Journal of Non-Crystalline Solids,1978,34(1):127-130
    [119]R.J.Hill,G.V.Gibbs.Variation in d(T-O),d(T…T)and ∠TOT in silica and silicate minerals,phosphates and aluminates.Acta Crystal B,1979,35(1):25-30
    [120]E H.Gaskell.New structural model for amorphous transition metal silicides,borides,phosphides and carbides.Journal of Non-Crystalline Solids,1976,32(2):207-224
    [121]J.Arnd,W.Hummel.The general refractivity formula applied to densified silicate glasses.Journal of Physics Condensed Matter,1988,15(1):363-369
    [122]余同希.塑性力学.北京:高等教育出版社,1989.1-181
    [123]庄茁,张帆,岑松.ABAQUS非线性有限元分析与实例.北京:科学出版社,2005.1-316
    [124]石亦平,周玉蓉.ABAQUS有限元分析实例详解.北京:机械工业出版社,2006.1-16
    [125]蒋友谅.非线性有限元法.北京:北京工业学院出版社,1988.1-83
    [126]王勖成.有限单元法.北京:清华大学出版社,2003.105-241
    [127]N.Aravas.On the numerical integration of a class of pressure-dependent plasticity models.International Journal for numerical methods in engineering,1987,24:1395-1416
    [128]U.Muhlich,W.Brocks.On the numerical integration of a class of pressure-dependent plasticity models including kinematic hardening.Computational Mechanics,2003,31:479-488
    [129]J.C.Simo,R.L.Taylor.Consistent tangent operators for rate-independent elastoplasticity.Computer Methods in Applied Mechanics and Engineering,1985,48:101-118
    [130]G.Alfano,L.Rosati.A general approach to the evaluation of consistent tangent operators for rate-independent elastoplasticity.Computer Methods in Applied Mechanics and Engineering,1998,167:75-89
    [131]ABAQUS Inc.ABAQUS Theory Manual 6.5-1.Amreica.ABAQUS incorperation press,2004.100-200
    [132]ABAQUS Inc.ABAQUS User Subroutines References Manual 6.5-1.Amreica:ABAQUS incorperation press,2004.11-52
    [133]汪久根,Z.Rymuza.硅晶体纳米压痕试验与应力场分析.摩擦学学报,2001,21(6):488-490
    [134]牛小燕,林江,树学锋.镁碱沸石FER单晶弹塑性双线性本构关系的实验 研究与有限元确定.太原理工大学学报,2005,36(6):682-685
    [135]谭孟曦.利用纳米压痕加载曲线计算硬度_压入深度关系及弹性模量.金属学报,2005,41(10):1020-1024
    [136]YANG J D,WEN X H,ZHU Y Q,et al.Discussing on solid abrasive lapping path.Chinese Journal of Mechanical Engineering,1997,10(2):101-105.
    [137]张红霞,吴明根,高红刚.定偏心锡磨盘超精密平面抛光均匀去除模拟计算.光学精密工程,1998,6(2):77-82
    [138]Uhlmann E,Ardelt T.Influence of kinematics on the face grinding process on lapping machines.Annals of the CIRP,1999,48(1):281-284
    [139]孙新民,李树文,王永梁.四轴球体研磨机实现球体均匀研磨的充分必要条件.光学精密工程,1999,7(1):70-74
    [140]吴宏基,曹利新,刘健.基于行星式平面研磨机研磨抛光过程的运动几何学分析.机械工程学报,2002,38(6):144-147
    [141]CHANG K Y,SONG Y H,LINT R.Analysis of lapping and polishing of gauge block.The International Journal of Advanced Manufacturing Technology,2002,20:414-419
    [142]作花济夫.玻璃非晶态科学,蒋幼梅.北京:中国建筑工业出版社,1986.1-120
    [143]土桥正二.玻璃表面物理化学,黄占杰.北京:科学出版社,1986.75-199
    [144]霍洛威.玻璃的物理性质,游恩溥.北京:轻工业出版社,1985.1-76
    [145]B.B.塔拉索夫.玻璃物理新问题,黄熙怀.北京:中国工业出版社,1965.1-138
    [146]王玉芬,刘连城.石英玻璃.北京:化学工业出版社,2007.1-105
    [147]张学言.岩土塑性力学.北京:人民交通出版社,1993.35-71
    [148]姜峰,李剑锋,孙杰等.硬脆材料塑性加工技术的研究现状.工具技术,2007,41(8):3-8
    [149]郝建华.实现塑性状态下切削非金属硬脆材料的思考.新技术新工艺,2000,(6):14-16
    [150]冯西桥.脆性材料的细观损伤理论与和损伤结构的安定分析:[博士学位论文].北京:清华大学,1995
    [151]杨小云.脆性材料球磨过程中微观结构的演变及合成机理研究:[博士学位论文].北京:中国科学院,2000
    [152]D.M.Marsh.Plastic flow in glass.Proceeding of Royal Society of London,Series A,Mathematical andPhysical Science,1964,279(1378):420-435
    [153]L.Zhang,M.Mahdi.The plastic behaviour of silicon subjected to micro-indentation. Journal of Materials Science, 1996, 31: 5671-5676
    [154] G. Care, A. C. Fischer-Cripps. Elastic-plastic indentation stress fields using the finite-element method. Journal of Material Science, 1997, 32: 5653-5659
    [155] Peter Blackey, Ronald Scattergood. Ductile-regime machining of germanium and silicon. Journal of America Ceramic Society, 1990, 73(40): 949-957
    [156] E. C. Ziemath, P. S. P. Herrmann. Densification and residual stress induced in glass surfaces by Vickers indentations. Journal of Non-Crystalline Solids, 2000, 273: 19-24
    [157] Satoshi Yoshida, Jean-Christophe Sangleboeuf, Tanguy Rouxel. Quantitative evaluation of indentation-induced densification in glass. Journal of Material Research, 2005, 20(12): 3404-3412
    [158]Hui Ji, Vincent Keryvin, Tanguy Rouxel, etl. Densification of window glass under very high presure and its relevance to Vickers indentation. Scripta Materialia, 2006, 55: 1159-1162
    [159] M. Sakai, T. Akatsu, S. Numata. Finite element analysis for conical indentation unloading of elastoplastic materials with strain hardening. Acta Materialia, 2004, 52: 2359-2364