球面精密磨削工艺参数优化与表面质量分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属密封球阀作为介质流动环节的重要部件,由于其具有流体阻力小、操作方便、启闭迅速、密闭性好和可靠性高等优点,被广泛应用于电力、水利、化工、油气、冶金等行业。为满足所在工况的苛刻要求,阀芯球体往往需要进行表面强化处理。然而,通过HVOF喷涂硬质合金、氮化处理等方法强化表面(HRC≥65),却给后续砂轮磨削带来了难度。阀芯球体的大小不同,使用杯形砂轮进行球面磨削时有两种方式:一是针对大型球面的杯形砂轮无摆动磨削;二是针对中小型球面的杯形砂轮回转摆动磨削。本论文研究的是使用金刚石颗粒杯形砂轮进行两种球面磨削时的表面质量与参数选择之间的联系。
     磨削表面质量指标包括表面粗糙度、表面轨迹纹理、表面硬度和表面残余应力及微裂纹。针对这四个方面,具体研究内容如下:
     首先,基于球面成型磨削原理和坐标变换理论,推导了杯形砂轮无摆球面磨削和回转摆动球面磨削时的轨迹方程。分别对两种磨削方式下轨迹方程所表现的单个砂轮块的轨迹纹理进行理论分析和实验佐证,发现杯形磨盘转速、主轴转速、摆动速度等加工参数的两两关系直接影响磨削轨迹纹理的形态。
     其次,多个砂轮块磨削时轨迹纹理相互叠加。定义轨迹点密度对磨削落点进行采集,研究了随杯形砂轮尺寸变化的轨迹点密度分布。同时,用实验方法获得了随杯形砂轮尺寸变化的球面粗糙度分布。结论表明,考虑粗糙度分布和加工时间因素,回转摆动式球面磨削时选取砂轮半径区间为[0.6L, 0.8L]。又对因初始误差引起的多个砂轮块轨迹“缺相”问题进行了研究,提出了对初始误差极值的控制要求。
     最后,为研究加工参数对磨削表面微观特征的影响,针对主轴转速、砂轮转速、摆动速度和进给量四个参数,使用扫描电子显微镜(SEM)对9组WC-Co涂层球面磨削试样观察。分析表明,进给量对微观表面的影响最为显著,WC-Co涂层的球面磨削缺陷形式为材料呈颗粒状或片状的脱落,烧伤形式为WC的脱碳及生成碳质结点。又用X射线衍射(XRD)法研究了四种磨削进给对表面残余应力的影响,结论指出适宜进给量应取ap = (1~1.5)μm。
As the crucial component on media-flow process, metal sealing ball valve is widely applied in industrial areas such as electric power, water conservation, chemical engineering, oil gas, metallurgy, etc. It has the advantages of less fluid resistance, convenient operation, quickly opening and closing, good sealing and high reliability. In order to meet the strict requirements in working condition, the surface strengthening is obliged to ball valve core, always using HVOF hard alloy, nitriding process (HRC≥65). However, it also brings some difficulties to the subsequent grinding. For different sizes of valve core sphere, two methods spherical grinding with cup wheel are usual: the first is cup-wheel spherical grinding without swing (CSGNS) for the large-scale workpiece, and the second is cup-wheel spherical grinding with swing (CSGS) for the medium and smaller one. This work presents the relationship between surface quality and parameters selection with diamond abrasvie wheel for two methods of spherical grinding.
     Indexes of grinding surface quality include the surface roughness, surface exture on trajectores, surface hardness, and surface residual stress and cracks. According to the four aspects, this paper launched some researches:
     Firstly, two trajectories equations for CSGNS and CSGS were derived based on the spherical surface forming grinding principle and coordinate transformation theory. Some analyses and two experiments were carried out based on its texture formed by trajectories of a single grinding block in two conditions. It reveals how relationship between some key parameters (i.e., cup-wheel rotation speed, spindle speed, and swing speed, etc.) is to affect the trajectories texture.
     Secondly, due to the multi-block superposition of grinding trajectories, density of trajectories points (DTP) was defined and quantized in subsection. Relationship between distribution of DTP and distribution of surface roughness was studied among different grinding wheel radiuses. Conclusions show that the appropriate area for cup wheel radius is [0.6L, 0.8L] under the consideration of roughness distribution and machining time. In addition, the "lack-phase" problem of trajectories caused by the initial error was researched, and the initial error control and the maximum value requirements were proposed.
     Finally, grinding surface micro-characteristics on WC-Co coating were watched out via scanning electron microscopy (SEM) aiming at spindle speed, cup-wheel rotation speed, swing speed and feed amount. It comes out a conclusion that the amount of feeding is above the other three priorities in the respect of grinding surface quality. The defect in the form of granular or flaky fall-off material is shown in spherical grinding on the WC-Co coating, and WC is vulnerable to decarburization and carbonaceous nodes are generated. Furthermore, the residual stress of surface was analysed through X-ray diffraction (XRD) method based on four ways to feed having an influence on it. It shows that the appropriate feed amount is ap = (1~1.5)μm.
引文
[1]刘扬,刘汇源.高温硬密封球阀密封结构研究[J].阀门, 2009, (4),31–33.
    [2]刘汇源.硬密封高温耐磨球阀关键技术研究[D].杭州:浙江大学, 2008.
    [3]顾永泉.机械密封比压选用原则[J].石油化工设备, 2000, 29 (2),21–24.
    [4]邬佑靖.中国金属密封球阀市场预测[J]. GM通用机械, 2007, (12),8–11.
    [5]杨雪华.水煤浆工况用硬密封球阀的研究与设计[J].阀门, 2009, (2),1–4.
    [6]邬佑靖.管线球阀的技术现状及发展方向[J].阀门, 2007, (6),22–28.
    [7]尹襄,周小南,夏晓坤,等.大型球阀制造技术研究及应用[J].东方电机, 2009, (2),15–25.
    [8]沈少华.大口径球阀的探讨[J].机械设计制造, 2009, (3),73–75.
    [9] Wu Qi, Luo Yumei, Liu Hongbin, et al. Grinding force in precision machining of WC-Co coating by cup wheel[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2007, 24 (2),134–138.
    [10] Yan Q. S., Zhang Z. Q., Syoji K. Study on performance of CBN cup quill for face grinding[J]. Key Engineering Materials, 2001, 202,79–84.
    [11] Matsuo T., Touge M., Yamada H. High-precision surface grinding of ceramics with superfine grain diamond cup wheels[J]. CIRP Annals - Manufacturing Technology, 1997, 46 (1),249–253.
    [12] Zhou S., Pan X. J., Hu G. F. Geometrical Analysis of Roller Grinding with CBN Cup-shaped Grinding Wheel's Face[J]. Key Engineering Materials, 2004, 259-260,357–360.
    [13]杨安生,苏殿顺.耐冲蚀超硬密封结构球阀[J].阀门, 2006, (3),17–19.
    [14]刘麟,顾伯勤.高温球阀喷涂Al2O3-TiO2和WC-Co涂层的耐磨粒磨损性能[J].南京工业大学学报(自然科学版), 2009, 31 (5),5–8.
    [15]赖海瑜,杨志中.球阀球体研磨装置改进[J].阀门, 2006, (2),34–35.
    [16]华建宇,李林.硬密封球阀球体研磨装置[J].阀门, 2008, (2),27–28.
    [17]李伯民,赵波.现代磨削技术[M].北京:机械工业出版社, 2003.
    [18]程相文,林福严,孙新民.四轴球体研磨机的研磨均匀性[J].光学精密工程, 2009, 17 (12),3022–3027.
    [19]张伯鹏.加工精度自生成及其在超精球体研磨中的实现[J].机械工程学报, 2007, 43 (9),75–79.
    [20]庄克司雄.陶瓷结合剂金刚石砂轮的修整研究(II)——杯形砂轮修整器的修整性能[J].磨料磨具与磨削, 1992, 6 (74),6–11.
    [21]冯之敬,庄克司雄,周立波.金刚石砂轮和CBN砂轮修整廓形误差的理论和实验研究[J].金刚石与磨料磨具工程, 1995, 6 (90),12–16.
    [22]阎秋生,张自强,庄克司雄.杯形CBN砂轮端面磨削的自锐过程分析及磨削效果改善[J].机械科学与技术, 2001, 20 (6),918–920.
    [23] H. Ohmori. Ultraprecision aspherical grinding system (2)[J]. Proc. ELID-grinding RIKEN, 1996, 15,146.
    [24] Chen W. K., Huang H. Ultra precision grinding of spherical convex surfaces on combination brittle materials using resin and metal bond cup wheels[J]. Journal of Materials Processing Technology, 2003, 140 (1-3),217–223.
    [25] Feng B.F., Gai Q.F., Cai G.Q., et al., Geometrical Analysis of End-face Grinding with Cup-shaped Wheel for Hot Roller. In Chinese Control and Decision Conference(IEEE)[C], 2008, 1629-1631.
    [26]周胜,潘贤君,冯宝富,等. CBN杯形砂轮端面磨削轧辊的磨削几何学分析[J].金刚石与磨料磨具工程, 2003, 135 (3),25–28.
    [27]许开州,魏臣隽,胡德金.展成法球面磨床的几何误差补偿[J].上海交通大学学报, 2010, 44 (4),478–483.
    [28]柴运东,许黎明,李冬冬,等.高硬度回转球面精密磨削系统的数字控制技术[J].制造技术与机床, 2011, (6),44–46.
    [29]张二水.磨削液类型及组成对加工件表面质量的影响[J].石油商技, 2009, (2),4–9.
    [30] Zhou X., Xi Feng. Modeling and predicting surface roughness of the grinding process[J]. International Journal of Machine Tools & Manufacture, 2002, (42),969–977.
    [31]陈东祥,田延岭.超精密磨削加工表面形貌建模与仿真方法[J].机械工程学报, 2010, 46 (13),186–191.
    [32] Gong Y.D., Wang B. The simulation of grinding wheels and ground surface roughness based on virtual reality technology[J]. Journal of Materials Processing Technology, 2002, (129),123–126.
    [33] Rogelio L.Hecker, Steven Y.Liang. Predictive modeling of surface roughness in grinding[J]. International Journal of Machine Tools & Manufacture, 2003, (43),755–761.
    [34] Sanjay Agarwal, P. Venkateswara Rao. Modeling and prediction of surface roughness in ceramic grinding[J]. International Journal of Machine Tools & Manufacture, 2010, (50),1065–1076.
    [35]修世超,李长河,蔡光起.磨削加工表面粗糙度理论模型修正方法[J].东北大学学报(自然科学版), 2005, 26 (8),770–773.
    [36]李晓梅,丁宁,朱喜林.表面粗糙度模糊神经网络在线辨识模型[J].机械工程学报, 2007, 43 (3),212–217.
    [37]孙林,杨世元.基于最小二乘支持矢量机的成形磨削表面粗糙度预测及磨削用量优化设计[J].机械工程学报, 2009, 45 (10),254–260.
    [38]周自力.球面磨削的探讨[J].机械制造, 2002, 40 (4),42–43.
    [39] Chen F., Bin H. A novel CNC grinding method for the rake face of a taper ball-end mill with a CBN spherical grinding wheel[J]. Advanced Manufacturing Technology, 2009, 41,846–857.
    [40] Rogelio L. Hecker, Igor M. Ramoneda, Steven Y.Liang. Analysis of wheel topography and grit force for grinding process modeling[J]. Journal of Manufacturing Processes, 2003, 5 (1),13–23.
    [41] Hwang Yeon, T. Kuriyagawa, Lee Sun-Kyu. Wheel Curve generation error of aspheric microgrinding in parallel grinding method[J]. International Journal of Machine Tools & Manufacture, 2006, 46,1926–1933.
    [42] Suzuki K., Shiraishi Y., Ninomiya S., et al. Geometrical simulation of surface finish improvement in helical scan grinding method by means of 3D-CAD model[J]. Key Engineering Materials, 2009, 389-390,126–131.
    [43] Lee Rong-Tsong, Hwang Yih-Chyun, Chiou Yuang-Cherng. Dynamic analysis and grinding tracks in the magnetic fluid grinding system Part I.Effects of load and speed[J]. Precision Engineering, 2009, 33,81–90.
    [44]赵恒华,蔡光起,李长河.高效深磨中磨削温度和表面烧伤研究[J].中国机械工程, 2004, 15 (22),2048–2051.
    [45] Tsunemoto K., Katsuo S., Hideo O. Grinding temperature within contact arc between wheel and workpiece in high-efficiency grinding of ultra-hard cutting tool materials[J]. Journal of Materials Processing Technology, 2003, 136,36–47.
    [46]王西彬,任敬心.磨削温度及热电偶测量的动态分析[J].中国机械工程, 1997, 8 (6),77–80.
    [47] Ueda T., Hosokawa A., Yamamoto A. Studies of temperature of abrasive grains in grinding-application of infrared radiation pyrometer[J]. Transactions of ASME, 1984, 107,127–138.
    [48] Wei Chen-Jun, Xu Kai-Zhou, Li Rong-Zhou, et al. Temperature Modeling in End Grinding of Coated Workpieces[J]. Journal of Shanghai Jiaotong University (Science), 2010, 15 (3),319–322.
    [49]梁玉.影响磨削光洁度的因素分析[J].机电工程技术, 2001, (3),53–54.
    [50]刘德忠,端面磨削时力和温度的测量.中国高校切削与先进制造技术研究会第六届年会论文集[C], 1999.
    [51]张清.磨削加工中的表面裂纹及其防止[J].科技信息, 2007, (30),61.
    [52]周志雄,毛聪,周德旺,等.平面磨削温度及其对表面质量影响的实验研究[J].中国机械工程, 2008, 19 (8),980–984.
    [53]邓朝晖,荆琦,安磊.纳米结构WC/12Co涂层精密平面磨削表面残余应力有限元模拟与试验[J].机械工程学报, 2008, 44 (7),58–62.
    [54] Li Dongdong, Xu Mingming, Wei Chenjun, et al. Error analysis and in-process compensation on cup wheel grinding of hard sphere[J]. International Journal of Machine Tools & Manufacture, 2011, 51 (6),543–548.
    [55]胡明忠.浅谈磨削裂纹[J].铁道机车车辆工人, 2011, (3),29–31.
    [56]刘寿荣. WC-Co硬质合金的显微结构参数[J].材料热处理学报, 2005, 26 (1),62–65.
    [57]周泽华.金属切削原理[M].上海:上海科学技术出版社, 1993.
    [58]吴琦.高硬度回转球面精密磨削的基础研究[D].上海:上海交通大学, 2007.
    [59]李安海. WC-Co硬质合金的弹性性能[J].硬质合金, 2011, 28 (3),194–198.
    [60]王丽利,李海艳,刘宁.添加TiC对WC-Co基硬质合金组织和力学性能的影响[J].热处理, 2010, 25 (3),25–30.
    [61]王光祖.立方氮化硼(cBN)特性综述[J].超硬材料工程, 2005, 17 (5),41–45.
    [62]张铁臣.立方氮化硼[M].长春:吉林大学出版社, 1993.
    [63]陈亚生.试析磨削加工中砂轮堵塞的原因[J].现代农业装备, 2008, (2),56–58.
    [64]姚萍.硬质合金磨削裂纹的产生与预防[J].机械管理开发, 2009, 24 (4),81–83.
    [65] Zhao Xiuxu. WC-Co Tool Failure Analysis and the Grinding Effect Study[J]. Advanced Materials Research, 2010, 139-141,269–273.
    [66] Liu Xianbing, Zhang Bi. Grinding of nanostructural ceramic coatings:damage evaluation[J]. International Journal of Machine Tools & Manufacture, 2003, 43,161–167.
    [67] Y.Y.Santana, P.O.Renault, M.Sebastiani, et al. Characterization and residual stresses of WC-Co thermally sprayed coatings[J]. Surface & Coatings Technology, 2008, 202,4560–4565.
    [68]刘金炎. WC-12%Co热喷涂粉末及其涂层制备的研究[D].长沙:中南大学, 2006.
    [69]林宏爾,福田雅秀,鈴木寿. WC-Co超硬合金のクラック伝播に及ぼす有効残留圧縮応力の見積り[J].粉体および粉末冶金, 1976, 23 (1),31–36.