双自转研磨成球机构对球度影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高精密球体的球度和加工一致性,一种新型的球体研磨方式——双自转研磨方式被提出,它是通过控制两块下研磨盘的转速组合,实现球坯表面研磨轨迹的均匀分布,使球坯表面获得均匀研磨,快速修正球形偏差,从而提高加工精度与加工效率。尽管已经对双自转研磨方式的基础理论、关键技术等方面做了许多相关研究,但其机构误差对球体加工的影响仍未有人进行确切的描述,本文基于此,研究成球机构误差对球体均匀研磨的影响。本文在完善双自转研磨方式理论,优化双自转设备几何结构以提高球体精度方面具有重要意义。
     针对理想无误差状态下的双自转研磨方式,通过建立几何学、运动学模型,采用理论计算、数值模拟仿真,推导了研磨过程中球坯运动参数关系,研究了双自转研磨方式对研磨切削等概率性的满足条件和满足程度。给出了研磨轨迹均匀性的评价方法,以数值计算的形式定量分析了球面研磨轨迹分布的均匀程度,确定了理想的研磨盘转速组合等相应参数。
     为探索双自转研磨设备机构误差对实现精密球体成球影响的大小,主要针对四种可能存在的误差形式进行了分析研究,它们是:1)研磨过程中下研磨内盘发生端跳;2)下研磨内盘倾斜;3)下研磨外盘非圆,存在两个突起;4)槽型夹角角度发生改变。通过计算在各种机构误差情况下球的运动参数得到各相应的研磨轨迹方程,并设定了相关误差值采用MATLAB对球面研磨轨迹进行了仿真,绘制了球坯运动轨迹的分布情况,根据球面研磨轨迹点数量的标准差SQ对轨迹均匀性进行了评价。应用ADAMS软件建立了双自转研磨方式的虚拟样机模型,通过动态仿真,分析比较了各误差形式时球坯自转角θ、自转速度ωb、公转速度ω的变化状况,判断了各误差因素对球体研磨精度的影响大小。
     为验证理论仿真结果,选择了下研磨内盘径向误差这一误差形式对球坯进行了研磨实验,设定下内盘径向误差?hj分别为20μm、50μm、80μm时对球坯进行加工,并与传统V形槽研磨方式下进行了比较。通过比较球度大小及研磨均匀程度,分析了对加工结果的影响。实验结果与相应的理论计算、模拟仿真结论基本符合。
     通过研究,得到以下结论:当双自转研磨设备成球机构出现微小误差时,会对球加工造成一定影响,但影响不大,基本在允许范围内,与传统V形槽研磨方式相比较,其误差因素对球的加工精度影响基本可忽略。
To improve the sphericity and processing uniformity of precision ball, a new type of ball lapping method - Rotated Dual-Plates (RDP) lapping method was proposed. Under RDP lapping mode, two down plates are driven to rotate respectively in designed speed combination to achieve better uniformity of lapping trace distribution on ball surface, which will obtain a homogeneous, quick spherical deviation of the amendment, so as to improve machining precision and machining efficiency. Despite a lot of research has done on basic theory and key technology of RDP lapping method, but there has no exact description of the impact of errors on the ball machining. Based on this, the impact of mechanism errors on uniformity of ball lapping are studied in this paper. It is of great significance to perfect the theory of RDP lapping method and optimize the geometry mechanism of RDP device.
     When RDP lapping method is in the ideal and no mechanism error state, the relations between ball motion parameters in the lapping process are deduced through theoretical calculation and numerical simulation in geometry or kinematics model. The conditions and degree are studied to meet the probability of grinding cutting under RDP lapping mode. A uniformity valuation method for lapping trace is also put forward, and quantitative analysis of spherical uniform distribution of lapping trace is discussed through numerical calculation. Finally, the ideal combination of lapping plate speeds and other relevant parameters are fixed.
     In order to overcome the impact of RDP lapping mechanism error to precision ball, mainly study for the four kinds of errors that may exist, they are: 1) the inside down lapping plate occurs jump when in the lapping process; 2) the inside down plate tilt; 3) the outside down plate is not round, and exist two projections; 4) groove angles change. It can be get equations of grinding trace by calculating the ball motion parameters under various corresponding errors. The spherical lapping traces are simulated using MATLAB simulations in different values of related errors, and the distributions of ball motion traces are drawn. Then evaluate the trace uniformity according to the standard deviation SQ of the number of spherical lapping trace points. Use the ADAMS software to establish a virtual prototype model of RDP lapping mode, and through dynamic simulation, the changes of the ball rotation angleθ, rotation speedωb and revolution speedωin various forms of error conditions are analyzed and compared. The various error factors on the accuracy of ball lapping are judged in this paper.
     To verify the theoretical simulation results, select the radial error of the inside down plate for ball lapping experiment. Set the values of radial errorsΔhj were respectively 20μm, 50μm and 80μm when ball billet processing, and compared with the result under traditional V-groove lapping mode. The impact on processing results is obtained by comparing the sphericity and degree of lapping uniformity. The experimental results are generally consistent with the conclusions of the corresponding theoretical calculation and simulation.
     Finally, it can get the following conclusion through research: When the spherulization mechanism of RDP lapping method has tiny errors, it will cause certain effect on ball machining but little, and the effect is within the allowable range mostly. Compared with the traditional V-groove lapping method, its error factors on accuracy of ball machining can be neglected.
引文
[1]袁巨龙.功能陶瓷的超精密加工技术[M].哈尔滨:哈尔滨工业大学出版社, 2000.
    [2]李自根.陶瓷轴承球渗透检验自动分选系统[J].无损检测, 2003, 6: 296-301.
    [3] H.Ohta, K.Kobayashi. Vibrations of hybrid ceramic ball bearings [J]. Journal of Sound and Vibration, 1996, 192(2): 481-493.
    [4] Huang B W, Kung H K. Variations of instability in a rotating spindle system with various bearings [J]. International Journal of Mechanical Sciences, 2003, 45: 57-72.
    [5] Tatsunobu, Momono and Banda. Sound and Vibration in Rolling Bearings [J]. Motion & Control, 1999, 6: 29-37.
    [6]王先逵.精密加工技术使用手册[M].机械工业出版社, 1999: 67-74.
    [7]吕冰海.陶瓷球双转盘研磨方式及成球机理的研究[D].哈尔滨工业大学博士学位论文, 2007.
    [8]吕冰海.微型氮化硅陶瓷球研磨工艺的基础研究[D].浙江工业大学硕士学位论文, 2003.
    [9]王志伟.精密球研磨技术的的基础研究[D].浙江工业大学硕士学位论文, 2005.
    [10]陶宝春.陶瓷球双自转盘研磨方式转速优化及工艺实验研究[D].浙江工业大学硕士学位论文, 2006.
    [11]许秦.硬质材料精密球的高效研磨技术研究[D].浙江工业大学硕士学位论文, 2008.
    [12] Yuan Ju-long, Lv Bing-hai, Lin Xu. Research on Abrasives in Chemical Mechanical Polishing Process for Silicon Nitride ball [J]. Journal of Materials Processing Technology, 2002, 129: 171-175.
    [13] Yuan J L, Chen L N, Zhao P, Chang M, Xing T, Lv B H. Study on Sphere Shaping Mechanism of Ceramic Ball for Lapping Process [J]. Key Engineering Materials, 2004, Vols.259-260: 195-200.
    [14] Lv B H, Yuan J L, Yao Y X, Wang Z W, Tao B C, Zhen J J, Zhao P. Study on Wear Mode of Silicon Nitride Balls in Lapping Process [J]. Key Engineering Material, 2006, Vols.304-305: 403-407.
    [15] Lv Binghai, Yuan Julong, Yao Yinxue, Wang Zhiwei. Study on Fixed Abrasive Lapping Technology for ceramic Balls [J]. Materials Science Forum, 2006, Vols.532-533: 460-463.
    [16] Yuan Julong, Lv Binghai, Zhou Zhaozhong, Tao Baochun. Parameters Optimization on the Lapping Process for Advanced Ceramics by Applying Taguchi Method [J]. Materials Science Forum, 2006, Vols.532-533: 487-491.
    [17] Yuan J L, Wang Z W, Lv B H, Dai Y, Zheng J J, Zhao P, Lou F Y, Tao B C. Simulation Study on the Developed Eccentric V-grooves Lapping Mode for Precise Ball [J]. Key Engineering Materials, 2006,Vols.304-305: 300-304.
    [18] Dai Y, Liu W T, Yuan J L. Primary Study of Polishing With Flotative Abrasive Balls [J]. Key Engineering Materials, 2006, Vols.315-316: 35-39.
    [19] Lv Xun, Yuan Julong, Wen Donghui. Study on Ultra-precision Ball Suface Floating Polishing Kinematics Mechanism [J]. Materials Science Forum, 2006, Vols.532-533:109-112.
    [20] Dai Yong, Deng Qianfa, Lv Xun, Yuan Julong. An Approach to the Influence of Flotative Abrasive Ball on Polishing Process [J]. Materials Science Forum, 2006, Vols.532-533: 393-396.
    [21]黄建平,吕冰海,袁巨龙,温华明.陶瓷球材料去除形式的实验研究[J].机械工程师, 2007, 12: 12-13.
    [22]吕冰海,袁巨龙,戴勇.氮化硅陶瓷球研磨过程中磨损形式的研究[J].摩擦学学报, 2008, 28(5): 416-421.
    [23]聂兰芳,赵学军.钢球加工成圆条件及其影响因素探讨[J].轴承, 2001, 1: 16-18.
    [24] Rascher R.研磨钢球的技术现状和发展趋势[J].国外轴承, 1992, 3: 38-42.
    [25] Shigeki Ichikawa et al. Proposal of new lapping method for ceramic balls [J]. Annals of the CIRP, 1993, 42(1): 421-424.
    [26]孙新民,李树文,王永梁.四轴球体研磨机超精密研磨的机理及试验[J].光学精密工程, 2002, 8(1): 46-50.
    [27]余兴龙,王友冰,索忠壁.四研头超精加工小球机理分析[J].清华大学学报(自然科学版), 2003, 43: 632-635.
    [28]朱晨.两种钢球研磨方式的力学分析[J].轴承, 2000, 9: 11-13.
    [29]王军,吴玉厚等.陶瓷球研磨装置设计和实验[J].机械制造, 1997, 7: 8-12.
    [30] Zhang B and Nakajima A. Spherical surface generation mechanism in the grinding of balls for ultraprecision ball bearing [J]. Proc Instn Mech Engr, 214(Part J): 351-357.
    [31] Zhang B, Umehara N and Kato K. Effect of the eccentricity between the driving shaft and the guide ring on the behabior of magnetic fluid grinding of ceramic balls (in Japanese) [J]. Journal of the Japan Society for Precision Engineering, 1995, 61(4): 586-590.
    [32]黑部利次.ヤラミックスの球超精密研磨[J].机械と工具, 1990, 34(2): 43-49.
    [33] Kurobe. T, Kakuta. H, Onoda. M. Spin angle control lapping of balls (1st report) - theoretical analysis of lapping mechanism [J]. Journal of the Japan Society for Precision Engineering, 1996, 62(12): 1773-1777.
    [34] Kurobe. T, Kakuta. H, Onoda. M. Spin angle control lapping of balls (2st report) - theoretical analysis of lapping mechanism [J]. Journal of the Japan Society for Precision Engineering, 1997, 63(5): 726-730.
    [35]吴玉厚等.陶瓷球轴承的制造工艺及其相关技术[J].制造技术与机床, 1996, 11: 8-10.
    [36]王军,郑焕文.陶瓷球研磨加工的新方法[J].金刚石与磨料磨具工程, 1996, 4(94): 15-18.
    [37]王军,吴玉厚等.精密陶瓷球研磨加工技术研究[J].制造技术与机床, 1998, 9: 34-36.
    [38] Wu Y H, Zhang K, Sun H. Rubbing process technology of HIPSN ceramic balls [J]. Key Engineering Materials, 2001, 202(2): 185-188.
    [39] Zhang K, Wu Y H, Li S H. Rubbing process and monitoring of precise ceramic ball [J]. Key Engineering Materials, 2001, 202(2): 329-332.
    [40]李颂华,吴玉厚等.新型陶瓷球研磨方式的力学分析[J].沈阳建筑工程学院学报(自然科学版), 2003, 18(3): 229-232.
    [41]陆峰,吴玉厚,张珂.混合轴承陶瓷球的锥形研磨加工工艺[J].东北大学学报(自然科学版), 2004, 25(1): 82-85.
    [42] Tani Y, Kawata K. Development of high-efficient fine finishing process using magnetic fluid [J]. Annals of the CIRP, 1984, 33: 217-220.
    [43] Umehara N, Kato K. Principles of magnetic fluid grinding of ceramic balls [J]. Appl Electromagn Mater, 1990, 1: 37-43.
    [44] Childs T H C, Yoon H J. Magnetic fluid grinding cell design [J]. Annals of the CIRP, 1992, 41(1): 343-346.
    [45] Childs T H C, Jones D A, Mahmood S, Zhang B, Kato K, Umehara N. Magnetic fluid grinding mechanics [J]. Wear, 1994, 175(189-198): 13-15.
    [46] Childs T H C, Mahmood S, Yoon H J. Magnetic fluid grinding of ceramic balls [J]. Tribology Internation, 1995, 28: 341-348.
    [47] Raghumandan M, Noori-Khajavi A, Umehara N, Komanduri R. Magnetic float polishing of advanced ceramics [J]. Trans ASME J. Manuf. Sci. and Eng., 1996, 119: 521-528.
    [48] Raghunandan M, Komanduri R. Finishing of silicon nitride balls for high-speed bearing applications [J]. Trans. ASME J. Manf. Sci. and Eng., 1998, 120: 376-386.
    [49] Umehara N, Komanduri R. Magnetic fluid grinding of HIP-Si3N4 rollers [J]. Wear, 1996, 192: 85-93.
    [50] Jiang Ming, Komandruri R. On the finishing of Si3N4 balls for bearing applications [J]. Wear, 1998, 215: 267-278.
    [51]金洙吉等.混合式陶瓷轴承的研制以及实验台架研究[J].摩擦学学报, 1996, 15(2): 126-132.
    [52] Zhang B, Uematsu T, Nakajima A. High efficiency and precision grinding of Si3N4 ceramic balls aided with magnetic fluid support by using diamond wheels [J]. JSME Int J Ser C, 1998, 41(3): 499-505.
    [53] Zhang Bo, Nakajima Akira. Dynamics of magnetic fluid support grinding of Si3N4 ceramic balls for ultraprecision bearings and its importance in spherical surface generation [J]. Precision Engineering,2003, 27: 1-8.
    [54] Chang F Y, Childs T H C. Non-magnetic fluid grinding [J]. Wear, 1998, 223: 7-12.
    [55] Child T H C, Moss D J. Grinding ratio and cost issues in magnetic and non-magnetic fluid grinding [J]. Annals of the CIRP, 2000, 49(1): 261-255.
    [56] Childs T H C, Moss D J. Wear and cost issues in magnetic fluid grinding [J]. Wear, 2001, 249: 509-516.
    [57]黄传真,艾兴等.新型陶瓷轴承研究的现状与展望[J].中国陶瓷工业, 1999, 6(2): 25-27.
    [58]蒋沂萍.混合轴承及陶瓷球研制近况[J].轴承, 2001, 2: 33-35.
    [59] Jisheng E, Gawne D T. Tribochemically assisted wear of silicon nitride ball [J]. Journal of the European Ceramic Society, 1996, 16: 25-34.
    [60] Itoigawa F, Nakamura T and Funabashi K. Steel ball lapping by lap with V-shape groove [J]. Trans JSME, 1993, 59: 1906-1912.
    [61] Kang J and Hadfield M. The polishing process of advanced ceramicballs using a novel eccentric lapping machine [J]. Proc. IMechE Part B: J. Engineering Manufacture, 2005, 219: 493-504.
    [62] Kang J and Hadfield M. A novel eccentric lapping machine for finishing advanced ceramic balls [J]. Proc Instn Mech Engrs Part B, 2001, 215: 781-795.
    [63] Kang J and Hadfield M. The effects of lapping load in finishing advanced ceramic balls on a novel eccentric lapping machine [J]. Proc. IMechE Part B: J. Engineering Manufacture, 2005, 219: 505-513.
    [64] Lee Rong-Tsong, Hwang Yih-Chyun, Chiou Yuang-Cherng. Lapping of ultra-precision ball surfaces Part II: Eccentric V-groove lapping system [J]. International Journal of Machine Tools & Manufacture, 2006, 46: 1157-1169.
    [65]任成祖.陶瓷球加工技术及陶瓷球轴承结构设计初探[D].天津大学博士论文, 1995: 18-19.
    [66] Ren C Z etal. The eccentric circular groove lapping technique for ceramic balls [J]. Chinese Joural of Mechanical Engineering, 1995, 11(4): 21-24.
    [67] Umehara N, Kirtane T, Gerlick R, Jain V K, Komanduri R. A new apparatus for finishing large size/large batch silicon nitride (Si3N4) balls for hybrid bearing applications by magnetic float polishing (MFP) [J]. International Journal of Machine Tools & Manufacture, 2006, 46: 151-169.
    [68] Zhang Bo, Nakajima Akira. Grinding of Si3N4 ceramic balls with the aid of photo-catalyst of TiO2 [J]. Annals of the CIRP, 2002, 51(1): 259-262.
    [69] Angele W. Finishing high precision quartz balls [J]. Precision Engineering, 1980, 2(3): 119-122.
    [70]高精专轴承何以进口猛增[N].中国工业报, 2004-2-5
    [71]中国轴协秘书处. 2003年轴承出口稳步增长、进出口出现逆差[J].轴承信息, 2004, 4: 8-9.
    [72]孙永安,李县辉.国外陶瓷球加工技术及其应用[J].陶瓷学报, 2002, 23(2): 145-148.
    [73]机械基础件出口现状及展望[DB/OL]. http://www.bearing.cn.
    [74]蒋沂萍.混合轴承及陶瓷球研制近况[J].轴承, 2007, 2: 33-35.
    [75] Chen D S, Yang F, Tang K F, et al. Processing of WC-Co Cemented Carbide Balls by Rotated Dual-Plates Lapping Machine [J]. Advanced Materials Research, 2009, Vols.69-70: 277-281.
    [76] Yuan Julong, Yang Fan, Wang Zhiwei, et al. Processing of WC-Co Cemented Carbide Ball by EDR and RDP lapping modes [J]. Advanced Materials Research, 2009, Vols.76-78: 258-263.
    [77]李瑞涛,方湄,张文明.虚拟样机技术的概念及应用[J].机电一体化, 2000, 5: 17-18.
    [78]陈小川.虚拟制造技术研究概况综述[J].机械制造, 1998, 12: 8-10.
    [79]潘海寿.复杂机械的虚拟样机技术[D].南京理工大学硕士学位论文, 2001: 3-7.
    [80]郑建荣. ADAMS虚拟样机技术入门与提高[M].机械工业出版社, 2002: 1-3.