耐盐大豆培育分子策略的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆是主要的油料作物之一,而土壤盐渍化和线虫病严重抑制了大豆的生长和发育,因此,培育耐盐抗线虫大豆新品种对提高大豆产量无疑将产生重要影响。本文的目的是利用农杆菌介导的大豆胚尖高效遗传转化方法,将分别来自三种耐盐性不同的植物的与阴离子清除有关的甲基转移酶基因导入大豆中,以期为植物基因工程探索出一条新途径,同时为大豆的遗传育种提供新资料。
     对大豆的灭菌方法、外植体的优化、分化和拔高培养基的优化、生根培养基及生根方法等进行了探索,以建立大豆胚尖高效再生体系;对大豆遗传转化过程中的重要因素如筛选压、菌液浓度、浸染时间、农杆菌抑制剂的使用等进行了研究;分别将来自拟南芥、盐芥和盐地碱蓬的甲基转移酶基因MCT利用农杆菌介导的方法导入大豆中,并利用PCR、RT-PCR、Southern杂交等分子手段对转化子进行了检测。
     建立了大豆胚尖高效再生体系:成熟大豆种子浸泡24h后,用1:1的1.2%的次氯酸钠和0.1%的升汞混合液处理大豆10min,收集胚尖并转入芽诱导分化培养基MS+0.08 mg/L TDZ,30d后将长有丛生芽的胚尖转入拔高培养基MS+2.0 mg/L KT +0.2 mg/L NAA中,20d后切取苗高大于5cm的植株,转入生根培养基1/2MS+0.5mg/LNAA中,30d后待根长到3-4cm后移栽到培养土中;优化了大豆胚尖遗传转化体系:卡那霉素选择浓度为90mg/L,菌液浓度为OD_(600)=0.6,浸染时间为12h,可用氨苄青霉素作为农杆菌的抑制剂;AtMCT、ThMCT和SsMCT三种不同的基因转化植株经过筛选分别得到78、67、82株抗性苗,PCR、RT-PCR、Southern杂交等分子手段对转化子的检测结果表现为阳性。
     首次利用TDZ诱导大豆胚尖的分化,建立了高效的大豆胚尖再生体系,丛生芽分化率高达92.6%;优化了大豆胚尖遗传转化系统,转化率高达15%;首次将来自拟南芥、盐芥和盐地碱蓬的阴离子清除有关的基因甲基转移酶基因在大豆中进行了异源表达,分子检测结果表明外源基因已转入大豆中并进行了表达。
Soybean is an important oil crop plant. High soil salinity and the eelworm limit severely soybean growth, development and productivity. Therefore, developing new cultivars with enhanced salt stress and eelworm tolerance would undoubtedly have an enormous impact on global soybean production. The object pf this study was utilizing the high effective Agrobacterium-mediated transformation system of soybean embryo tip to introduce three methytransferase genes related to anion scavenging from different salt-tolerant plants into soybean,in order to explore a new route for plant gene engineering, and at the same time to provide new information for soybean genetic breeding.
     The study has explored the sterilization method, the optimization ofexplant, the optimization of medium and rhizogenesis method, in order to establish an high effective regenesis system of soybean embryo tip;we investigate the important factors such as filtration press, the concentration of Agrobacterium, dip-dying time and the employment of Agrobacterium inhibitor on the course of soybean genetic transformation;we introduce the methytransferase genes related to anion scavenging seperately from Arabidopsis thaliana, Thellungiella salsuginea and Suaeda salsa into soybean by Agrobacterium-mediated transformation system,and the transformation plants were tested by PCR、RT-PCR、Southern blotting analysis.
     We have established the high effective regenesis systemof soybean embryotip:the mature soybean seeds were soaped for 24h, then were dealed with 1.2% NaClO and 0.1% HgCl2 (1:1 mixed) for 10min. The embryo tips were collected and cultured on MS medium supplemented with 0.08 mg/L TDZ for 30d, then explants with multiple mud tissues were transferred to MS medium supplemented with 2.0 mg/LKT + 0.2 mg/L NAA for 20d. The induced seedings long than 5cm were transferred onto root-inducing medium (1/2MS+NAA 0.5mg/L) for 30d. Finally,they were transplanted into soil when the roots reached 3-4cm;We also opmized the transformation system of soybean embryo tip:the concentration of kanamycin was 90mg/L,the concentration of Agrobacterium wasOD_(600)=0.6,the dip-dying time was 12h, ampicillin can act as Agrobacterium inhibitor;After screening AtMCT、ThMCT and SsMCT transformation plants were78、67、82seperately,the results of PCR、RT-PCR、Southern blotting analysis on transfoemation plants were positive.
     This is the first time that we induce and differentiate soybean embryo tip with TDZ. the study establish high effective regenesis system of soybean embryo tip,the differentiation rate of multiple bud is higher than 92.6%;optimize the Agrobacterium-mediated transformation system of soybean embryo tip,the transformation rate is higher than 15%;the first time to heterologus express the methytransferase genes related to anion scavenging seperately from Arabidopsis thaliana, Thellungiella salsuginea and Suaeda salsa into soybean,The results of molecular analysis indicate that heterologus genes had been integrated into the transgenic plant genomes and expressed.
引文
邓向阳, 卫志明. 大豆转化技术. 植物生理学通讯,1998,34:381~387
    董云洲. 用转基因技术获得耐盐烟草植株. 华北农学报,1999,14(增刊):40-44
    郭北海, 张艳敏, 李洪杰等. 甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达. 植物学报, 2000, 42(3):279-283
    侯雷平,李梅兰. DNA 甲基化与植物的生长发育. 植物生理学通讯,2001,37(6):584-592
    黄健秋,卫志明,许智宏. GUS 基因在大豆未成熟子叶原生质体中表达. 植物学报,1992, 34:26-30
    吉林省农业科学院作物育种所大豆组织培养组. 从大豆下胚轴愈伤组织诱导植株成功. 植物学报,1976, 18 (3):258 - 262
    梁峥, 马德钦, 汤岚等. 菠菜甜菜碱醛脱氢酶基因在烟草中的表达. 生物工程学报, 1997, 13(3):153-159
    刘博林, 岳绍先,胡乃壁等. 龙葵 Atrazine 抗性基因向大豆叶绿体的转移及在转基因植株中的表达.中国科学(B 辑), 1989, 7:699~705
    刘东辉,曾艳. DNA 甲基化与基因表达. 沈阳医学院学报,1999,1(1):52-56
    雷勃钧,尹光初,卢翠华等. 外源 DNA 直接导入大豆的研究.大豆科学, 1991, 10(1):58~62
    罗希明,赵桂兰. 大豆原生质体的植株再生. 植物学报,1990, 32:616~621
    苏金,陈玉玲,吴瑞等. 甘露醇-1-P 脱氢酶转基因表达对转基因水稻幼苗抗盐性的影响. 中国农业科学,1999, 32 (6):101-103
    孙仲序, 杨红花, 崔得才等. 转基因杨树的抗盐性分析. 生物工程学报, 2002, 18(4):481-485
    王淑芳, 王峻岭, 赵彦修等. 胆碱脱氢酶基因的转化及转基因番茄耐盐性的鉴定. 植物生理学报, 2001, 27(3):248-252
    杨振棠,陈泽光,刘志东. 大豆叶片的离体培养及再生植株的诱导. 科学通报,1984,(16):1012 – 1016
    周思君,尹光初,雷勃钧,等. 大豆体细胞胚胎发生影响因素的研究. 植物学通报,1993, 9:38~43
    张荃, 王淑芳, 赵彦修 等. HAL1基因转化番茄及耐盐转基因番茄的鉴定. 生物工程学报, 2001, 17(6):658-662
    张贤泽,小松田隆夫. 大豆原生质体经体细胞胚再生植株. 中国科学(辑B),1993, 23:154~158
    
    朱志良. DNA修复酶6-氧-甲基嘌呤-DNA甲基转移酶研究进展. 中华劳动卫生职业病志,2002,20(2):151-154
    Abe H, Yamaguchi-Shinozaki, Urao T, et al. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell , 1997, 9:1859-1868
    Aharon Y, Shahak S, Wininger R et al. Overexpresion of a plasma membrane aquaporin in transgenic Tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell, 2003, 15:439~447
    Alia, Hayashi H, Sakamoto A, Murata N.. Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J , 1998, 16:155-161
    Amaya I, Botella MA, de la Calle M, et al. Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase. FEBS Lett, 1999, 457(1):80-84
    Andreae M O , et al. Methylhalide emission from savanna fires in southern Africa. J. Geophs. Res. , 1996, 101:23603~ 23613.
    Bailey MA,Boerma HR,Parrott WA. Genotype-specific optimization of plant regeneration from somatic embryos of soybean. Plant Sci,1993,93:117-120
    Barwale UB ,Kerns HR,Widholm JM. Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis . Planta, 1986, 167:473 - 481
    Beversdorf WD,Binghan ET. Degrees of differentiation obtained in tissue cultures of Glycine species. Crop Sci,1977, 17 ( 3 -4):307 - 311
    Binzel ML, Hess FD, Bressan RA., Hasegawa PM. Intracellular compartmentation of ions in salt adapted tobacco cells. Plant physiol ,1988, 86:607-614
    Bohnert H.J. et al. Sress tolerance in crops. Landes Bioscience, Texas, USA, 2000, 207~222
    Bohnert HJ, Sheveleva E. Plant stress adaptations making metabolism move. Curr Opin Plant Biol, 1998, 1:267-274.
    Borrell A, Cutanda MC, Lumbreras V, et al. Arabidopsis thaliana atrab28:a nuclear targeted protein related to germination and toxic cation tolerance. Plant Mol Biol, 2002, 50(2):249-259
    Brown AD., Simpson JR. Water relations of sugar-tolerant yeasts:the role of intracellular polyols. J Gen Microbiol , 1972, 72:589-591
    Butler J B. Methyl bromide under scrutiny. Nature, 1995, 376:469~470.
    Butler JH, Battle M , Bender ML , et al. A record of atmospheric halocarbons during the twentieth century from polar firn air. Natu re, 1999, 399:749~ 755.
    Caboche M. Liposome-mediated transfer of nucleic acids in plant protoplasts. Plant Physiol., 1990, 79:173~176
    Chee PP,Fober KA,Slightom JL . Transformation of soybean (Glycine max) by infecting germinating seeds with Agrobacterium tumefaciens. Plant Physiol,1989, 91:1212-1218.
    Cheng TY, Saka T, Voqui-Dinh TH. Plant regeneration from soybean cotyledonary node segments in culture. Plant Sic Lett,1980,19:91-99.
    Chiu W-L et al, Engineered GFP as a vital reporter in plants. Curr. Biol., 1996,6:325~330
    Chowrira G.M. et al, Electroporation-mediated gene transfer into intact nodal meristems in planta. Molecular Biology, 1995,3:17~23
    Christianson,ML, Warnick DA, Carlson PS. A morphogenetically competent soybean suspension culture. Science,1983,222:632-634
    Christou P., McCabe D.E., Prediction of germ-line transformation events in chimeric R0 transgenic soybean plantlets using tissue-specific expression patterns. Plant J., 1992,2:283~290
    Christou P,Murphy JE,Swain WF. Stable transformation of soybean by electroporation and root formation from transformed callus. Proc Natl Acad Sci USA,1989, 84:3962-3966
    Christou P., Soybean transformation by electric discharge particle acceleration. Physiol. Plant, 1990,79:210~212
    Christou P., Swain W.F. Cotransformation frequencies of foreign genes in soybean cell cultures. Theor. Appl. Genet., 1990,79:337~341
    Crutzen PJ. My Llife with O_3, NOx, and other YZOx compounds. Angew Chem. Int. Ed. Engl. , 1996, 35:1758~ 1777.
    DeCleene M,and Delay J. The host range of crown gall. Bot Gaz,1976, 42:389-466
    Deuschle K, Funck D, Hellmann H, et al. A nuclear gene encoding mitochondrial delta-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity. Plant J, 2001, 27(4):345-356
    DeWald DB, Torabinejad J, Jones CA, et al. Rapid accumulation of phosphatidylinos-itol 4,5-bisphosphate and inositol 1,4, 5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol, 2001, 126:759–769
    Dhir SK, Dhir S, Savka MA, Belanger F, Kriz AL, Farrand SK, Widholm JM. Regeneration of transgenic soybean ( Glycine max) plants from electroporated protoplasts. Plant Physiol,1992,99:81-88
    Di R, Purcell V, Collins GB, Ghabrial SA. Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene. Plant Cell Rep, 1996,15:746-750
    Donaldson PA, Simmonds DH Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean. Plant Cell Rep,2000, 19:478-484.
    Ericson MC, Alfinito SH. Proteins produced during salt stress in tobacco cell. Plant Physiol, 1984, 74:506-509
    Espinosa-Ruiz A, Belles JM, Serrano R, et al. Arabidopsis thaliana AtHAL3:a flavoprotein related to salt and osmotic tolerance and plant growth. Plant J, 1999, 20(5):529-539
    Falco S.C. et al, Transgenic canola and soybean seeds with increased lysine. Bio/Technol, 1995,13:577~582
    Finer JJ. Apical proliferation of embryogenic tissue of soybean( Glycine max L. Merrill). Plant Cell Rep,1988, 7:238-241
    Finer J.J. et al, Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Reports, 1992,11:323~328
    Finer J.J., McMullen M.D., Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell Dev. Biol., 1991,27:175~182
    Finer J.J., Nagasawa A., Development of an embryogenic suspension culture of soybean (Glycine max [L.] Merrill). Plant Cell Tissue Org. Cult., 1988(b),15:125~136
    Forment J, Naranjo MA, Roldan M, et al. Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. Plant J, 2002, 30(5):511-519
    Frank W, Munnik T, Kerkmann K, et al. Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plan-tagineum. Plant Cell, 2000, 12:111–123
    Fujita T, Maggio A, Garcia-Rios M, et al. Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for delta1-pyrroline-5-carboxylate synthetase from tomato. Plant Physiol, 1998, 118(2):661-674
    Fukushima E, Arata Y, Endo T, et al. Improved salt tolerance of transgenic tobacco expressing apoplastic yeast-derived invertase. Plant Cell Physiol, 2001, 42(2):245-249
    Gai Jinyi,Guo Zibiao. Efficient plant regeneration through somatic embryogenesis from germinated cotyledon of the soybean. Soybean Genetics Newsletter,1997,24 (3):41 - 44
    Gamborg OL,Davis BP,Stahlhut RW. Somatic embryogenesis in cell cultures Glycine species. Plant Cell Rep,1983,2:209 -212
    Gan J, Yates SR, Ohr HD, et al. Production of methyl bromide by terrestrial higher plants. Geophysical Research Letter, 1998, 25:3595-3598.
    Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, et al. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem, 2000, 275:5668-5674.
    Garcia AB, Engler J, Iyer S, et al. Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol, 1997, 115(1):159-169
    Garg AK, Kim JK, Owens TG, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stress. PNAS, 2002, 99(25):15898-15903
    Gisbert C, Rus AM, Bolarin MC, et al. The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol, 2000, 123(1):393-402
    Goodwin KA, Schaeffer JK, Oremland RS. Bacterial oxidation of dibromomethane and methyl bromide in natural waters and enrichment cultures. Applied and Environmental Microbiology,1998, 64:4629-4636.
    Guo Shanli, Haibo Yin , Xia Zhang. et al. Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Molecular Biology, 2006,60:41-50
    Guo Y, Halfter U, Ishitani M, Zhu JK. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant cell, 2001, 13:1383-1400
    Hadi M.Z. et al, Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Reports, 1996,15:500~505
    Harper DB, KennedY J T, Hamilton JTG. Chloromethane biosynthesis in poroid fungi. Phytochemistry, 1986, 27:3247-3253.
    Hartweck LM,Lazzeri PA,Cui D. Auxin - orientation effects on somatic embryogenesis from immature soybean cotyledons. In Vitro Cellular & Developmental Biology,1988,24 (8):821 - 828
    Hasegawa PM, Bressan RA, Pardo JM. The dawn of plant salt to tolerance genetics. Trends Plant Sci, 2000, 5:317-319
    Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2001, 51:463-499.
    Hayashi H, Alia ML, Deshnium P, et al. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J, 1997, 12:133-142
    Hinchee MAW,Connor-Ward DV,Newell CA,et al. Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technology,1988,6:915-922
    Holmberg N, Bulow L. Improving stress tolerance in plants by gene transfer. Trends Plant Sci, 1998, 3:61-66.
    Holmstrom KO, Somersalo S, Mandal A, et al. Improved tolernace to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot, 2000, 51(343):177-185
    Hong Z, Lakkineni K, Zhang Z, Verma DPS. Removal of feedback inhibition of △’-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol, 2000, 122:1129-1136
    Hooykaas, P. J. & Schilperoort, R. A. (1992). Agrobacterium and plant genetic engineering. Plant Mol.Biol.,1992,19:15-38
    Hoshida H, Tanaka Y, Hibino T, et al. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol Biol, 2000, 43(1):103-111
    Huang N, Nilesh KB, Alexander DM Jr. Protein-facilitated base flipping in DNA by cytosine-5-methyltransferase. Proc Natl Acad Sci USA,2003,100(1):68-73
    Hutchinson S A. Biological activity of volatile fungal metabolites. Transaction of the British Mycological Society ,1971, 57:185~ 200.
    Igarashi Y, Yoshiba Y, Sanada Y, et al. Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol Biol, 1997, 33(5):857-865
    Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47:377-403.
    Ishitani M, Liu J, Halfter U, et al. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell, 2000, 12:1667-1677
    Ishitani M, Nakamura T, Han SY et al. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Biol, 1995, 27:307-315
    Jaglo-Ottosen KR, Gilmour SJ, Zarka DG., et al. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280:104-106
    Jang IC, Oh SJ, Seo JS, et al. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol, 2003, 131(2):516-524
    Jeffers PM, Wolfe NL. On the degradation of methyl bromide in seawater. Geophysical Research Letter, 1996, 23:1773-1776.
    Jeong MJ, Park SC, Kwon HB, Byun MO. Isolation and characterization of the gene encoding glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun, 2000, 278(1):192-196
    Jespeersen HM, Kjaersgard IV, Ostergard L, Welinder KG. From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J, 1997, 326:305-310
    Kaneda Y,Tabei Y,Nishimura S. Combination of thidiazuron and basal media with low salt concentrations increases the frequency of shoot organogenesis soybeans ( Glycine max (L. ) Merr. ) . Plant Cell Rep,1997,17:8 - 12
    Kartha KK, Pahl K, Leung NL. Plant regeneration from meristems of grain legumes: soybean,cowpea,peanut,chickpea ,and bean . Can. J. Bot.,1981,59:1671 - 1679
    Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol, 1999, 17:287-291
    KhalilM AK, Rasmussen RA. A tmo spheric methyl ch lo ride. Atmos. Env iron. , 1999, 33:1305~ 1321.
    Kimball SL,Bingham ET. Adventitious bud development of soybean hypocotyl sections in culture . Crop Sci,1973,13:758 - 760
    Kim JooHag, Clifford E. LaMotte Hack. Plant regeneration in vitro from primary leaf nodes of soybean ( Glycine max )seedlings J . Plant Physiol.,1990,136:664 – 669
    King DB, Saltzman ES. Removal of methyl bromide in coastal seawater:Chemical and biological rates. Journal of Geophysical Research, 1997, 102:18715-18721.
    Kiran K. Sharma, M. Lavanya, Recent developments in transgenics for abiotic stress in legumes of the semi-arid tropics. JIRCAS Working Report, 2002,61~73
    Kjellbom P, Larrrson C, Johannson I, et al. Aquaporins and water homeostasis in plants. Trends Plant Sci., 1999, 4:308-314
    Klimasauskas S, Sanjay K, Richard JR, et al. Hhal methyltransferase flips its target base out of the DNA helix. Cell,1994,76(2):357-369
    Komatsude T,Lee Wenbin,Oka S. Maturation and germination of somatic embryos as affected by sucrose and plant growth regulators in soybeans Glycine gracillis Skvortz and [ Glycine max ( L. ) Merr]. Plant Cell,Tissue Org Cul,1992,28:103 -113
    Komatsuda Takao,Kaneko Kazuhimko,Oka Seibi. Cell biology and molecular genetics Genotype × sucrose interactions for somatic embryogenesis in soybean. Crop Sci.,1991,31:333 - 337
    Komatsuda Takao, Ko Su- Wan. Screening of soybean ( Glycine max (L. ) Merrill. ) genotypes for somatic embryo production from immature embryo. Japan J Breed,1990, 40 (2):249 - 251
    Komatsuda T,Ohyama K. Genotypes of high competence for somatic embryogenesis and plant regeneration in soybean Glycine max. Theor Appl Genet,1988,75:695-700
    Ko TS, Lee S, Farrand SK, Korban SS. A partially disarmed vir helper plasmid, pKYRT1, in conjunction with 2,4-dichlorophenoxyacetic acid promotes emergence of regenerable transgenic somatic embryos from immature cotyledons of soybean. Planta.,2004,218:536-541
    Ko TS, Lee S, Krasnyanski S,Korban SS. Two critical factors are required for efficient transformation of multiple soybean cultivars:Agrobacterium strain and orientation of immature cotyledonary explant. Theor Appl Genet,2003,107:439-447
    Kovtun Y, Chiu WL, Tena G, Sheen J. Function analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. PNAS, 2000, 97(6):2940-2945.
    Kultz D. Phylogenetic and functional classification of mitogen-and stress-activated protein kinases. J Mol Evol .1998, 46(5):571-588
    Langridge W.H. et al, , Uptake of DNA and RNA into cells mediated by electroporation. Methods Enzymol.,1987,153:336~50.
    Lazzeri PA,Hildebrand DF,Collins GB. A procedure for plant regeneration from immature cotyledon tissue of soybean. Plant Mol Biol Rep,1985,3:160 - 167
    Lazzeri PA, Hildebrand DF, Sunega J. Soybean somatic embryogenesis:interactions between sucrose and auxin. Plant Cell Rep,1988,7:517-520
    Lee JH, Van Montagu M, Verbruggen N. A highly conserved kinase is an essential component for stress tolerance in yeast and plant cells. PNAS , 1999, 96:5873-5877
    Lee-Taylor J M, Holland EA. Litter decomposition as a potential natural source of methyl bromide. Journal of Geophysical Research, 2000, 105:8857-8864.
    Leung J, Giraudat J. Abscisic acid signal transduction. Annu. Rev Plant Physiol Plant Mol Biol, 1998, 49:199-222
    Lin W, Odell JT, Schreiner RM. Soybean protoplasts culture and direct gene uptake and expression by cultured soybean protoplasts. Plant Physiol,1987,84:856-861
    Lippmann B. et al, Induction of somatic embryos in cotyledonary tissue of soybean, Glycine max L.Merr. Plant Cell Reports, 1984,3:215~218
    Liu HK, Yang C, Wei ZM. Efficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system. Planta,2004, 219:1042-1049
    Liu J, Huang S, Peng X, et al. Studies on high salt tolerance of transgenic tobacco. Chin Biotechnol, 1995, 11(4):275-280
    Liu Q., Kasuga M., Sakuma Y., et al. Two transcription factors, DREB1and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant cell , 1998, 10:1391-1406
    Liu Wennuan,Moore Patricia J,Collins Glenn B. Somatic embryogenesis in soybean via somatic embryo cycling. In Vitro Cell Dev Biol.,1992,28 (7):153-160
    Liu W.N. et al, Somatic embryo cycling:evaluation of a novel transformation and assay system for seed-specific gene expression in soybean. Plant Cell Org. Tiss. Cult., 1996, 47:33~42
    Liu Y, Li WL. Deepening of ozone valley over Tibetan Plateau and its possible influences. Acta M eteorologica Sinica, 2001, 59 (1):97~106.
    Llorente F, Lopez-Cobollo RM, Catala R, et al. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for strss tolerance. Plant J, 2002, 32(1):13-24
    Llorente F, Oliveros JC, Martinez-Zapater JM, Salinas J. A freezing-sensitive mutant of Arabidopsis, frs1, is a new aba3 allele. Planta, 2000, 211:648–655
    Lobert J M , Bttler J H, Montzka S A , et al. A net sink for atmospheric CH3Br in the east Pacific Ocean. Science, 1995, 267:1002~1005.
    Mano S, AndreaeM O. Emission of methyl bromide from biomass burning. Science, 1994, 263:1255~ 1257.
    Mante Seth,Ralph Scorza,John Cordts. A simple,rapid protocol for adventitious shoot development from mature cotyledons of ( Glycine max ) cv Bragg. In Vitro Cellular & Developmental Biology,1989,25 (4):385 - 388
    Marin E, Nussaume L, Quesada A, et al. Molecu-lar identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene in-volved in abscisic acid biosynthesis and corresponding to the ABA locus of Ara-bidopsis thaliana. EMBO J, 1996, 15:2331–2342
    Matsumoto TK, Pardo JM, Takeda S, et al.. Tabacco and Arabidops sSLT1 mediate salt tolerance of yeast. Plant Mol Biol, 2001, 45:489-500
    Maurel C. Aquaporins and water permeability of plant membrane. Annu Rev Plant Physiol. Plant. Mol Biol, 1997, 48:399~429
    Maurel C, Kado RT, Guern J, Chripeels MJ. Phosphorylation regulates the water channel activity of the seed specific aquaporin TIP. EMBO J., 1995, 14:3028-3035
    McCormick MP, Veiga GS. SAGE measurement so fearly Pinatuboaero sols. Geophys. Res. Lett. , 1992, 19:155~ 158
    Mckersie BD, Bowley SR, Harjanto E, Leprince O. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol, 1996, 111:1177-1181
    Meurer CA, Dinkins RD, Collins GB. Factors affecting soybean cotyledonary node transformation. Plant Cell Rep,1998,18:180-186
    Moore RM, Tokarczyk R, Tait VK, et al. Marine phytoplankton as a source of volatile organohalogens. In:GRIMVALL A, et al, eds. Naturally-Produced Organohalogens. Netherlands:Kluwer Academic Publish, 1995:283-294.McCabe DE, Swain WF, Martinell BJ, Christou P. Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology,1988,6:923-926
    Munnik T, Ligterink W, Meskiene I,et al. Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant J. 1999, 20(4):381-388.
    Munnik T, Meijer HJG. Osmotic stress activates distinct lipid and MAPK signaling pathways in plants. FEBS Lett, 2001, 498:172–178
    Munnik T, Meijer HJG, ter Riet B, et al. Hyper-osmotic stress stimulates phospholipase D activity and elevates the levels of phospha-tidic acid and diacylglycerol pyrophos-phate. Plant J, 2000, 22:147–154
    Nakashima K, Shinwari Z K, Sakuma Y, et al. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol, 2000, 42:657–665
    Nelson DE., Shen B, Bohert HJ. Salinity tolerance-mechanisms, models, and the metabolic engineering of complex traits. In Setlow JK eds. Genetic Engineering, Principles and Methods, 1998
    Niu X, Bressan RA, Hasegawa PM, Pardo JM. Ion homeostasis in NaCl stress environment. Plant Physiol, 1995, 109:735-742.
    Nobuya I, Mika T, et al. Formation and emission of monohalomethanes from marine algae. Phytochemistry, 1997, 45(1):67-73.
    Noctor G., Foyer C. H. Ascorbate and glutathione:keeping active oxygen under control. Annu Rev Plant Physiol. Plant Mol Biol, 1998, 49:249-79
    Nuccio ML, Rhodes D, McNeil SD, Hanson AD. Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol, 1999, 2:128-134
    Ohta M, Hayashi Y, Nakashima A, et al. Introduction of a Na~+/H~+antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett, 2002, 532(3):279-282
    Olhoft PM,Flagel LE,Donovan CM,Somers DA. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta, 2003,5:723-735
    Olhoft PM,Somers DA. L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep,2001,20:706-711
    Oremland RS, Miller LG, Culbertson CW, et al. Degradation of methyl bromide by methanogenic bacteria in cell suspensions and soils. Applied and Environmental Microbiology, 1994,60:3640-3646.
    Oremland RS, Miller LG, Strohmaier FE. Degradation of methyl bromide in anaerobic sediments. Environmental Science and Technology, 1994, 28:514-520.
    Parrott WA,Dryden G,Vogt S. Optimization of somatic embryogenesis embryo germination in soybean. In Vitro Cellular & Developmental Biology,1988,24 (8):817-820
    Parrot W.A. et al, Recovery and evaluation of soybean (Glycine max [L.] Merr.) plants transgenic for a Bacillus thuringiensis var. kurstaki insecticidal gene. In Vitro Cell Dev. Biol., 1994,30:144~149
    Pederson HC, Christiansen J, Wyndaele R. Induction and in vitro culture of soybean crown gall tumors. Plant Cell Rep,1983,2:201-204
    Ranch J.P. et al, (1986), Plant regeneration from tissue cultures of soybean by somatic embryogenesis. In:Cell Culture and Somatic Cell Genetics of plants, I.K. Vasil, ed. Academic Press, New York, 1986,97~110
    Ranch J P,Oglesby L,Zielinski AC. Plant regeneration from embryo derived tissue cultures of soybeans . In Vitro Cellular & Developmental Biology,1985,21 (11):653 - 658
    Park JM, Park CJ, Lee SB, et al. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell, 2001, 13(5):1035-1046
    Rasche ME, Hyman HR, Arp DJ. Biodegradation of halgenated hydrocarbon fumigants by nitrifying bacteria. Applied and Environmental Microbiology, 1990, 56:2568-2571.
    Rasmussen RA, Rasmussen LE, Kahli AK, et al. Concentration distribution of methyl chloride in the atmosphere. J. Geophys. Res. , 1980, 85:7350~ 7356.
    Rhew RC, Miller BR, Weiss R F. Natural methyl bromide andmethyl chloride emissions from coastal salt marshes. Nature, 2000,403:292-295.
    Piao HL, Lim JH, Kim SJ, et al. Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant J, 2001, 27(4):305-314
    Roxas VP, Lodhi SA, Garrett DK, et al. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol, 2000, 41(11):1229-1234
    Roxas VP, Roger K, Smith JR, et al. Overexpression of glutathione S-transferase/ glutatione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotech, 1997, 15:988-991
    Roy M, Wu R. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci, 2001, 160(5):869-875
    Rudolph J , Khedim A , Koppmann R, et al. Field study of the emissions of methyl chloride and other halocarbons from biomass burning in western Africa. J. Atmos. Chem. , 1995, 22:67~ 80.
    Rus A, Yokoi S, Sharkhuu A,et al. AtHKT1 is a salt tolerance determinate that controls Na+ entry into plant roots. PNAS, 2001, 98:14150-14155
    Saemundsdottir S, Matrai. Biological production of methyl bromide by marine phytoplankton. Limnol Oceanography, 1997, 43:81-87.
    Saihi HS, Attieh JM, Hanson AD. Biosynthesis of halomethanes and methanethiol by higher plants via a novel methyltransferase reaction. Plant, Cell and Environment, 1995, 18: 1027-1033.Sato S. et al, Stable transformation via particle bombardment in two different soybean. Plant Cell Reports, 1993,12:408~413
    Saijo Y, Kinoshita N, Ishiyama K, et al. A Ca+-dependent protein kinase that endows rice plants with cold-and salt-stress tolerance functions in vascular bundles. Plant Cell Physiol, 2001, 42(11):1228-1233
    Sakamoto A, Murata N, Murata A. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol, 1998, 38(6):1011-1019
    Samoylov VM,Tucker DM,Thibaud - Nissen F. A liquid-medium – based protocol for rapid regeneration from embryogenic soybean cultures. Plant Cell Rep,1998,18:49-54
    Sanders D. Plant biology:The salty tale of Arabidopsis. Curr Biol, 2000, 10:486-488
    Santos KGB,Mundstock E,Bodanese-Zanettni MH. Genotype-specific normalization of soybean somatic embryogenesis through the use of an ethylene inhibitor. Plant Cell Rep,1997,6:859-864
    Scarratt MG, Moore RM. Production of methyl chloride and methyl bromide in laboratory cultures of marine phytoplankton. Marine Chemistry, 1996, 54:263-272.
    Sellars Rebecca M, Sougheard GM (1991). Phillips Gregory C. Cell biology and molecular genetics adventitious somatic embrogenesis from cultured immature zygotic embryos of peanut and soybean. Crop Sci, 30:408 - 414
    Serca D, Guenther A, Klinger L, et al. Methyl bromide deposition to soils. Atmosphere Environment, 1998, 32:1581-1586.
    Sheen J. Ca2+ dependent protein kinases and stress signal transduction in plants. Science, 1996, 274:1900–1902
    Shen B, Jensen RG, Bohnert HJ. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol , 1997,113:1177-1183.
    Shen YG, Du BX, Zhang WK, et al. AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. Theor Appl Genet ,2002, 105(6-7):815-821
    Shi H, Lee BH, Wu SJ, Zhu JK. Overexpression of a plasma membrane Na~+/H~+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol , 2003, 21(1):81-85
    Shi H, Zhu JK. Regulation of expression of the vacuolar Na~+/H~+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol Biol, 2002, 50(3):543-550
    Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol., 1997, 115:327-334
    Shono M, Wada M, Hara Y, et al. Molecular cloning of Na+-ATPase cDNA from a marine alga, Heterosigma akashiwo. Biochim Biophys Acta, 2001, 1511:193-199.
    Shorter JH, Kolb CE, Crill PM , et al. Rapid degradation of atmo spheric methyl bromide in soils. Nature, 1995, 377:717~719.
    Singh H B, Salas LJ , Stiles RE. M ethyl halides in and over the eastern Pacific (40°N~ 32°S). J. Geophys. Res. , 1983, 88:3684~ 3690.
    Sivamani E, Bahieldinl A, Wraith JM, et al. Improved biomass productivity and water use effciency under water deficit conditions in transgenic wheat constituvely expressing the barley HVA1 gene. Plant Science, 2000, 155(1):1-9
    Skerrett M, Tyerman SD. A channel that allows inwardly directed fluxes of anions and protoplasts derived from wheat roots. Planta, 1994,192:295-305
    Smirnoff N. Plant resistance to environmental stress. Curr Opin Biotechnol, 1998, 9:214-219.
    Solomon A, Beer S, Waisel Y. Effects of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes. Plant Physiol, 1994, 90:198-204
    Solomon S. Progress towards a quantitative understanding of Antarctic ozone depletion. Nature, 1990, 347:347~ 354.
    Steponkus PL, Uemura M, Joseph RA et al. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. PNAS, 1998, 95:14570-14575
    Stewart C.N. et al, Genetic transformation, recovery, and characterization of soybean (Glycine max [L.] Merrill) transgenic for a synthetic Bacillus thuringiensis CRY IA(c) gene. Plant Physiol., 1996,112:121~129
    Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes and AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. PNAS, 1997, 94:1035-1040
    Tarczynski M, Bohnert H. Stress protection of transgenic tabacco by production of the osomolyte mannitol. Science, 1993, 259:508-510
    Takahashi S, Katagiri T, Hirayama T, et al. Hyperosmotic stress induced a rapid and transient increase in inositol 1,4,5-trisphosphate independent of ab-scisic acid in Arabidopsis cell culture. Plant Cell Physiol, 2001, 42:214–222
    Taylor TN , Taylor EL. The distribution and interactions of some Palaeozoic fungi. Review of Paleobotany and Palynology , 1997, 95:83~ 94.
    Tester M and Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot, 2003, 91(5):503-507
    Thomas JC, Sephai M, Arendall B et al. Enhancement of seed germination in high salinty by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ, 1995, 18:801-806.
    Tian LN, Brown DCW, Voldeng H. In vitro response and pedigree analysis for somatic embryogenesis of long - day photoperiod adapted soybean. Plant Cell. Tissue and Org Cult,1994,36:269-273
    Tokarczyk R, Moore RM. Production of volatile organohalogens by phytoplankton cultures. Geophysical Research Letter, 1994, 21:285-288.
    Townsend JA,Thomas LA. An improved method of Agrobacterium-mediated transformation of cultured soybean cells.Patent No,WO94/02620. 1994
    Trick H.N. et al, Recent aevances in soybean transformation. Plant Tissue Cult. Biotech., 1997,3:9~26
    Tyerman SD, Bohnert HJ, Maurel C, et al. Plant aquaporins:their molecular biology, biophysics and significance for plant water relations. J Exp Bot , 1999, 50:1055-1071
    Vain P., et al, Osmotic treatment enhances particle bombardment mediated transient and stable transformation of maize. Plant Cell Reports, 1993,12:84~88
    Van CW, Capiau K, Montagu M, et al. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol, 1996, 112:1703-1714
    Varner RK, Crill PM, Talbot RW. Wetlands:a potentially significant source of atmospheric methyl bromide and methyl chloride. Geophysical Research Letter, 1999, 26:2433-2436.
    Veena, Reddy VS, Sopory SK. GlyoxalaseⅠfrom Brassica juncea:molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J, 1999, 17(4):385-395
    Wang ZY, L i HY, Zhou SK. Advances in study on ozone depletion chemistry in stratosphere. Chinese Science Bulletin, 2001, 46 (8):619~ 625.
    Wei ZM, Xu ZH. Plant regeneration from protoplasts of soybean (Glycine max L.) . Plant Cell Reports, 1988, 7:348~351
    Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase:conservation of a three-kinase module from yeast to human. Physiol Rev, 1999, 79(1):143-180
    Winicov I. Alfinl transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta, 2000, 210(3):416-422
    Winicov I., Bastola DR. Transgenic over-expression of the transcription factor Alfin1 enhances expression of the endogenous McPRP2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiol, 1999, 120:473-480
    Wright M.S. et al, A simple method for the recovery of multiple fertile plants from individual somatic embryos of soybean [Glycine max (L.) Merrill]. In Vitro Cell Dev. Biol., 1991,27P:153~159
    Wright M.S. et al, Initiation and propagation of Glycine max L. Merr.:Plants from tissue-cultured epicotyls. Plant Cell Tissue Org. Cult. , 1987,8:83~90
    Wright M.S. et al, Plant regeneration by organogenesis in Glycine max. Plant Cell Reports, 1986,5:150~154
    Wright MS,Ward DV,Hinchee MA. Regeneration of soybean ( Glycine max L. Merr. ) from cultured primary leaf tissue. Plant Cell Rep,1987,6:83- 89
    Xiong L, Ishitani M, Lee H, Zhu JK. The Arabidopsis LOS5/ABA3 locus en-codes a molybdenum cofactor sulfurase and modulates cold and osmotic stress responsive gene expression. Plant Cell, 2001, 13:2063–2083
    Xiong, L., Karen, S.S, Zhu, JK. Cell signaling during cold, drought and salt stress. Plant Cell, 2002, 14:S165-S183.
    Xiong L, Zhu JK. Molecular and genetic aspects of plant responses to osmotic stress. Plant. Cell Environ, 2002, 25:131-139.
    Xu D, Duan X, Wang B, et al. Expression of a Late Embryogenesis Abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996, 110(1):249-257
    Yamada A, Saitoh T, Mimura T, Ozeki Y. Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells. Plant Cell Physiol, 2002, 43(8):903-910
    Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in respon-siveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994, 6:251–264
    Yamaguchi-Shinozaki K, Shinozaki K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet, 1993, 236:331-340
    Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Novartis Found Symp, 2001, 236:176-186
    Yancey PH, Clark ME, Hand SC et al. Living with water-stress:Evolution of osmolyte system. Science, 1982, 217:1214-1222.
    Yang SX, Zhao YX, Zhang Q, et al. Hal1 mediate salt adaptation in Arabidopsis thaliana. Cell Res , 2001, 11(2):142-148
    Yang Y , Joshua SY, Jeannine R, et al. An Arabidopsis thaliana methyltransferase capable of methylating farnesoic acid. Arch Biochem Biophys,2006,448(1-2):123-132
    Yang Y-S,Kiyomi Wada,Yuzo Futsuhara. Comparative studies of organogenesis and plant regeneration in various soybean explants. Plant Science,1990,72:101 – 108
    Yenush L, Mulet JM, Arino J, Serrano R. The Ppz protein phosphatases are key regulators A K+ and pH homeostasis:implications for salt tolerance, cell wall integrity and cell cyceprogression. EMBO J, 2002, 21(5):920-929
    Yeo AR. Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot , 1998, 49:915-929
    Yilmaz JL, Bulow L Enhanced stress tolerance in Escherichia coli and Nicotianatabacum expressing a betaine aldehyde dehydrogenase/choline dehydrogenase fusion protein. Biotechnol Prog, 2002, 18(6):1176-1182
    Zafiriou OC. Reaction of methyl halides with seawater and matine aerosols. J. Marine Res. , 1975, 33:75~ 80.
    Zhang HX, Blumwald E. Transgenic salt-tolerance tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol, 2001, 19:765-768
    Zhang HX, Hodson JN, Williams JP, Blumwald E. Engineering salt-tolerant Brassica plants:Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. PNAS, 2001, 98:12832-12836
    Zhang J L , L ee Y T. Crossed molecular beam study of the reaction Cl+ O3. J. Phy . Chem. A . , 1997, 101:6485~ 6495.
    Zhang ZY,Xiang AQ,Staswick Q. The use of glufosinate as a selective agent in Agrobacterium- mediated transformation of soybean. Plant Cell Tiss Org Cult,1999, 56:37 -46
    Zhao Fengyun, Xuejie Zhang, Pinghua Li, Yanxiu Zhao, Hui Zhang. Co-expression of the Suaeda alsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Molecular breeding, 2006b, 17(4):341-353
    Zhao Fengyun, Zenglan Wang, Quan Zhang, Yanxiu Zhao, Hui Zhang. Physiological mechanism analysis of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa. Journal of Plant Research ,2006a, 119:95-104
    Zhou XJ. The changes of to talozone in China and the ozone valley over Tibetan Plateau. Chinese Science Bulletin, 1995, 40 (15):1396~ 1398.
    Zhu J K. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol, 2000, 124:941-948
    Zhu JK, Hasegawa PM., Bressan RA. Molecular aspects of osmotic stress in plants. Crit. Rev. Plant Sci, 1997,16:253-277
    Zhu JK. Plant salt tolerance. Trend Plant Sci, 2001, 6:66-71