陶瓷球双转盘研磨方式及成球机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20多年来,陶瓷球在混合轴承(陶瓷球滚珠、钢制滚圈)的应用中获得了很大成功。氮化硅等先进陶瓷具有密度小、硬度高、弹性模量高(刚度高)、耐磨损、热膨胀系数低、热稳定性和化学稳定性好、绝缘、无磁等极为优良的综合性能,被认为是目前制造喷气引擎和精密机床高速主轴等仪器设备中高速、高精度轴承滚动体的最佳材料。由于传统研磨加工方法的生产工艺受到人为因素的影响,一致性和稳定性较差,加工成本高,难以获得高球度的陶瓷球,使陶瓷球的应用仍受到限制。
     为解决陶瓷球研磨加工过程中球面研磨不均匀、加工效率低、加工一致性差等问题,本文提出一种双转盘研磨方法,通过控制两块下研磨盘的转速组合,实现球坯表面研磨轨迹的均匀分布,使球坯表面获得均匀研磨,快速修正球形偏差,从而提高加工精度与加工效率。本文主要从研磨过程中球坯运动状态、球面研磨轨迹分布、研磨成球机理、陶瓷球面磨损及高效材料去除技术、研磨工艺分析及优化等几个方面对高精度陶瓷球的双转盘高效研磨方法进行研究。
     针对研磨成球第一条件——切削等概率性,采用CCD观测记录球面标识点运动轨迹和球面研磨轨迹三维分布的计算机仿真相结合的方法研究的陶瓷球研磨过程中球面研磨轨迹的分布;建立研磨轨迹均匀性的评价方法,定量评价研磨轨迹的均匀程度,探讨双转盘研磨方式对研磨轨迹均匀性的满足程度和满足条件。
     针对研磨成球第二条件——尺寸选择性,通过建立力学、运动学等模型分析研磨过程中球形误差修正、球坯直径的一致化以及球坯的滑动和碰撞等现象的形成机理,探讨加载方式、加工载荷的大小、球坯—研磨盘接触状态等因素对研磨成球过程的影响。
     为掌握陶瓷球材料的去除机理,从磨粒磨损角度探讨研磨加工中不同加工条件下陶瓷球材料的去除形式,确定材料去除形式的转换点。通过材料去除形式与材料去除率的关系的分析,提出采用光固化树脂固结的微细金刚石固着磨料盘对陶瓷球进行研磨,以提高陶瓷球粗研阶段的材料去除率。
     采用田口方法对陶瓷球的半精加工研磨工艺参数(加工载荷、磨料浓度和加工速度)进行优化,并讨论加工参数对加工结果的影响程度和影响规律,获得最佳的工艺参数组合。
     采用以上研究结果,以?5mm陶瓷球为加工对象,在粗加工阶段采用固着磨料加工技术,实现陶瓷球毛坯加工余量的高效去除,保证粗加工阶段的加工效率;在半精加工以新型双转盘研磨方式保证球度及加工一致性;最终采用化学机械抛光加工技术,保证陶瓷球坯表面质量。加工后的陶瓷球成品球形偏差为0.05μm,表面粗糙度Ra 5nm,批直径误差0.10μm,达到G3级精度要求。同时总加工时间缩短为原来的1/2~1/3。初步实现了高精度陶瓷球的高效、高一致性的加工。
Over the past decade, ceramic balls have become important components in advanced bearings, and are successfully used in hybrid bearings (ceramic balls and steel races). Silicon nitride, especially, is considered as the most promising material for high speed, high temperature and high precision bearing for jet engine, high precision machine tool and apparatus because of its desirable properties.
     To overcome limitations in traditional lapping process, such as low precision and efficiency, low uniformity and stability of process, a new type of high efficiency lapping method for high precision ceramic ball, Rotated Dual-Plates (RDP) lapping, is developed in this paper. Under RDP lapping mode, two down plates are driven to rotate respectively in designed speed combination to achieve better uniformity of lapping trace distribution on ceramic ball surface, which will improve lapping accuracy and sphericity error correcting rate. RDP lapping method involving ball kinestate, lapping trace distribution, sphere-shaping mechanism, ball surface wear, high efficiency material removal technology, and optimization of lapping parameters are studied in this paper.
     In this paper, lapping trace distribution on ball surface is studied with observing the marked point on the ball surface, and 3D simulation of lapping trace. A uniformity valuation method for lapping trace is also put forward, and the uniformity requirements and satisfying degree under RDP lapping mode are discussed.
     To study the‘size selection’of ceramic balls in lapping process, mechanisms of sphere error correction, unifying process of ball size, ball sliding against plates and impaction between balls are studied. The influence of loading system, lapping parameters and lapping tools on sphere-shaping process is also discussed with experiments and theory analysis.
     The wear mode of ceramic balls involved in the lapping process is also investigated in this paper. Abrasion tests are performed with different grit size, loads and slurry concentrations on a ball-plate wear test apparatus. To improve the material removal rate of ceramic balls, a fixed abrasive lapping technology employing fine diamond abrasive and photosensitive resin is used to replace traditional free slurry lapping in rough stage.
     To figure out a better process for ceramic ball under RDP lapping mode, Taguchi method is applied to optimize lapping parameters to obtain the better MRR, sphericity and surface finish. Influence of parameters involving, including load, speed, and slurry concentration is discussed and the optimum lapping conditions are figured out.
     In the final part of this paper, a high efficiency lapping process developed in this paper for high precision ceramic ball is introduced. In this process, fixed abrasive lapping technology is adopted to improve MRR of ceramic ball in rough lapping, RDP lapping technology is employed to improve ball precision and consistency in semi-finishing stage, and CMP (chemical mechanical polishing) technology is used to obtain high surface quality in finishing. Fine sphericity (0.05μm), surface finish (Ra 5nm) and batch diameter variance (0.10μm) are obtained, and the total lapping time is reduced to 1/2~1/3 of traditional lapping process.
引文
1 L. Wang, R.W. Snidle, L. Gu. Rolling contact silicon nitride bearing technology: a review of recent research. Wear. 2000, 246: 159~173
    2 CI Staff Report. Bearings optimize technology for machine tools. Ceramic Industry. 1995, 144:31~32
    3 K.A. Kelley (Ed.). Hybrid ceramic bearings boost spindle speed. Modern Machine Shop. 2001, 74: 111~114
    4 R.N. Katz. Ceramic bearings: rolling along. Ceramic Industry. 1999, 149: 23~24
    5 王国强, 王玉金. 高速数控机床主轴用陶瓷球轴承的研究进展. 轴承. 2003, 9: 41~59
    6 张劲松. 陶瓷球轴承的开发与应用. 轴承. 1996, 11: 9~1
    7 张葵摘译. 日本 NSK 新型滚动轴承浅析. 轴承. 2000, 9: 36~39
    8 Dezzani. M.M., Pearson. P.K. Hybrid ceramic bearings for difficult applications. Journal of Engineering for Gas Trbine Surbines and Power-Transactions of the ASME. 1996, 118(2): 449~452
    9 Kyozabaro. Furuma. Recent trends in research and development of rolling bearing at NSK. Motion & Control. 1996, 1: 5~12
    10 Y. Maeda. Development of high precision silicon nitride balls. Koyo engineering journal. 2001, 158E: 42~44
    11 H. Ohta, K.Kobayashi. Vibrations of hybrid ceramic ball bearings. Journal of Sound and Vibration. 1996, 192(2): 481~493
    12 B.W. Huang, H.K. Kung. Variations of instability in a rotating spindle system with various bearings. International Journal of Mechanical Sciences. 2003, 45: 57~72
    13 Tatsunobu, Momono and Banda. Sound and Vibration in Rolling Bearings. Motion & Control. 1999, 6: 29~37
    14 王先逵. 精密加工技术使用手册 .机械工业出版社, 1999: 67~74
    15 R.Komanduri. On material removal mechanisms in finishing of advanced ceramics and glasses. Annals of CIRP. 1996,45(1): 509~514
    16 金志浩等. 工程陶瓷材料. 西安交通大学出版社, 2000: 34~42
    17 理查德.J.布鲁克. 陶瓷工艺. 清华大学新型陶瓷精细工艺国家重点实验室译. 科学出版社, 1999: 23~31
    18 任成祖. 陶瓷球加工技术及陶瓷球轴承结构设计初探. 天津大学博士论文. 1995: 18~19
    19 A.L. Maximenko, O.Van Der Biest. Optimisation of initial shape of functionally graded ceramic pre-forms for near-net-shape sintering. Key Engineering Materials. 2002, 206~213: 2171~2174
    20 C.Z. Ren. A new shaping model for green ceramic balls. Journal of Materials Processing Technology. 2002, 129: 423~426
    21 孙永安, 李县辉. 国外陶瓷球加工技术及其应用. 陶瓷学报. 2002, 23 (2): 145~148
    22 黄传真, 艾兴等. 新型陶瓷轴承研究的现状与展望. 中国陶瓷工业. 1999, 6 (2): 25~27
    23 Katz, R.N. and Hasnnoosh, J.G. Ceramics for high performance rolling element bearings: a review and assessment. Int. J. High Technology ceramics. 1985, 1: 69-79
    24 Gottshalk, M.A. and Bak, D.J. Superbearings: Ceramic bearing. Design News. 1995, 10: 2~3
    25 余兴龙, 王友冰, 索忠壁. 四研头超精加工小球机理分析.清华大学学报 (自然科学版). 2003, 43: 632~635
    26 聂兰芳, 赵学军.钢球加工成圆条件及其影响因素探讨.轴承. 2001, 1: 16~18
    27 Rascher. R. 研磨钢球的技术现状和发展趋势. 国外轴承. 1992, 3: 38~42
    28 W. Angele. Finishing high precision quartz balls. Precision Engineering. 1980, 2(3): 119-122
    29 朱晨. 两种钢球研磨方式的力学分析. 轴承. 2000, 9: 11~13
    30 王军, 吴玉厚等. 陶瓷球研磨装置设计和实验. 机械制造. 1997, 7: 8~12
    31 B. Zhang and A Nakajima. Spherical surface generation mechanism in the grinding of balls for ultraprecision ball bearing. Proc. Instn. Mech Engr. 214 Part J: 351~35
    32 F. Itoigawa, T. Nakamura and K. Funabashi, Steel ball lapping by lap with V-shape groove, Trans. JSME, 59, 562 (1993) 1906-1912
    33 Shigeki. Ichikawa. Proposal of new lapping method for ceramic balls. Annalsof the CIRP. 1993, 42 (1): 421~424
    34 J Kang and M Hadfield. The polishing process of advanced ceramicballs using a novel eccentric lapping machine. Proc. IMechE Part B: J. Engineering Manufacture. 2005, 219: 493~504
    35 J Kang and M Hadfield. A novel eccentric lapping machine for finishing advanced ceramic balls. Proc Instn Mech Engrs Part B.2001, 215: 781~795
    36 J Kang and M Hadfield. The effects of lapping load in finishing advanced ceramic balls on a novel eccentric lapping machine. Proc. IMechE. 219 Part B: J. Engineering Manufacture. 2005: 505~513
    37 Rong-Tsong Lee, Yih-Chyun Hwang, Yuang-Cherng Chiou. Lapping of ultra-precision ball surfaces. Part II. Eccentric V-groove lapping system. International Journal of Machine Tools & Manufacture. 2006, 46:1157~1169
    38 C.Z. Ren etal. The eccentric circular groove lapping technique for ceramic balls. Chinese Joural of Mechanical Engineering. 1995, 11(4): 21~24
    39 J.L Yuan, Z.W. Wang, B.H. Lv. Simulation Study on the Developed Eccentric V-grooves Lapping Mode for Precise Ball. Key Engineering Material. 2006, 304~305: 300~304
    40 王志伟. 精密球研磨技术的基础研究. 浙江工业大学硕士论文, 2005: 27~35
    41 黑部利次.ヤラミックスの球超精密研磨. 机械と工具. 1990, 34 (2): 43~49
    42 Kurobe. T, Kakuta. H, Onoda. M. Spin angle control lapping of balls (1st report) - theoretical analysis of lapping mechanism. Journal of the Japan Society for Precision Engineering. 1996, 62(12): 1773~1777
    43 Kurobe. T, Kakuta. H, Onoda. M. Spin angle control lapping of balls (2st report) - theoretical analysis of lapping mechanism. Journal of the Japan Society for Precision Engineering. 1997, 63(5): 726~730
    44 吴玉厚等 .陶瓷球轴承的制造工艺及其相关技术.制造技术与机床. 1996, 11: 8~10
    45 王军, 郑焕文.陶瓷球研磨加工的新方法. 金刚石与磨料磨具工程. 1996, 4(94): 15~18
    46 王军, 吴玉厚等. 精密陶瓷球研磨加工技术研究.制造技术与机床. 1998, 9: 34~36
    47 Wu YH, Zhang K, Sun H. Rubbing process technology of HIPSN ceramic balls. Key Engineering Materials. 2001, 202~203: 185~188
    48 Zhang K, Wu YH, Li SH. Rubbing process and monitoring of precise ceramic ball. Key Engineering Materials. 2001, 202~203: 329~332,
    49 李颂华,吴玉厚等.新型陶瓷球研磨方式的力学分析.沈阳建筑工程学院学报(自然科学版). 2003, 18(3): 229~232
    50 陆峰, 吴玉厚, 张珂. 混合轴承陶瓷球的锥形研磨加工工艺. 东北大学学报(自然科学版). 2004, 25(1): 82~85
    51 Y. Tani, K. Kawata. Development of high-efficient fine finishing process using magnetic fluid. Annals of the CIRP. 1984, 33: 217~220
    52 N. Umehara and K. Kato. A study on magnetic fluid grinding–lst report. Trans. JSME. 1988, 54: 1599~1604
    53 N. Umehara, K. Kato.Principles of magnetic fluid grinding of ceramic balls. Appl. Electromagn. Mater. 1990, 1:37~43
    54 M. Raghumandan, A. Noori-Khajavi, N. Umehara, R, Komanduri. Magnetic float polishing of advanced ceramics.Trans ASME, J. of Manuf. Sci. and Eng. 1996, 119: 521~528
    55 M. Raghunandan, R. Komanduri. Finishing of silicon nitride balls for high-speed bearing applications. Trans. ASME J. Manf. Sci. and Eng. 1998, 120: 376~386
    56 N. Umehara, T. Kirtane, R. Gerlick, V.K. Jain, R. Komanduri. A new apparatus for finishing large size/large batch silicon nitride (Si3N4) balls for hybrid bearing applications by magnetic float polishing (MFP). International Journal of Machine Tools & Manufacture. 2006, 46: 151~169
    57 金洙吉. 混合式陶瓷轴承的研制以及实验台架研究 I:制备陶瓷球最佳工艺参数的选择. 摩擦学学报. 1996, 15(2): 126~132
    58 Zhang B, Uematsu T, Nakajima A. High efficiency and precision grinding of Si3N4 ceramic balls aided with magnetic fluid support by using diamond wheels. JSME Int. J. Ser. C. 1998, 41(3) :499~505
    59 Bo Zhang, Akira Nakajima. Grinding of Si3N4 ceramic balls with the aid of photo-catalyst of TiO2. Annals of the CIRP. 2002, 51(1): 259~262
    60 F.Y. Chang, T.H.C. Childs. Non-magnetic fluid grinding. Wear. 1998, 223: 7~12.
    61 T.H.C. Child, D.J.Moss. Grinding ratio and cost issues in magnetic and non-magnetic fluid grinding. Annals of the CIRP. 2000, 49(1): 261~255
    62 T.H.C. Childs, D.J. Moss: Wear and cost issues in magnetic fluid grinding. Wear. 2001, 249 :509~516
    63 Rong-Tsong Lee, Yih-Chyun Hwang, Yuang-Cherng Chiou. Lapping of ultra-precision ball surfaces part I: Concentric V-groove lapping system. International Journal of Machine Tools & Manufacture. 2006, 46: 1146~1156
    64 K.Goto and H.Mizumoto. A lapping system for ultra-precision bearing balls. J. JSPE. 1996, 62 (5): 681~685
    65 K. Goto and H.Mizumoto. A lapping system for improving the waviness of ultra-precision steel balls. J. JSPE. 1997, 63 (1): 96~100
    66 K. Goto and H. Mizumoto. The influence of the groove depth of laps on the waviness generated on lapped balls in ball lapping. J. JSPE. 1998, 64(5): 743~747
    67 T.H.C. Childs, H. J. Yoon. Magnetic fluid grinding cell design. Annals of the CIRP. 1992, 41: 343~346
    68 N. Umehara and K. Kato. Fundamental properties of magnetic fluid grinding with a floating polisher. J. Magnetism and Magnetic Materials. 1993, 122: 428~431
    69 K. Kato, B. Zhang, N. Umehara, T.H.C. Childs, D.A.Jones and S. Mahmood. Kinematics of balls in magneticfluid grinding. Trans. JSME, C. 1994, 572: 1433~1439
    70 N. Umehara. Magnetic fluid grinding - a new technique for finishing advanced ceramics. Annals 0f CIRP. 1994, 43 (1): 185-188.
    71 N. Umehara, K. Kato, M. Takegoshi. Effects of supporting stiffness of a float and grinding load on fundamental grinding characteristics of ceramic balls in magnetic fluid grinding. Trans. JSME, C. 1995, 584: 1709-1714
    72 T.H.C. Childs, S. Mahmood, H. J. Yoon. The material removal mechanism in magnetic fluid grinding of ceramic ball bearings. Proc. Instn Mech Engrs, Part B. 1994, 208 (1): 47~59
    73 T.H.C. Childs, S. Mahmood, H.J. Yoon. Magnetic fluid grinding of ceramic balls. Tribology International. 1995, 28 (6): 341~348
    74 N. Umehara and K. Kato. Magnetic fluid grinding of advanced ceramic balls.Wear. 1996, 200: 148-153
    75 T.H.C. Childs, D.A. Jones, S. Mahmood, B. Zhang, K. Kato, N. Umehara. Magnetic fluid grinding mechanics. Wear. 1994, 175: 189~198
    76 F.Y. Chang and T.H.C. Childs. Fluid drag, ball interaction and gyroscopic effects in magnetic fluid grinding. Proc.IMechE. 2001, 215 B: 1007~1019
    77 Bo. Zhang, and Akira Nakajima. Dynamics of magnetic fluid support grinding of Si3N4 ceramic balls for ultra-precision bearings and its importance in spherical surface generation. Precision Engineering. 2003, 27: 1~8
    78 Ido.M. Studies on the method of the manufacture of miniature ball bearings (in Japanese). Journal of the Japan Society for Precision Engineering. 1957, 23(4): 127~131
    79 Ido.M., Hazi.T, Nakazima,M. On the miniature ball bearings—on the effect of revolutional radius in lapping steel balls (in Japanese). Journal of the Japan Society for Precision Engineering. 1960, 26(8): 470~475
    80 Ido.M., Nagata.R, Hazi.T. On the miniature ball bearings—on the effect of lap groove angle in lapping steel balls (in Japanese). Journal of the Japan Society for Precision Engineering. 1962, 28(6): 317~323
    81 Ido.M, Hazi.T. On the miniature ball bearings—on the lapping pressure in lapping steel balls (Part 1) (in Japanese). Journal of the Japan Society for Precision Engineering.1958, 24(4): 161~168
    82 Ido.M., Hazi.T.and Nakazima,M. On the miniature ball bearings—on the effect of lapping liquid in lapping steel balls (in Japanese). Journal of the Japan Society for Precision Engineering. 1961, 27(5): 261~267
    83 Ido.M, Hazi.T. On the miniature ball bearings—on the lapping pressure in lapping steel balls (Part 2) (in Japanese). Journal of the Japan Society for Precision Engineering. 1958, 24(5): 161~168
    84 孙永安, 李县辉. 国外陶瓷球加工技术及其应用. 陶瓷学报. 2002, 23 (2): 145~148
    85 黄传真, 艾兴等. 新型陶瓷轴承研究的现状与展望. 中国陶瓷工业. 1999, 6 (2): 25~27
    86 蒋沂萍.混合轴承及陶瓷球研制近况. 轴承. 2001, 2: 33~35
    87 史兴宽, 任敬心, 彭炎午. 高精度气压烧结氮化硅陶瓷球的研磨技术. 机械工艺师. 1995, 8: 15~17
    88 刘文卿. 实验设计. 清华大学出版社, 2005, 北京: 35~43
    89 Genichi Taguchi.Taguchi Method-Research and Development. ASI Press, Amercia, 1992: 52~57
    90 P.J. Ross. Taguchi Techniques for Quality Engineering. McGraw-Hill, Amercia, 1996: 34~39
    91 Ming Jiang, R. Komanduri. Application of Tagnchi method for optimization of finishing conditions in magnetic float polishing. Wear. 1997, 213: 59~71
    92 J. Kang and M. Hadfield. Parameter optimization by Taguchi methods for finishing advanced ceramic balls using a novel eccentric lapping machine. Proc. Instn. Mech. Engrs. 2005, 215 (B): 69~78
    93 M.Jiang, R.Komandui. Chemical Mechanical Polishing (CMP) in Magnetic Float Polishing (MFP) of Advanced Ceramic (silicon nitride) and Glass (silicon Dioxide). Key Engineering Material. 2001, 45: 1~14
    94 R.Komandui, D.A.Lucca, Y.Tani. Technological advances in fine abrasive processes. Annals of the CIRP. 1997, 46(2): 545~596
    95 H.Vora, T. W. Orent, R. J. Stokes. Mechano-chemical polishing of silicon nitrided. J. Amer. Ceram. Soc. 1983, 65: C140~C141
    96 T. Uematsu, K. Suzuki, M. H. Wu, K. Suzki. O. Imanaka. Efficient mechanochemical polishing for silicon nitride ceramics, machining of advanced materials. NIST Special Publication. 1993, 847: 409~413
    97 T. Suga, S. Suzuki, K. Miyazawa. Mechanochemical polishing of sintered silicon nitride, JSPE. 1989, 55: 2247~2253
    98 M. Kikuchi, Y. Takahaski, S. Suzuki, Y. Bando. Mechano-chemical polishing of silicon carbide single crystal with chromium oxide abrasive. J. Amer. Ceram. Soc. 1992, 75: 189~195
    99 Ming Jiang, Nelson O. Wood, R. Komanduri: On chemo-mechanical polishing (CMP) of silicon nitride (Si3N4) work material with various abrasives. Wear. 1998, 220: 59~71
    100 S.R.Hah, T.E.Fischer. Tribochemical polishing of silicon nitride. J.Electrochem. Soc. 1998, 145(5): 1708~1714
    101 V. A. Muratov, T. Luangvaranunt and T. E. Fischer. The tribochemistry of silicon nitride: effects of friction, temperature and sliding velocity. TribologyInternational. 1998, 31(10): 601–611
    102 S.R.Hah, C.B. Burk, T.E.Fischer. Surface quality of tribochemically polished silicon nitride. J.Electrochem. Soc. 1999, 146(4): 1505~1509
    103 Bo Zhang, Akira Nakajima. Grinding of Si3N4 ceramic balls with the aid of photo-catalyst of TiO2. Annals of the CIRP. 2002, 51(1): 259~262
    104 Brown N. Optical Fabrication. LLNL Report 4476, 1990: 79~86
    105 C. Joseph, J.R. Conway and H.P. Kirchnar. Crack branching as a mechanism of crushing during grinding. Am. Ceram. Soc. 1986, 69(8): 603~607
    106 B.R. Lawn and R. Wilshaw. Indentation fracture: Principles and Applications. J. Mater. Sci. 1975, 12: 2195-99
    107 B.R. Lawn, A.G. Evans, and D.B. Marshall. Elastic- Plastic Indentation Damage in Ceramics: The Median/Radial Crack System. J. Amer. Cer. Soc. 1980, 63: 574-81
    108 袁巨龙. 功能陶瓷的超精密加工技术. 哈尔滨工业大学出版社, 2000: 43~47
    109 Zhang Bi, T D. Howes. Material-removal mechanisms in grinding ceramics. Annals of the CIRP. 1994, 43(1): 305~ 308
    110 S. R. Bhagavatula, R. Komanduri. On the chemo-mechanical polishing of silicon nitride with chromium oxide abrasive. Philosophical Magazine. 1996, 74: 1003~1017
    111 T.A.Stolarski, S.Tobe.The effect of accelerated material removal on roundness and residual stresses in ceramic balls. Wear. 1997, 205: 206~213
    112 J. Kang, M. Hadfield. Examination of the material removal mechanisms during the lapping process of advanced ceramic rolling elements. Wear. 2005, 258: 2~12
    113 T.A.Stolarski, E. Jisheng, D.T.Gawne, S. Pansear. The effect of load and abrasive particle size on the material removal rate of silicon nitride artifacts. Ceramics international. 1995, 21: 355~366
    114 Makaram Raghunandan. Magnetic Float Polishing of Silicon Nitride Balls. Oklahoma State University, Ph.D Dissertation, 1997: 63~69
    115 杨小兰, 刘极峰等. 基于 ANSYS 的有限元法王格划分浅析.煤矿机械. 2005, 1: 38~39
    116 王明强, 朱永梅等. 有限元网格划分方法应用研究. 机械设计与制造.2004, 2(1): 22~24
    117 郭红燕. 新型精密轴承球超精密研磨加工系统仿真与实验研究. 南京航空航天大学硕士论文, 2006: 52~58
    118 Archard. J.F. Mechanical polishing of metals- scientific argument of long standing. Phys. Bull. 1985, 36: 212~214
    119 钱安宇. 无心磨削. 青海人民出版社, 1981: 12~21
    120 温诗铸.摩擦学原理.清华大学出版社, 1990: 24~26
    121 Burwelljt. Survey of possible wear mechanisms. Wear. 1957, 18: 119~141
    122 Misraa,Finiei. A classification of three-body abrasive wear and design of a new tester. Wear. 1980, 60: 111~121
    123 Czichosh.Tribology. A systems approach to the science and technology of friction. Lubrication and Wear. ElsevierAmsterdam. 1978: 112~114
    124 Catesjd. Two-body and three-body abrasion: a critical discussion. Wear. 1998, 214: 139~146
    125 K.Adachi and I.M. Hutchings. Wear-mode mapping for the micro-scale abrasion test. Wear. 2003, 255: 23~29
    126 R.I. Trezona, D.N. Allsopp, I.M. Hutchings. Transitions between two-body and three-body abrasive wear: influence of test conditions in the micro-scale abrasive wear test. Wear. 1999, 225~229: 205~214
    127 J.A. Williams, A.M. Hyncica. Mechanisms of abrasive wear in lubricated contacts. Wear. 1992, 152:57~74
    128 J.A. Williams, A.M. Hyncica. Abrasive wear in lubricated contacts. Phys. D.1992, 25: A81~A90
    129 Hans H. Gatzen, J. Chris Maetzig. Nanogrinding. Precision Engineering. 1997, 21: 134~139
    130 Eda H, Zhou L, Nakano H, Kondo R, Shinizu J. Development of single step grinding system for large scale Φ300 Si wafer: A total integrated fixed-abrasive solution. Annals of CIRP. 2001, 50(1): 225~228
    131 W. Peng, T. Gao, C.Y. Yao, X.L. Yuan. Research of photosensitive resin blade with metal-coated abrasive. Key engineering material. 2006, 304~305: 71~75
    132 张珂, 徐湘辉, 吴玉厚, 孙红. 精密陶瓷球的锥形研磨技术研究. 金刚石与磨料磨具工程. 2005, 146(2): 39~42
    133 J.L. Yuan, B.H. Lü, X. Lin, L.B. Zhang, S.M. Ji. Research on Abrasives in the Chemical Mechanical Polishing Process for Silicon Nitride Balls. Journal Materials Processing Technology. 2002, 129 (1-3): 171~175